Skip to main content

Advertisement

Log in

Time zone difference, skill formation and corrupt informal sector: the role of virtual trade

  • Article
  • Published:
Indian Economic Review Aims and scope Submit manuscript

Abstract

This paper uses competitive general equilibrium model of trade for small open economy with informal sector to check the possible effects of virtual trade. We show that skilled labors and educational capital owners benefit from virtual trade. The service sector expands while the formal and informal sector contract along with the number of people engaged in corruption-related intermediation. Following this, we also check the effect of a fall in the extent of cost of corruption. Results show an increase in unskilled wage and outflow of educational capital thus hurting the skill-intensive sector. We proceed further to club the effects of both virtual trade and fall in intermediation cost, and explore the consequences. Though, both skilled and unskilled labors benefit, the effect on output and intermediators, however, is ambiguous. We then modify the basic model to endogenize the cost of corruption, include punishment aspect of intermediators, etc. In this case, owing to time zone difference exploitation, we experience an increase in wage of both types of labor, an expansion of the service sector and contraction of the informal sector. Interestingly, the cost of intermediation rises while the number of intermediators falls in the extended model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The terms outsourcing, fragmenting and offshoring though have technically different meanings, in this paper we use it synonymously indicating the separation of a production process to affiliates in different locations on the globe.

  2. A brief review of all the theoretical works done on the idea of time zones and trade can be found in Prasad et al. (2017).

  3. We assume there is no corruption in the formal sectors as in case of such encounters the formal units may rightfully claim protection against the extortionists.

  4. The symbols used in this paper are: S = skilled labor; SI = initial endowment of skilled labor; \(S'\) = newly trained skilled labor; K = capital; \(L\) = total endowment of unskilled labor; \(X\) = service output; \(Y\) = formal sector good production; \(Z\) = informal sector; \(N\) = extortionists or the corrupt sector; \(L_{N}\) = \(L\) engaged in \(N\); \(L_{S}\) = \(L\) that upgrades to \(S\); \(E\) = educational capital; \(w_{S}\) = wage of skilled labor; \(\bar{w}\) = unionized wage: \(w\) = wage of unskilled labor; \(R\) = rent of educational capital; \(r\) = rent for \(K\); \(P_{X}\) = price of \(X\); \(P_{Y}\) = price of \(Y\); \(P_{Z}\) = price of \(Z\); \(\delta\) = the discount factor; \(\alpha\) = extortionists’ share in price of \(Z\); \(a_{ij}\) = amount of factor \(i\) used in production of one unit of \(j (i = S, K, E, L; j = X, Y, S, Z\)); \(\theta_{ij}\) = distributive share of \(i\) in \(j\); \(\lambda_{ij}\) = employment share of \(i\) in \(j\).

  5. The idea of keeping fixed coefficient production technology comes from the type of skilled-labor service we are dealing with. Here each unit of skilled labor requires one unit capital. For example, each employee requires one computer. Thus, even if the factor prices change, one unit of skilled labor will be required for one unit of capital in order to produce the service. Since the service requires 2 days to get completed and wages are paid in per day manner, the input coefficients in Eq. (1) are two units of skilled labor and two units of capital.

  6. We follow Carruth and Oswald (1981) and Oswald (1979) for determining the wage rate in this sector. In Appendix A, we briefly describe the process of determination of the unionized wage. We thank the anonymous referee for suggesting us to provide the determination process. There are some other interesting papers such as Lingens (2003), Bhattacharyya and Gupta (2016), Chattopadhyay (2018), etc., that consider the determination of wage through bargaining.

  7. The inequality may not hold when α, δ and PX are very low but PZ is high. However, we assume the parameters of the model in such a way that at equilibrium the given inequality holds.

  8. Educational capital in our model refers to both physical and financial capital like education loan, vocational training colleges, computer centers, engineering colleges, funds or land sanctioned only for educational institutions, and other resources which are specifically used for training and educational purpose.

  9. The amount of skilled labor required for training is less than 1 as one single trainer can train a large number of trainees.

  10. The form of skilled labor constraint as given by Eq. (6) is in line with Mandal et al. (2018b), Beladi et al. (2011), Mandal and Roy (2018), etc.

  11. For brevity, we assume unskilled to skilled transformation process as instantaneous though a fully blown model of skill formation should ideally be dynamic in nature. So, the static nature of our model is an important limitation of the paper. We would address this issue in future. Interested researchers, however, may check Chakraborty and Gupta (2009), Gupta and Dutta (2010, 2014), etc., for some more insightful techniques and implications for skill formation issues.

  12. Readers are requested to check Appendix C for further clarification.

  13. The entire segment is motivated by comments made by the referee on the earlier version of the paper. So we are extremely thankful to the referee for inspiring us to formulate a much richer model in the extended segment.

  14. For brevity of analysis, we abstain from introducing the role of government in monitoring and penalizing corrupt activities/agents.

  15. Since \(w_{N} > w\), to equate \(w_{N}\) and \(w\) we assume \(\rho \beta < 1\) and \(\rho\) is low. We thank the anonymous reviewer for suggesting this point.

References

  • Battisti, M., Lavezzi, A. M., Masserini, L., & Pratesi, M. (2018). Resisting the extortion racket: An empirical analysis. European Journal of Law and Economics, 46(1), 1–37.

  • Beladi, H., Marjit, S., & Broll, U. (2011). Capital mobility, skill formation and polarization. Economic Modelling,28(4), 1902–1906.

    Article  Google Scholar 

  • Bhagwati, J. N. (1982). Directly unproductive profit seeking (DUP) activities. Journal of Political Economy,90(5), 988–1002.

    Article  Google Scholar 

  • Bhattacharyya, C., & Gupta, M. R. (2016). Unionised labour market, efficiency wage and endogenous growth. Keio Economic Studies, 52, 81–96.

  • Carruth, A. A., & Oswald, A. J. (1981). The determination of union and non-union wage rates. European Economic Review,16(2), 285–302.

