Skip to main content
Log in

Chemical Strengthening of Li2O-ZrO2-SiO2 (LZS) and Li2O-ZrO2-SiO2-Al2O3 (LZSA) Sintered Glass-Ceramics

  • Recent Advances in Multicomponent Alloys and Ceramics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ion exchange is a chemical method to increase the mechanical strength on the surface of glass-based materials, in which an exchange between an alkaline ion with smaller radius (from glass) and an alkaline ion with larger radius (from molten salt) is promoted. This creates a superficial compression layer, resulting in mechanical strengthening, compensating the cracks created during processing and use of those glass-based materials. In this context, lithium-based sintered glass-ceramics belonging to the Li2O-ZrO2-SiO2 (LZS) and Li2O-ZrO2-SiO2-Al2O3 (LZSA) systems were summited to ion exchange in a NaNO3 salt bath. The temperatures used in these processes varied from 430°C to 500°C, with immersion times from 15 min to 3 h. After the thermal chemical processes, the LZS glass-ceramics presented a sodium content from 0.20 wt.% to 3.11 wt.%, layer depth up to 2500 µm, and mechanical strength increase up to 19.6%. For the LZSA glass-ceramics, the sodium content varied from 0.23 wt.% to 1.03 wt.% and a layer depth up to 2300 µm was obtained, with a 30.4% mechanical strength decrease. For both glass-ceramics systems, a diffusion coefficient in the order of 10−5 cm2/s and a Weibull modulus increase were demonstrated. For comparison, the results of previous research work, in which ion exchange using a NaNO3 salt paste method, are also related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. J. Deubener, M. Allix, M.J. Davis, A. Duran, T. Höche, T. Honma, T. Komatsu, S. Krüger, I. Mitra, R. Müller, S. Nakane, M.J. Pascual, J.W.P. Schmelzer, E.D. Zanotto, S. Zhou, and J. Non-Cryst, J. Non-Cryst. Solids. https://doi.org/10.1016/j.jnoncrysol.2018.01.033 (2018).

    Article  Google Scholar 

  2. Z. Strnad, Glass-Ceramic Materials: Glass Science and Technology (Elsevier, New York, 1986).

    Google Scholar 

  3. G. Partridge and V. Phillips, Glass Technol. 32, 82 (1991)

  4. S.D. Stookey, Res. Manag. https://doi.org/10.1080/00345334.1958.11755484 (1958).

    Article  Google Scholar 

  5. A.P.N. Oliveira, Materiales vitrocerámicos: características, propiedades y aplicaciones industriales. In: A. Duran, Introducción a los esmaltes cerámicos (1. ed., Faenza, Faenza editrice iberica, 2002)

  6. M.O. Prado and E.D. Zanotto, C. R. Chimie. https://doi.org/10.1016/S1631-0748(02)01447-9 (2002).

    Article  Google Scholar 

  7. F.C. Serbena, V.O. Soares, O. Peitl, H. Pinto, R. Muccillo, and E.D. Zanotto, J. Am. Ceram. Soc. https://doi.org/10.1111/j.1551-2916.2010.04220.x (2011).

    Article  Google Scholar 

  8. A.P.N. Oliveira, T. Manfredini, L. Barbieri, C. Leonelli, and G.C. Pellacani, J. Am. Ceram. Soc. https://doi.org/10.1111/j.1151-2916.1998.tb02411.x (1998).

    Article  Google Scholar 

  9. V.K. Marghussian, and A.S.M. Mesgar, Ceram. Int. https://doi.org/10.1016/S0272-8842(99)00072-3 (2000).

    Article  Google Scholar 

  10. B. Yu, K. Liang, and S. Gu, Ceram. Int. https://doi.org/10.1016/S0272-8842(02)00219-5 (2003).

    Article  Google Scholar 

  11. C.A. Harper, Handbook of Ceramics, Glasses and Diamonds (McGraw-Hill, New York, 2001) https://doi.org/10.1036/0071414673.

    Book  Google Scholar 

  12. L. Hallmann, P. Ulmer, and M. Kern, J. Mech. Behav. Biomed. Mat. https://doi.org/10.1016/j.jmbbm.2018.02.032 (2018).

    Article  Google Scholar 

  13. O.V. Savvova, O.V. Babich, G.K. Voronov, and S.O. Ryabinin, Strength Mat. https://doi.org/10.1007/s11223-017-9890-4 (2017).

    Article  Google Scholar 

  14. A. Ananthanarayanan, G.P. Kothiyal, L. Montagne, and B. Revel, J. Sol. Stat. Chem. https://doi.org/10.1016/j.jssc.2009.10.006 (2010).

