Skip to main content
Log in

Structural characterization for alkali ion conductive phosphosilicate glass ceramics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structural characterization for Na+ Super Ionic Conductor (NASICON)-type glass ceramics of 20R2O–XZrO2–15P2O5–(65-X)SiO2 (R = Na, Li) was investigated by X-ray diffraction (XRD) and X-ray absorption fine structure to clarify the better conductive mechanism of Li-glass ceramics than that of Na-glass ceramics. The Na-glass ceramics were synthesized by heat treatment using glass material, and the Li-glass ceramics were obtained through ion exchange techniques from Na-glass ceramics. From the XRD analysis, the positive correlation between ionic conductivity and lattice parameter was identified for the Na-glass ceramics, on the other hand, there was no positive relation for Li-glass ceramics, indicating that the ion conductive mechanism cannot be explained by the lattice parameter of NASICON crystalline phase alone. The Debye–Waller factors related to the oxygen surrounding the Zr-ion for the Li-glass ceramics were higher than those for the Na-glass ceramics. The static disorder around Zr-ion may cause more weakly bonding between the Li ions and surrounding atoms, resulting in the improvement of ionic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10:682–686

    Article  Google Scholar 

  2. Kanno R, Murayama M (2001) Lithium ionic conductor thio-LISICON: the Li2S–GeS2–P2S5 system. J Electrochem Soc 148:A742–A746

    Article  Google Scholar 

  3. Boulineau S, Courty M, Tarascon JM, Viallet V (2012) Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 221:1–5

    Article  Google Scholar 

  4. Takada K, Aotani N, Iwamoto K, Kondo S (1996) Solid state lithium battery with oxysulfide glass. Solid State Ionics 86–88:877–882

    Article  Google Scholar 

  5. Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2006) High lithium ion conducting glass-ceramics in the system Li2S-P2S5. Solid State Ionics 177:2721–2725

    Article  Google Scholar 

  6. Kawakami Y, Ikuta H, Uchida T, Wakihara M (1997) Ionic conduction of lithium in Li2S SiS2 Li4SiO4 glass system. Thermochim Acta 299:7–12

    Article  Google Scholar 

  7. Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 182:116–119

    Article  Google Scholar 

  8. Chowdari BVR, Subba Rao GV, Lee GYH (2000) XPS and ionic conductivity studies on Li2O–Al2O3–(TiO2 or GeO2)-P2O5 glass-ceramics. Solid State Ionics 136–137:1067–1075

    Article  Google Scholar 

  9. Fu J (1997) Fast Li+ ion conducting glass-ceramics in the system Li2O-Al2O3-GeO2-P2O5. Solid State Ionics 104:191–194

    Article  Google Scholar 

  10. Fu J (1997) Superionic conductivity of glass-ceramics in the system Li2O Al2O3 TiO2 P2O5. Solid State Ionics 96:195–200

    Article  Google Scholar 

  11. Abrahams I, Hadzifejzovic E (2000) Lithium ion conductivity and thermal behaviour of glasses and crystallised glasses in the system Li2O–Al2O3–TiO2–P2O5. Solid State Ionics 134:249–257

    Article  Google Scholar 

  12. Fu J (1998) Fast Li+ ion conduction in Li2O–(Al2O3 Ga2O3)–TiO2–P2O5 glass-ceramics. J Mater Sci 33:1549–1553. doi:10.1023/A:1017559619391

    Article  Google Scholar 

  13. Katoh T, Inda Y, Baba M, Ye R (2010) Lithium-ion conductive glass-ceramics with composition ratio control and their electrochemical characteristics. J Ceram Soc Jpn 118:159–1162

    Article  Google Scholar 

  14. Shimonishi Y, Zhang T, Imanishi N, Im D, Lee DJ, Hirano A, Takeda Y, Yamamoto O, Sammes N (2011) A study on lithium/air secondary batteries—stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J Power Sources 196:5128–5132

    Article  Google Scholar 

  15. Shimonishi Y, Zhang T, Johnson P, Imanishi N, Hirano A, Takeda Y, Yamamoto O, Sammes N (2010) A study on lithium/air secondary batteries—stability of NASICON-type glass ceramics in acid solutions. J Power Sources 195:6187–6191

    Article  Google Scholar 

  16. Tsujimura T, Koike A, Kuroki Y (2012) Li-ion conductive phosphate glass synthesized by using ion exchange. ECS Trans 45:135–141

    Article  Google Scholar 

  17. Tsujimura T (2014) Li-ion conductive phosphosilicate glass ceramics synthesized by ion exchange. Solid State Ionics 262:829–832

    Article  Google Scholar 

  18. Yao YF, Kummer JT (1967) Ion exchange properties of and rates of ionic diffusion in beta-alumina. J Inorg Nucl Chem 29:2453–2475

    Article  Google Scholar 

  19. Morimoto S (1989) Ionic conductivity of Na2O–ZrO2–P2O5–SiO2 system glass ceramics. J Ceram Soc Jpn 97:1097–1103 (In Japanese with English abstract)

    Article  Google Scholar 

  20. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541

    Article  Google Scholar 

  21. Bohnke O, Ronchetti S, Mazza D (1999) Conductivity measurements on nasicon and nasicon-modified materials. Solid State Ionics 122:127–136

    Article  Google Scholar 

  22. Nagakane T, Yamauchi H, Yuki K, Ohji M, Sakamoto A, Komatsu T, Honma T, Zou M, Park G, Sakai T (2012) Glass-ceramic LiFePO4 for lithium-ion rechargeable battery. Solid State Ionics 206:78–83

    Article  Google Scholar 

  23. Kageyama H, Kamijo N, Asai T, Saito Y, Ado K, Nakamura O (1990) XAFS study of nasicon-related compounds, Na3Zr0.5Co0.5FeP3O12 and Na3Zr0.5Fe(II)0.5Fe(III)P3O12. Solid State Ionics 40–41:350–356

    Article  Google Scholar 

  24. Okumura T, Ina T, Orikasa Y, Arai H, Uchimoto Y, Ogumi Z (2011) Improvement of lithium ion conductivity for A-site disordered lithium lanthanum titanate perovskite oxides by fluoride ion substitution. J Mater Chem 21:10061–10068

    Article  Google Scholar 

Download references

Acknowledgements

The synchrotron radiation experiments were performed at BL14B2 (proposal No. 2013A1784, No. 2013B1832), at BL19B2 (proposal No. 2013B1593) with the approval of the SPring8. The author is grateful to Dr. T. Itoh (AGC Seimi Chemical Co. Ltd.) and Dr. S. Matsumoto (Okayama University) for extending technical support for the synchrotron experiments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Tsujimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsujimura, T. Structural characterization for alkali ion conductive phosphosilicate glass ceramics. J Mater Sci 50, 7735–7741 (2015). https://doi.org/10.1007/s10853-015-9342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9342-0

Keywords

Navigation