    Article  Google Scholar 

  • Chakraborty, B., & Gupta, M. R. (2009). Human capital, inequality, endogenous growth and educational subsidy: A theoretical analysis. Research in Economics,63(2), 77–90.

    Article  Google Scholar 

  • Chattopadhyay, S. (2018). Investment and wage gap in India: A general equilibrium analysis. Indian Growth and Development Review,11(2), 107–135.

    Article  Google Scholar 

  • Choi, J. P., & Thum, M. (2015). Corruption and the shadow economy. International Economic Review,46(3), 817–836.

    Article  Google Scholar 

  • Dettmer, B. (2014). International service transactions: Is time a trade barrier in a connected world? International Economic Journal, 28(2), 225–254.

    Article  Google Scholar 

  • Friedman, E., Johnson, S., Kaufmann, D., & Zoido-Lobaton, P. (2000). Dodging the grabbing hand: The determinants of unofficial activity in 69 countries. Journal of public economics,76(3), 459–493.

    Article  Google Scholar 

  • Gupta, M. R., & Dutta, P. B. (2010). Skilled-unskilled wage inequality, nontraded good and endogenous supply of skilled labour: A theoretical analysis. Economic Modelling,27(5), 923–934.

    Article  Google Scholar 

  • Gupta, M. R., & Dutta, P. B. (2014). Skilled-unskilled wage inequality, growth of skilled labour and development policies. Journal of Globalization and Development,5(1), 103–128.

    Article  Google Scholar 

  • Head, K., Mayer, T., & Ries, J. (2009). How remote is the offshoring threat? European Economic Review,53(4), 429–444.

    Article  Google Scholar 

  • ILO. (2018). Women and men in the informal economy: A statistical picture (3rd ed.). Geneva: International Labour Office.

    Google Scholar 

  • Johnson, S., Kaufmann, D., & Zoido-Lobatón, P. (1999). Corruption, public finances and the unofficial economy (Vol. 2169). World Bank Publications.

  • Kikuchi, T. (2006). Time zones, outsourcing and patterns of international trade. Economics Bulletin,6, 1–10.

    Google Scholar 

  • Kikuchi, T., & Iwasa, K. (2010). A simple model of service trade with time zone differences. International Review of Economics and Finance,19(1), 75–80.

    Article  Google Scholar 

  • Kikuchi, T., & Long, N. V. (2011). Shift working and trade in labor services with time zone differences. Pacific Economic Review,16(5), 553–564.

    Article  Google Scholar 

  • Kikuchi, T., & Marjit, S. (2010). Time zones and periodic intra-industry trade. Munich Personal RePEc Archive, Paper No. 24473, University Library of Munich, Germany.

  • Kikuchi, T., & Marjit, S. (2011). Growth with time zone differences. Economic Modelling,28(1–2), 637–640.

    Article  Google Scholar 

  • Kikuchi, T., Marjit, S., & Mandal, B. (2013). Trade with time zone differences: Factor market implications. Review of Development Economics,17(4), 699–711.

    Article  Google Scholar 

  • Konrad, K. A., & Skaperdas, S. (1998). Extortion. Economica,65, 461–477.

    Article  Google Scholar 

  • Lingens, J. (2003). The impact of a unionised labour market in a Schumpeterian growth model. Labour Economics,10(1), 91–104.

    Article  Google Scholar 

  • Mandal, B. (2015). Distance, production, virtual trade and growth: A note. Economics: The Open-Access, Open-Assessment E-Journal,9(2015-1), 1–12.

    Google Scholar 

  • Mandal, B., Marjit, S., & Beladi, H. (2018a). Reform, informal sector, and extortion. Economics and Politics,30, 106–123.

    Article  Google Scholar 

  • Mandal, B., Marjit, S., & Nakanishi, N. (2018b). Outsourcing, factor prices and skill formation in countries with non-overlapping time zones. Eurasian Economic Review,8(2), 289–304.

    Article  Google Scholar 

  • Mandal, B., & Roy, S. (2018). Inflow of educational capital, trade liberalization, skill formation and informal sector. Eurasian Economic Review,8(1), 115–129.

    Article  Google Scholar 

  • Marjit, S. (2007). Trade theory and the role of time zones. International Review of Economics and Finance,16(2), 153–160.

    Article  Google Scholar 

  • Marjit, S., & Kar, S. (2011). The outsiders: Economic reform and informal labour in a developing economy. New Delhi: Oxford University Press.

    Book  Google Scholar 

  • Marjit, S., & Mandal, B. (2017). Virtual trade between separated time zones and growth. International Journal of Economic Theory,13(2), 171–183.

    Article  Google Scholar 

  • Matsuoka, Y., & Fukushima, M. (2010). Time zones, shift working and international outsourcing. International Review of Economics and Finance,19(4), 769–778.

    Article  Google Scholar 

  • Mishra, A., & Ray, R. (2010). Informality, corruption, and inequality. Bath Economics Research Working Papers; No. 13/10, Department of Economics, University of Bath, Bath, UK

  • Nakanishi, N., & Long, N. V. (2015). The distributional and allocative impacts of virtual labor mobility across time zones through communication networks. Review of International Economics,23(3), 638–662.

    Article  Google Scholar 

  • Oswald, A. J. (1979). Wage determination in an economy with many trade unions. Oxford Economic Papers,31(3), 369–385.

    Article  Google Scholar 

  • Piculescu, V., & Hibbs Jr, D. A. (2005). Institutions, corruption and tax evasion in the unofficial economy. Working Papers in Economics, nr 173, Göteborg University.

  • Prasad, A. S., Mandal, B., & Bhattacharjee, P. (2017). Time zone difference, comparative advantage and trade: A review of literature. Eurasian Journal of Economics and Finance,5(3), 1–16.

    Article  Google Scholar 

  • The World Bank. (2018a). Communications, computer, etc. (% of service exports, BoP). Retrieved July 18, 2018, from https://data.worldbank.org/indicator/BX.GSR.CMCP.ZS.