    Article  Google Scholar 

  15. M. Shekhawat Int. J. Mater. Phys. 1 (2015)

  16. E. Apel, C. van’t Hoen, V. Rheinberger, and W. Höland, J. Am. Ceram. Soc. https://doi.org/10.1016/j.jeurceramsoc.2006.04.103 (2007).

    Article  Google Scholar 

  17. A.P.N. Oliveira, O.E. Alarcon, T. Manfredini, G.C. Pellacani and C. Siligardi Phys. Chem. Glasses. 41 (2000).

  18. J.D. Teixeira, A.P.N. Oliveira, L. Boehs, F.R. Cesconeto, C. Siligardi, and M.A. Pereira, Mat. Sci. Forum. https://doi.org/10.4028/www.scientific.net/MSF.727-728.1028 (2012).

    Article  Google Scholar 

  19. M.T. Souza, G. Peñarrieta-Juanito, B. Henriques, F.S. Silva, A.P.N. Oliveira, and J.C.M. Souza, Materialia. https://doi.org/10.1016/j.mtla.2018.07.020 (2018).

    Article  Google Scholar 

  20. O.R.K. Montedo, F.J. Floriano, J. OliveiraFilho, C.M. Gomes, D. Hotza, and A.P.N. Oliveira, Ceram. Int. https://doi.org/10.1016/j.ceramint.2011.03.047 (2011).

    Article  Google Scholar 

  21. S. Arcaro, T.B. Wermuth, R.Y.S. Zampiva, J. Venturini, C.S. ten Caten, C.P. Bergmann, A.K. Alves, and A.P.N. Oliveira, J. Euro. Ceram. Soc. https://doi.org/10.1016/j.jeurceramsoc.2018.09.033 (2019).

    Article  Google Scholar 

  22. I.E.F. Pozzobom, G.G. Moraes, R. Balzer, L.F.D. Probst, E.S. Trichês, and A.P.N. Oliveira, Chem. Eng. Trans. https://doi.org/10.3303/CET1543299 (2015).

    Article  Google Scholar 

  23. A.H.B. Teixeira, H.H. Venturelli, O.R.K. Montedo, and A.P.N. Oliveira, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2019.02.055 (2019).

    Article  Google Scholar 

  24. I.W. Donald J. Mater. Sci 24, 4177 (1989).

  25. W.F. Hosford, Mechanical Behavior of Materials, 2nd edn. (Cambridge University Press, Cambridge, 2010).

    MATH  Google Scholar 

  26. J.E. Shelby, Introduction to Glass Science and Technology, 2nd edn. (Royal Society of Chemistry, London, 2005).

    Google Scholar 

  27. W.D. Callister, Materials Science and Engineering: An Introduction, 8th edn. (Wiley, New York, 2012).

    Google Scholar 

  28. D.R. Askeland, Ciencia y ingeniaría de los materiales, 3rd edn. (International Thomson Publishing Company, London, 1998).

    Google Scholar 

  29. M.E. Nordberg, E.L. Mochel, H.M. Garfinkel, and J.S. Olcott, J. Am. Ceram. Soc. https://doi.org/10.1111/j.1151-2916.1964.tb14399.x (1964).

    Article  Google Scholar 

  30. P. Gimenez, and S. Fereres, Energy Procedia. https://doi.org/10.1016/j.egypro.2015.03.075 (2015).

    Article  Google Scholar 

  31. R. Gy, Mater. Sci. Eng. B. https://doi.org/10.1016/j.mseb.2007.11.029 (2008).

    Article  Google Scholar 

  32. Z. Shan, J. Liu, M. Liu, F. Shi, C. Wu, C. Wang, and T. Liu, Ceram. Int. https://doi.org/10.1016/j.ceramint.2018.04.037 (2018).

    Article  Google Scholar 

  33. A.K. Varshneya, Int. J. Appl. Glass Sci. https://doi.org/10.1007/BF00544488 (2010).

    Article  Google Scholar 

  34. S. Karlsson and B. Jonson Glass Technol. – Eur. J. Glass Sci. Technol. A. 51, 41 (2010).

  35. J.M.F. Navarro, El Vidrio, 2nd edn. (Consejo Superior de Investigaciones Científicas, Madrid, 1991).

    Google Scholar 

  36. A.K. Varshneya, Fundamentals of Inorganic Glasses (Academic Press, San Diego, 1993).

    Google Scholar 

  37. D.E. Day J. Non-Cryst. Solids. 21, 343 (1976)

  38. G.H. Beall, M. Comte, M.J. Dejneka, P. Marques, P. Pradeau, and C. Smith, Front. Mater. https://doi.org/10.3389/fmats.2016.00041 (2016).