  • The World Bank. (2018b). ICT service exports (BoP, current US$). Retrieved July 18, 2018, from https://data.worldbank.org/indicator/BX.GSR.CCIS.CD.

  • The World Bank. (2018c). Insurance and financial services (% of service exports, BoP). Retrieved July 18, 2018, from https://data.worldbank.org/indicator/BX.GSR.INSF.ZS.

Download references

Acknowledgements

We thank Sugata Marjit, Sarbajit Sengupta, Saibal Kar, Priya Brata Dutta for their observations on an earlier version of the paper. The paper has also benefited from the comments received from conference in the University of Calcutta, and Visva-Bharati University. We also gratefully acknowledge the comments and suggestions given by the editor of this journal and the anonymous referee. These comments helped us to refine the arguments of the paper. This paper is based on a chapter of the Ph.D. thesis of the first author. Usual disclaimer applies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaka Shree Prasad.

Ethics declarations

Conflicting interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix A

1.1.1 Determination of unskilled-labor wage in the formal sector

The wage in sector \(Y\) is determined through the utility maximization problem of labor unions. Union’s utility function is given as:

$$U = U\left( {w_{Y} , N,p_{Y} } \right).$$

Here, \(w_{Y}\) is the wage rate, \(N\) is employment of unskilled labor in the union sector or in sector \(Y\), and \(p_{Y}\) is the relative price of \(Y\). \(U\) is increasing and quasi-concave in \(N\) and \(w_{Y}\). \(\frac{\delta u}{{\delta w_{Y} }}, \frac{\delta u}{\delta N}, \frac{{\delta^{2} u}}{{\delta w_{Y} \delta N}} > 0; \; \frac{\delta u}{\delta p} < 0,\) and \(\frac{{\delta^{2} u}}{{\delta w_{Y}^{2} }}, \frac{{\delta^{2} u}}{{\delta N^{2} }} < 0\).

The problem is to maximize the utility function subject to the labor demand curve, \(N = Yc_{w} = N\left( {w_{Y} ,r} \right);\) where \(Y\) is output, \(r\) is rent, \(\frac{\delta N}{{\delta w_{Y} }} < 0\) and \(c_{w}\) is the partial derivative, with respect to \(w_{Y}\), of the representative firm’s unit cost function, \(c\left( {w_{Y} ,r} \right)\). The First Order Condition for equilibrium is:

$$\frac{\delta u}{{\delta w_{Y} }} + \frac{\delta u}{\delta N}\frac{\delta N}{{\delta w_{Y} }} = 0 \Rightarrow \frac{{\delta u/\delta w_{Y} }}{\delta u/\delta N} = - \frac{\delta N}{{\delta w_{Y} }}.$$

\(\Rightarrow MRS_{{w_{Y} ,N}} =\) slope of the labor demand curve.

The above equality yields the equilibrium for labor union where wage rate is determined. In our paper, the unionized wage is denoted as \(\bar{w}\). Note that, here firms are price takers and the Second Order Condition for maximization is also satisfied.

1.2 Appendix B

1.2.1 Effect of rise in \(\delta\)

Writing Eqs. (1)–(5) in relative change form we have,

$$\theta_{SX} \hat{w}_{S} + \theta_{KX} \hat{r} + \theta_{SX} \hat{a}_{SX} + \theta_{KX} \hat{a}_{KX} = \delta \hat{P}_{X} + \hat{\delta }\delta .$$

Since \(\hat{P}_{X} = 0\) and \(a_{SX}\) and \(a_{KX}\) are assumed to be fixed, we have

$$\theta_{SX} \hat{w}_{S} + \theta_{KX} \hat{r} = \hat{\delta }\delta .$$
(B.1)

Similarly, from Eq. (2), \(0 + \theta_{KY} \hat{r} + \theta_{LY} \hat{a}_{LY} + \theta_{KY} \hat{a}_{KY} = 0.\)

From Envelope Theorem, \(\theta_{LY} \hat{a}_{LY} + \theta_{KY} \hat{a}_{KY} = 0\); therefore we have,

$$\theta_{KY} \hat{r} = 0.$$
(B.2)

Similarly from (3), (4) and (5), we have

$$\theta_{LZ} \hat{w} + \theta_{KZ} \hat{r} = 0,$$
(B.3)
$$\hat{w} + \hat{L}_{N} = \hat{Z},$$
(B.4)
$$\theta_{ES} \hat{R} + \theta_{{LS^{\prime}}} \hat{w} = \left( {1 - \theta_{SS'} } \right)\hat{w}_{S} .$$
(B.5)

From (B.2), \(\hat{r} = 0.\) Therefore from (B.1), \(\hat{w}_{S} = \frac{1}{{\theta_{SX} }}\delta \hat{\delta } > 0.\) Putting the value of \(\hat{r}\) in (B.3), \(\hat{w} = 0\). Substituting \(\hat{w}\) and \(\hat{w}_{S}\) in (B.5), we get \(\hat{R} = \frac{{\left( {1 - \theta_{{SS^{\prime}}} } \right)}}{{\theta_{ES} \theta_{SX} }}\delta \hat{\delta } > 0\). Since, \(\hat{w} = 0\), from (B.4), \(\hat{L}_{N} = \hat{Z}\).

Here the input coefficients of \(X\) is fixed; the input coefficients of \(Y\) and \(Z\) are variable but as there is no change in the factor prices there will not be any change in the input coefficients. The amount of unskilled labor required to produce one unit of skilled labor is one (i.e., \(a_{{LS^{\prime}}} = 1)\) and the amount of educational capital required is assumed as fixed. Therefore, by Envelope condition, the per unit skilled labor requirement for training remains unchanged. Thus, even though there are changes in \(w_{S}\) and \(R\) there will not be any change in the input coefficients of \(S\) production. However, rise in \(R\) will make domestic \(R\) higher than the international \(R\), leading to inflow of educational capital. Inflow of educational capital will initiate inter-sectoral movement of factors and the size of different sectors will change. From (9)

$$\hat{S}' = \hat{E}.$$
(B.6)

From Eq. (6), \(\lambda_{SX} \hat{X} = \left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)\hat{S}'\)

$$\Rightarrow \hat{X} = \frac{{\left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)}}{{\lambda_{SX} }}\hat{E}.$$
(B.7)

From Eq. (7),

$$\lambda_{KY} \hat{Y} + \lambda_{KZ} \hat{Z} = - \frac{{\lambda_{KX} \left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)}}{{\lambda_{SX} }}\hat{E}.$$
(B.8)

From (10)

$$\hat{L}_{S} = \hat{S}'.$$
(B.9)

From (8), \(\lambda_{LY} \hat{Y} + \lambda_{LZ} \hat{Z} + \lambda_{LN} \hat{L}_{N} + \lambda_{{LS^{\prime}}} \hat{L}_{S} = 0.\)

Since \(\hat{L}_{N} = \hat{Z}\) and \(\hat{L}_{S} = \hat{S}'\)\(\lambda_{LY} \hat{Y} + \lambda_{LZ} \hat{Z} + \lambda_{LN} \hat{Z} + \lambda_{{LS^{\prime}}} \hat{S}' = 0.\)

Using (B.6),

$$\lambda_{LY} \hat{Y} + \left( {\lambda_{LZ} + \lambda_{LN} } \right)\hat{Z} = - \lambda_{{LS^{\prime}}} \hat{E}.$$
(B.10)

Writing (B.8) and (B.10) in matrix form,

$$\left( {\begin{array}{*{20}c} {\lambda_{KY} } & {\lambda_{KZ} } \\ {\lambda_{LY} } & {\left( {\lambda_{LZ} + \lambda_{LN} } \right)} \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {\hat{Y}} \\ {\hat{Z}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { - \frac{{\lambda_{KX} \left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)}}{{\lambda_{SX} }}\hat{E}} \\ { - \lambda_{{LS^{\prime}}} \hat{E}} \\ \end{array} } \right).$$

Now, \(\left| \lambda \right| = \lambda_{KY} \left( {\lambda_{LZ} + \lambda_{LN} } \right) - \lambda_{LY} \lambda_{KZ} > 0\); since \(Y\) is \(K\) intensive and \(Z\) is \(L\) intensive.

Using Cramer’s Rule, we solve \(\hat{Y}\) as follows:

$$\hat{Y} = \frac{{\hat{E}}}{{\left| \lambda \right|\lambda_{SX} }}\left\{ \lambda_{{LS^{\prime}}} \lambda_{KZ} \lambda_{SX} - \lambda_{KX} \left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)\left( {\lambda_{LZ} + \lambda_{LN} } \right)\right\} .$$

In the above equation we have

$$\begin{aligned} & \lambda_{{LS^{\prime}}} \lambda_{KZ} \lambda_{SX} - \lambda_{KX} \left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)\left( {\lambda_{LZ} + \lambda_{LN} } \right) \hfill \\ &\quad = \frac{1}{SKL}\left\{ {a_{{LS^{\prime}}} S^{\prime}a_{KZ} Za_{SX} X + a_{KX} Xa_{{ss^{\prime}}} S^{\prime}L_{N} + a_{KX} Xa_{{ss^{\prime}}} S^{\prime}a_{LZ} Z - \left( {a_{KX} XS^{\prime}a_{LZ} Z + a_{KX} XS^{\prime}L_{N} } \right)} \right\} \hfill \\ & \quad = \frac{{2XS^{\prime}}}{SKL}\{ a_{KZ} Z - a_{LZ} Z\left( {1 - a_{{ss^{\prime}}} } \right) - L_{N} \left( {1 - a_{{ss^{\prime}}} } \right) \hfill \\ & \quad = \frac{{2XS^{\prime}}}{SKL}\left\{ {a_{KZ} Z - \left( {a_{LZ} Z + L_{N} } \right)\left( {1 - a_{{ss^{\prime}}} } \right)} \right\}. \hfill \\ \end{aligned}$$

Here if \(a_{KZ}\) and \(a_{{ss^{\prime}}}\) are very low, then the given expression is negative. This implies \(Y\) is negative. The reverse is true when the values of \(a_{KZ}\) and \(a_{{ss^{\prime}}}\) are large.

Similarly, \(\hat{Z} = \frac{{\hat{E}}}{{\left| \lambda \right|\lambda_{SX} }}\left\{ {\lambda_{LY} \lambda_{KX} \lambda_{{S^{\prime}S}} - \lambda_{LY} \lambda_{KX} \lambda_{{SS^{\prime}}} - \lambda_{KY} \lambda_{{LS^{\prime}}} \lambda_{SX} } \right\}.\)

Here, \(\lambda_{LY} \lambda_{KX} \lambda_{{S^{\prime}S}} = \frac{{a_{LY} Y}}{L}\frac{2X}{K}\frac{{S^{\prime}}}{S}\); and \(\lambda_{KY} \lambda_{{LS^{\prime}}} \lambda_{SX} = \frac{{a_{KY} Y}}{K}\frac{{L_{S} }}{L}\frac{2X}{S} = \frac{{a_{KY} Y}}{K}\frac{2X}{S}\frac{S'}{L}\). Since, \(Y\) is capital intensive \(\lambda_{LY} \lambda_{KX} \lambda_{{S^{\prime}S}} < \lambda_{KY} \lambda_{{LS^{\prime}}} \lambda_{SX}\). This implies \(\hat{Z} < 0.\)

Now, as \(\hat{Z} = \hat{L}_{N}\),

$$\hat{L}_{N} = \frac{{\hat{E}}}{{\left| \lambda \right|\lambda_{SX} }}\left\{ {\lambda_{LY} \lambda_{KX} \lambda_{{S^{\prime}S}} - \lambda_{LY} \lambda_{KX} \lambda_{{SS^{\prime}}} - \lambda_{KY} \lambda_{{LS^{\prime}}} \lambda_{SX} } \right\} < 0.$$