    Article  Google Scholar 

  39. V.M. Sglavo, A. Prezzi, M. Alessandrini, and J. Non-Cryst, J. Non-Cryst. Solids. https://doi.org/10.1016/j.jnoncrysol.2004.07.025 (2004).

    Article  Google Scholar 

  40. L.B. Teixeira, E.G. Moraes, A.P.N. Oliveira, Bol. Soc. Esp. Ceram. Vidr. (2021, in press) https://doi.org/10.1016/j.bsecv.2021.06.006.

  41. J. Crank, The Mathematics of Diffusion, 2nd edn. (Oxford University Press, Oxford, 1975).

    MATH  Google Scholar 

  42. ASTM—Annual Book of ASTM standards: C158-2017, Standard test methods for strength of glass by flexure (determination of modulus of rupture), 2017.

  43. T.O. Yusuf, M. Ismail, J. Usman, and A.H. Noruzman, Adv. Civ. Eng. https://doi.org/10.1155/2014/658067 (2014).

    Article  Google Scholar 

  44. B. Bergman, J. Mat. Sci. Letters. 3, 689 (1984)

  45. G. Hu, C.M. Smith, Z. Tang and S.A. Tietje (2020) Glass and glass ceramics including a metal oxide concentration gradient (U.S. Patent No. 10,730,791 B2).

  46. X.C. Li, D. Li, M. Meng, R. Wei, L. He, and S.F. Zhang, Ceram. Int. https://doi.org/10.1016/j.ceramint.2019.07.300 (2019).

    Article  Google Scholar 

  47. X.C. Li, M. Meng, D. Li, R. Wei, L. He, and S.F. Zhang, J. Am. Ceram. Soc. https://doi.org/10.1016/j.jeurceramsoc.2020.05.075 (2020).

    Article  Google Scholar 

  48. E.M. Aaldenberg, P.J. Lezzi, J.H. Seaman, T.A. Blanchet, and M. Tomozawa, J. Am. Ceram. Soc. https://doi.org/10.1111/jace.14294 (2016).

    Article  Google Scholar 

  49. R.C. Andrews, J.M. Hall, P. Oram, R.V. Roussev, V.M. Scheneider and L. Ukrainezyk (2019) Lithium containing glass or glass ceramic article with modified K2O profile near the glass surface (U.S. Patent No. 2019/0389746 A1).

  50. M. Laczka, K. Laczka, K. Cholewa-Kowalska, A.B. Kounga, and C. Appert, J. Am. Ceram. Soc. https://doi.org/10.1111/jace.12780 (2014).

    Article  Google Scholar 

  51. ICSD—Inorganic Crystal Structure Database. http://www.icsd-fiz-karlsruhe-de_proxy.dotlib.com.br/search/basic.xhtml. Accessed February 2020.

  52. P.J. Steiner, J.R. Kelly and A.A. Giuseppetti, Int. J. Prosthodont 10 (1997)

  53. H. Shermer, J. Res. Nat. Bureau Standards. https://doi.org/10.6028/JRES.057.012 (1956).

    Article  Google Scholar 

  54. F.X. Liang, C.L. Sun, H.Y. Yang, E.Z. Li, and S.R. Zhang, J. Mater. Sci. https://doi.org/10.1007/s10854-017-7426-0 (2017).

    Article  Google Scholar 

  55. J.M. Marr, and F.P. Glasser, Min. Mag. https://doi.org/10.1180/minmag.1979.043.325.19 (1979).

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Brazil, Grant No. 88881.310728/2018-01.The authors are grateful for the support also provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) – Brazil, Grant Numbers: 444249/2014-1 and 407032/2013-4. A special thanks to the technical staff of the Mechanical Forming Laboratory (Labconf), Ceramic and Composite Materials Research Laboratory (Cermat), Materials Laboratory (LabMat), from the Federal University of Santa Catarina (UFSC).

Author information

Authors and Affiliations

Authors

Contributions

L.B. Teixeira: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing—original draft, Writing—editing. E.G. Moraes: Data curation, Formal analysis, Investigation, Methodology, Writing—review. A.P.N. Oliveira: Conceptualization, Funding acquisition, Writing—review, Project administration, Supervision.

Corresponding author

Correspondence to Luyza Bortolotto Teixeira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, L.B., de Moraes, E.G. & de Oliveira, A.P.N. Chemical Strengthening of Li2O-ZrO2-SiO2 (LZS) and Li2O-ZrO2-SiO2-Al2O3 (LZSA) Sintered Glass-Ceramics. JOM 74, 4188–4201 (2022). https://doi.org/10.1007/s11837-022-05340-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05340-x

Navigation