1.3 Appendix C

1.3.1 The effect of a fall in \(\alpha\)

The relative change form of (2) is \(\theta_{KY} \hat{r} = 0\)

$$\Rightarrow \hat{r} = 0.$$
(C.1)

From (1), \(\theta_{SX} \hat{w}_{S} + \theta_{KX} \hat{r} = 0\). Using (C.1), \(\hat{w}_{S} = 0\)

With a fall in \(\alpha\), Eq. (3) gives, \(\theta_{LZ} \hat{w} + \theta_{KZ} \hat{r} = - \alpha \hat{\alpha }\varvec{ } \Rightarrow \hat{w} = - \frac{{\alpha \hat{\alpha }}}{{\theta_{LZ} }}\)

From Eqs. (4) and (5), we have, respectively,

$$\hat{w} + \hat{L}_{N} = \hat{Z} + \hat{\alpha }.$$
(C.2)

And

$$\theta_{ES} \hat{R} + \theta_{{LS^{\prime}}} \hat{w} = \left( {1 - \theta_{{SS^{\prime}}} } \right)\hat{w}_{S} \Rightarrow \hat{R} = \frac{{\theta_{{LS^{\prime}}} }}{{\theta_{ES} }}\frac{{\alpha \hat{\alpha }}}{{\theta_{LZ} }}.$$

Since wage of unskilled labor is changing there will be substitution between factors in \(Z\). The elasticity of substitution between \(L\) and \(K\) in \(Z\) is \(\sigma_{Z} = \frac{{\hat{a}_{LZ} - \hat{a}_{KZ} }}{{\hat{r} - \hat{w}}}.\)

As \(\hat{r} = 0\), \(\hat{a}_{KZ} = \hat{a}_{LZ} + \sigma_{Z} \hat{w}.\)

From the Envelope theorem, \(\theta_{LZ} \hat{a}_{LZ} + \theta_{KZ} \hat{a}_{KZ} = 0 \Rightarrow \hat{a}_{LZ} = - \frac{{\theta_{KZ} }}{{\theta_{LZ} }}\hat{a}_{KZ} .\)

Therefore, \(\hat{a}_{KZ} = - \frac{{\theta_{KZ} }}{{\theta_{LZ} }}\hat{a}_{KZ} + \sigma_{Z} \hat{w} \Rightarrow \hat{a}_{KZ} = \sigma_{Z} \theta_{LZ} \hat{w}\)

$$\Rightarrow \hat{a}_{KZ} = - \sigma_{Z} \alpha \hat{\alpha }.$$
(C.3)

Now,

$$\hat{a}_{LZ} = \frac{{\theta_{KZ} }}{{\theta_{LZ} }}\sigma_{Z} \hat{\alpha }\alpha < 0.$$
(C.4)

From Eqs. (6)–(10) we have, respectively,

$$\lambda_{SX} \hat{X} = \left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)\hat{S}',$$
(C.5)
$$\lambda_{KX} \hat{X} + \lambda_{KY} \hat{Y} + \lambda_{KZ} \hat{Z} + \lambda_{KZ} \hat{a}_{KZ} = 0,$$
(C.6)
$$\lambda_{LY} \hat{Y} + \lambda_{LZ} \hat{Z} + \lambda_{LZ} \hat{a}_{LZ} + \lambda_{LN} \hat{L}_{N} + \lambda_{LS '} \hat{L}_{S} = 0,$$
(C.7)
$$\hat{S}' = \hat{E},$$
(C.8)
$$\hat{L}_{S} = \hat{S}'.$$
(C.9)

Putting (C.8) in (C.5)

$$\hat{X} = \frac{{\left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)}}{{\lambda_{SX} }}\hat{E} < 0.$$
(C.10)

Using (C.10) in (C.6)

$$\lambda_{KY} \hat{Y} + \lambda_{KZ} \hat{Z} = - \lambda_{KZ} \hat{a}_{KZ} - \frac{{\lambda_{KX} \left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)}}{{\lambda_{SX} }}\hat{E}.$$
(C.11)

Using (C.2) and (C.9) in (C.7)

$$\lambda_{LY} \hat{Y} + \left( {\lambda_{LZ} + \lambda_{LN} } \right)\hat{Z} = - \lambda_{LZ} \hat{a}_{LZ} - \lambda_{LS '} \hat{E} - \lambda_{LN} \left( {\hat{\alpha } + \frac{{\hat{\alpha }\alpha }}{{\theta_{LZ} }}} \right).$$
(C.12)

Writing (C.11) and (C.12) in matrix form:

$$\left( {\begin{array}{*{20}c} {\lambda_{KY} } & {\lambda_{KZ} } \\ {\lambda_{LY} } & {\left( {\lambda_{LZ} + \lambda_{LN} } \right)} \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {\hat{Y}} \\ {\hat{Z}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {\left\{ { - \lambda_{KZ} \hat{a}_{KZ} - \frac{{\lambda_{KX} \left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)}}{{\lambda_{SX} }}\hat{E}} \right\}} \\ {\left\{ { - \lambda_{LZ} \hat{a}_{LZ} - \lambda_{{LS^{\prime}}} \hat{E} - \lambda_{LN} \left( {\hat{\alpha } + \frac{{\hat{\alpha }\alpha }}{{\theta_{LZ} }}} \right)} \right\}} \\ \end{array} } \right),$$
$$\left| \lambda \right| = \lambda_{KY} \left( {\lambda_{LZ} + \lambda_{LN} } \right) - \lambda_{LY} \lambda_{KZ} > 0.$$

Therefore,

$$ \begin{aligned}\hat{Y} &= \frac{1}{\left| \lambda \right|}\left[ \vphantom{{+ \left\{ \lambda_{KZ} \lambda_{{LS^{\prime}}} - \frac{{\lambda_{KX} \left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)}}{{\lambda_{SX} }}\left( {\lambda_{LZ} + \lambda_{LN} } \right)\right\} \hat{E}}}{\left\{ {\lambda_{KZ} \left( {\lambda_{LZ} + \lambda_{LN} } \right)\sigma_{Z} \hat{\alpha }\alpha + \lambda_{KZ} \lambda_{LZ} \frac{{\theta_{KZ} }}{{\theta_{LZ} }}\sigma_{Z} \hat{\alpha }\alpha + \lambda_{KZ} \lambda_{LN} \left( {\hat{\alpha } + \frac{{\hat{\alpha }\alpha }}{{\theta_{LZ} }}} \right)} \right\} }\right.\\&\quad\left.{+ \left\{ \lambda_{KZ} \lambda_{{LS^{\prime}}} - \frac{{\lambda_{KX} \left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)}}{{\lambda_{SX} }}\left( {\lambda_{LZ} + \lambda_{LN} } \right)\right\} \hat{E}} \right].\end{aligned}$$

In the above equation, \(\left\{ {\lambda_{KZ} \left( {\lambda_{LZ} + \lambda_{LN} } \right)\sigma_{Z} \hat{\alpha }\alpha + \lambda_{KZ} \lambda_{LZ} \frac{{\theta_{KZ} }}{{\theta_{LZ} }}\sigma_{Z} \hat{\alpha }\alpha + \lambda_{KZ} \lambda_{LN} \left( {\hat{\alpha } + \frac{{\hat{\alpha }\alpha }}{{\theta_{LZ} }}} \right)} \right\} < 0\), as \(\hat{\alpha } < 0\); and \(\{ \lambda_{KZ} \lambda_{{LS^{\prime}}} - \frac{{\lambda_{KX} \left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)}}{{\lambda_{SX} }}\left( {\lambda_{LZ} + \lambda_{LN} } \right)\}\) can be both positive or negative as mentioned in Appendix B. If it is positive then with \(\hat{E} < 0\), \(\hat{Y} < 0;\) and if it is negative, then the value of \(\hat{Y}\) depends on both factor prices and the values of \(\hat{\alpha }\) and \(\hat{E}\).

$$ \begin{aligned}\hat{Z} &= \left( - \right)\frac{1}{\left| \lambda \right|}\left[ {\lambda_{KY} \lambda_{LZ} \frac{{\theta_{KZ} }}{{\theta_{LZ} }}\sigma_{Z} \hat{\alpha }\alpha + \lambda_{KY} \lambda_{LN} \left( {\hat{\alpha } + \frac{{\hat{\alpha }\alpha }}{{\theta_{LZ} }}} \right) + \lambda_{LY} \lambda_{KZ} \sigma_{Z} \hat{\alpha }\alpha }\right. \\&\quad\left.{+ \hat{E}\left\{ {\lambda_{KY} \lambda_{{LS^{\prime}}} - \lambda_{LY} \lambda_{KX} \frac{{\left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)}}{{\lambda_{SX} }}} \right\}} \right] > 0 .\end{aligned}$$

Here, as \(\hat{\alpha } < 0,\left\{ {\lambda_{KY} \lambda_{LZ} \frac{{\theta_{KZ} }}{{\theta_{LZ} }}\sigma_{Z} \hat{\alpha }\alpha + \lambda_{KY} \lambda_{LN} \left( {\hat{\alpha } + \frac{{\hat{\alpha }\alpha }}{{\theta_{LZ} }}} \right) + \lambda_{LY} \lambda_{KZ} \sigma_{Z} \hat{\alpha }\alpha } \right\} < 0\). The expression\(\lambda_{KY} \lambda_{{LS^{\prime}}} - \lambda_{LY} \lambda_{KX} \frac{{\left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)}}{{\lambda_{SX} }} = \frac{1}{{\lambda_{SX} }}\left\{ {\lambda_{KY} \lambda_{{LS^{\prime}}} \lambda_{SX} - \lambda_{LY} \lambda_{KX} \left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)} \right\} = \frac{2XY}{{SKL\lambda_{SX} }}\left\{ {a_{KY} S^{\prime} - a_{LY} S^{\prime}\left( {1 - a_{{SS^{\prime}}} } \right)} \right\} > 0\), since, \(a_{KY} > a_{LY}\); and \(a_{{SS^{\prime}}}\) being less than 1, \(S^{\prime} > S^{\prime}\left( {1 - a_{{SS^{\prime}}} } \right)\).

Therefore, as \(\hat{E} < 0\), \(\hat{Z} > 0\).

Substituting \(\hat{Z}\) in (C.2),

$$\begin{aligned} \hat{L}_{N} = & \frac{1}{\left| \lambda \right|}\left[ {\hat{E}\left\{ {\lambda_{LY} \lambda_{KX} \frac{{\left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)}}{{\lambda_{SX} }} - \lambda_{KY} \lambda_{{LS^{\prime}}} } \right\} - \left( {\lambda_{KY} \lambda_{LZ} \frac{{\theta_{KZ} }}{{\theta_{LZ} }}\sigma_{Z} \hat{\alpha }\alpha + \lambda_{LY} \lambda_{KZ} \sigma_{Z} \hat{\alpha }\alpha } \right)} \right] \hfill \\ & + \left[ {\left\{ {\left( - \right)\frac{1}{\left| \lambda \right|}\lambda_{KY} \lambda_{LN} \left( {\hat{\alpha } + \frac{{\hat{\alpha }\alpha }}{{\theta_{LZ} }}} \right)} \right\} + \left( {\hat{\alpha } + \frac{{\hat{\alpha }\alpha }}{{\theta_{LZ} }}} \right)} \right]. \hfill \\ \end{aligned}$$

Here the first expression separated by square brackets is positive. However, the second expression is negative. Therefore the effect on \(L_{N}\) depends on the magnitudes of the two expressions.

For the combined effect of a rise in \(\delta\) and a fall in \(\alpha\), from Eqs. (1) to (5) we get, respectively: \(\theta_{SX} \hat{w}_{S} + \theta_{KX} \hat{r} = \delta \hat{\delta }; \quad \theta_{KY} \hat{r} = 0; \quad \theta_{LZ} \hat{w} + \theta_{KZ} \hat{r} = - \alpha \hat{\alpha };\quad \hat{w} + \hat{L}_{N} = \hat{Z} + \hat{\alpha };\) and \(\theta_{ES} \hat{R} + \theta_{{LS^{\prime}}} \hat{w} = \left( {1 - \theta_{{SS^{\prime}}} } \right)\hat{w}_{S} .\) Using these, the change in factor prices are: \(\hat{r} = 0; \quad \hat{w}_{S} = \frac{1}{{\theta_{SX} }}\delta \hat{\delta } > 0; \quad \hat{w} = - \frac{1}{{\theta_{LZ} }}\hat{\alpha }\alpha > 0;\) and \(\hat{R} = \frac{{\left( {1 - \theta_{{SS^{\prime}}} } \right)\delta \hat{\delta }}}{{\theta_{ES} \theta_{SX} }} + \frac{{\theta_{{LS^{\prime}}} }}{{\theta_{ES} \theta_{LZ} }}\hat{\alpha }\alpha .\)

Therefore, effect on \(\hat{R}\) depends on

$$\left| {\frac{{\left( {1 - \theta_{{SS^{\prime}}} } \right)\delta \hat{\delta }}}{{\theta_{ES} \theta_{SX} }}} \right|{ \; \gtreqless \; }\left| {\frac{{\theta_{{LS^{\prime}}} }}{{\theta_{ES} \theta_{LZ} }}\hat{\alpha }\alpha } \right|.$$

The calculations for change in input coefficients and output of different sectors are same as in case of fall in \(\alpha\) alone. However, whether the effects are positive or negative depend on the direction of flow of educational capital.

1.4 Appendix D

Writing (25)–(30) with ‘hat’ notation:

$$\theta_{SX} \hat{w}_{S} + \theta_{KX} \hat{r} = \hat{\delta }\delta ,$$
(D.1)
$$\theta_{KY} \hat{r} = 0,$$
(D.2)
$$\theta_{LZ} \hat{w} + \theta_{TZ} \hat{R} = - \alpha \hat{\alpha },$$
(D.3)
$$\hat{w}_{N} = \hat{w},$$
(D.4)
$$\theta_{KS '} \hat{r} + \theta_{LS '} \hat{w} = \left( {1 - \theta_{SS '} } \right)\hat{w}_{S,}$$
(D.5)
$$\hat{\alpha } = \hat{w}_{N} .$$
(D.6)

From (D.2), \(\hat{r} = 0\). Using the value of \(\hat{r}\), from (D.1), \(\hat{w}_{S} = \frac{{\hat{\delta }\delta }}{{\theta_{SX} }} > 0\). With the value of \(\hat{r}\) and \(\hat{w}_{S}\) known, from (D.5), \(\hat{w} = \frac{{\left( {1 - \theta_{{SS^{\prime}}} } \right)}}{{\theta_{LS '} }}\frac{{\hat{\delta }\delta }}{{\theta_{SX} }} > 0\). Using (D.4), \(\hat{w}_{N} = \hat{w} = \frac{{\left( {1 - \theta_{{SS^{\prime}}} } \right)}}{{\theta_{LS '} }}\frac{{\hat{\delta }\delta }}{{\theta_{SX} }} > 0\). With the help of (D.6), we get, \(\hat{\alpha } = \hat{w}_{N} = \hat{w} = \frac{{\left( {1 - \theta_{{SS^{\prime}}} } \right)}}{{\theta_{LS '} }}\frac{{\hat{\delta }\delta }}{{\theta_{SX} }} > 0\). Putting the value of \(\hat{w}\) and \(\hat{\alpha }\) in (D.3), \(\hat{R} = - \frac{{\left( {\alpha + \theta_{LZ} } \right)}}{{\theta_{TZ} }}\hat{w} \Rightarrow \hat{R} = - \frac{{\left( {\alpha + \theta_{LZ} } \right)}}{{\theta_{TZ} }}\frac{{\left( {1 - \theta_{{SS^{\prime}}} } \right)}}{{\theta_{LS '} }}\frac{{\hat{\delta }\delta }}{{\theta_{SX} }} < 0\)

The difference between the relative change in skilled wage and unskilled wage is

$$\hat{w}_{S} - \hat{w} = \frac{{\hat{\delta }\delta }}{{\theta_{SX} }}\left\{ {1 - \frac{{\left( {1 - \theta_{{SS^{\prime}}} } \right)}}{{\theta_{{LS^{\prime}}} }}} \right\} = \frac{{\hat{\delta }\delta }}{{\theta_{SX} }}\frac{{(\theta_{{LS^{\prime}}} - 1 + {{\theta }}_{{{\text{ss}}^{\prime} }} )}}{{\theta_{{LS^{\prime}}} }} = - \frac{{\hat{\delta }\delta }}{{\theta_{SX} }}\frac{{\theta_{{KS^{\prime} }} }}{{\theta_{{LS^{\prime}}} }} < 0.$$

This implies there is a fall in the wage gap.

Similar to the previous section, there may be some changes in input usage in \(Z\) due to change in \(R\) and \(w\). The elasticity of substitution, \(\sigma_{Z}\), between \(T\) and \(L\) in \(Z\) is:

$$\sigma_{Z} = \frac{{\hat{a}_{LZ} - \hat{a}_{TZ} }}{{\hat{R} - \hat{w}}} \Rightarrow \left( {\hat{R} - \hat{w}} \right)\sigma_{Z} + \hat{a}_{TZ} = \hat{a}_{LZ} .$$
(D.7)

From the envelope condition,

$$\hat{a}_{TZ} = \left( - \right)\frac{{\theta_{LZ} }}{{\theta_{TZ} }}\hat{a}_{LZ} .$$
(D.8)

Putting this in (D.7),

$$\hat{a}_{LZ} = - \left( {\alpha + 1} \right)\hat{w}\sigma_{Z} = - \sigma_{Z} \left( {\alpha + 1} \right)\frac{{\left( {1 - \theta_{{SS^{\prime}}} } \right)}}{{\theta_{LS '} }}\frac{{\hat{\delta }\delta }}{{\theta_{SX} }}.$$
(D.9)

Therefore, from (D.8),

$$\hat{a}_{TZ} = \frac{{\theta_{LZ} }}{{\theta_{TZ} }}\sigma_{Z} \left( {\alpha + 1} \right)\frac{{\left( {1 - \theta_{{SS^{\prime}}} } \right)}}{{\theta_{LS '} }}\frac{{\hat{\delta }\delta }}{{\theta_{SX} }}.$$
(D.10)

Now, because of change in \(\delta ,\alpha\) and the input coefficients in \(Z\), output of other sectors may also change. To calculate the change we express Eqs. (31) to (36) as follows:

$$\hat{X} = \frac{{\left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right)}}{{\lambda_{SX} }}S',$$
(D.11)
$$\lambda_{KX} \hat{X} + \lambda_{KY} \hat{Y} + \lambda_{{KS^{\prime}}} \hat{S}' = 0,$$
(D.12)
$$\lambda_{LY} \hat{Y} + \lambda_{LZ} \hat{Z} + \lambda_{{LS^{\prime}}} \hat{L}_{S} + \lambda_{LN} \hat{L}_{N} = - \lambda_{LZ} \hat{a}_{LZ} ,$$
(D.13)
$$\hat{L}_{S} = \hat{S} ' ,$$
(D.14)
$$\hat{Z} = - \hat{a}_{TZ} = \left( - \right)\frac{{\theta_{LZ} }}{{\theta_{TZ} }}\sigma_{Z} \left( {\alpha + 1} \right)\frac{{\left( {1 - \theta_{{SS^{\prime}}} } \right)}}{{\theta_{LS '} }}\frac{{\hat{\delta }\delta }}{{\theta_{SX} }}.$$
(D.15)

Putting the value of \(\hat{X}\) in (D.12)

$$\lambda_{KY} \hat{Y} + \left\{ {\frac{{\lambda_{KX} }}{{\lambda_{SX} }}\left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right) + \lambda_{{KS^{\prime}}} } \right\}\hat{S} '= 0.$$
(D.16)

Using Eqs. (31), (D.8) and (D.14), Equation (D.13) becomes

$$\lambda_{LY} \hat{Y} + \lambda_{{LS^{\prime}}} \hat{S}' = - \left\{ {\lambda_{LZ} + \left( {\lambda_{LZ} + \lambda_{LN} } \right)\frac{{\theta_{LZ} }}{{\theta_{TZ} }}} \right\}\hat{a}_{LZ} .$$
(D.17)

Writing (D.16) and (D.17) in matrix form:

$$\left( {\begin{array}{*{20}c} {\lambda_{KY} } & {\left\{ {\frac{{\lambda_{KX} }}{{\lambda_{SX} }}\left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right) + \lambda_{{KS^{\prime}}} } \right\}} \\ {\lambda_{LY} } & {\lambda_{{LS^{\prime}}} } \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {\hat{Y}} \\ {\hat{S}'} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} 0 \\ { - \left\{ {\lambda_{LZ} + \left( {\lambda_{LZ} + \lambda_{LN} } \right)\frac{{\theta_{LZ} }}{{\theta_{TZ} }}} \right\}\hat{a}_{LZ} } \\ \end{array} } \right),$$
$$\left| {\lambda_{1} } \right| = \lambda_{KY} \lambda_{{LS^{\prime}}} - \lambda_{LY} \left\{ {\frac{{\lambda_{KX} }}{{\lambda_{SX} }}\left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right) + \lambda_{{KS^{\prime}}} } \right\}.$$

Here, \(\lambda_{KY} \lambda_{{LS^{\prime}}} - \lambda_{LY} \left\{ {\frac{{\lambda_{KX} }}{{\lambda_{SX} }}\left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right) + \lambda_{{KS^{\prime}}} } \right\}\)\(= \frac{{YS^{\prime}2X}}{{\lambda_{SX} KLS}}\left[ {a_{KY} - a_{LY} \left\{ {a_{{KS^{\prime}}} + \left( {1 - a_{{SS^{\prime}}} } \right)} \right\}} \right] > 0;\) as \(Y\) is \(K\) intensive.

Using Cramer’s rule

$$\begin{aligned} \hat{Y} = & \left( - \right)\frac{1}{{\left| {\lambda_{1} } \right|}}\left\{ {\frac{{\lambda_{KX} }}{{\lambda_{SX} }}\left( {\lambda_{{S^{\prime}S}} - \lambda_{{SS^{\prime}}} } \right) + \lambda_{{KS^{\prime}}} } \right\}\left\{ {\lambda_{LZ} + \left( {\lambda_{LZ} + \lambda_{LN} } \right)\frac{{\theta_{LZ} }}{{\theta_{TZ} }}} \right\} \hfill \\ & \left\{ {\sigma_{Z} \left( {\alpha + 1} \right)\frac{{\left( {1 - \theta_{{SS^{\prime}}} } \right)}}{{\theta_{{LS^{\prime}}} }}\frac{{\hat{\delta }\delta }}{{\theta_{SX} }}} \right\} < 0. \hfill \\ \end{aligned}$$

And,

$$\hat{S}' = \frac{1}{{\left| {\lambda_{1} } \right|}}\lambda_{KY} \left\{ {\lambda_{LZ} + \left( {\lambda_{LZ} + \lambda_{LN} } \right)\frac{{\theta_{LZ} }}{{\theta_{TZ} }}} \right\}\left\{ {\sigma_{Z} \left( {\alpha + 1} \right)\frac{{\left( {1 - \theta_{{SS^{\prime}}} } \right)}}{{\theta_{{LS^{\prime}}} }}\frac{{\hat{\delta }\delta }}{{\theta_{SX} }}} \right\} > 0.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, A.S., Mandal, B. Time zone difference, skill formation and corrupt informal sector: the role of virtual trade. Ind. Econ. Rev. 54, 261–290 (2019). https://doi.org/10.1007/s41775-019-00059-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41775-019-00059-0

Keywords

JEL Classification

Navigation