Skip to main content
Log in

How India Changed My Ideas About Honey Bees

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Research on honey bees, one of the most famous social insects, has been largely limited to studies on Central European populations of the Western honey bee, Apis mellifera. Most researchers view the biology and social organization of this phylogenetically derived species as the blueprint for all honey bees, although there is accumulating evidence that several important characters are unique physiological or evolutionary adaptations to living in a temperate climate. The review presents a personal (re)collection of research efforts, ideas, and opinions on the neglected Asian honey bees. There are two major take-home messages: (1) it is of utmost importance that India and other tropical Asian countries increase their research efforts to study and conserve honey bees and other insect pollinators to sustain biodiversity and human nutritional demands, and (2) the study of the behavior of the phylogenetically ancestral Asian honey bees will provide us with a profound understanding of the structure and flexibility in the social organization of honey bees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seeley TD (1985) Honeybee ecology: a study of adaptation in social life (Monographs in behavior and ecology). Princeton University Press, Princeton

    Book  Google Scholar 

  2. Smith DR (2021) Biogeography of honey bees. In: Starr CK (ed) Encyclopedia of social insects. Springer, Cham. https://doi.org/10.1007/978-3-319-90306-4_60-1

    Chapter  Google Scholar 

  3. Walter S, Brockmann A (2022) Pollinators in the urban age. In: Kalshian R, Weiss S (eds) Investigating infrastructure: ecology, sustainability and society. Heinrich Böll Stiftung, New Delhi, pp 196–211

    Google Scholar 

  4. Nagaraja N (2016) Effect of insecticide poisoning on mortality of giant honeybee, Apis dorsata colonies. Pesquisa Int J Res 2(1):96–100

    Google Scholar 

  5. Crane E (1999) The world history of beekeeping and honey hunting. Routledge Taylor and Francis, New York

    Book  Google Scholar 

  6. Karttunen K (2009) Bhramarotpītādharaḥ: bees in Classical India. Studia Orientalia Electronica 107:89–134. https://journal.fi/store/article/view/52400

  7. Kritsky G (2015) The tears of Re: Beekeeping in Ancient Egypt. Oxford University Press, New York

    Google Scholar 

  8. Aristotle (1953) Generation of animals, Book III. Harvard University Press, Cambridge

    Google Scholar 

  9. Aristotle (1991) History of animals, Book IX. Harvard University Press, Cambridge

    Google Scholar 

  10. Vergilius MP (1988) In: Thomas RF (eds) Georgics: books III–IV. Cambridge University Press, Cambridge

  11. Swammerdam J (1737–38) Bybel der Natuure. Severinus, Vander Aa and Vander Aa, Leiden. 2 vols. Translated as The book of nature, 1758, Seyffert, London

  12. Mandeville B (1714) The fable of the bees: or, private vices, Publick benefits. John Roberts, London

  13. Darwin C (1859) On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. John Murray, London

    Book  Google Scholar 

  14. Maeterlinck M (1901) La vie des abeilles. Paris: Editions Frasquelle; trans. Alfred Sutro. 1903. Dodd, Mead New York

  15. Si A (2013) Aspects of honeybee natural history according to the Solega. Ethnobiol Lett 4:78–86. https://doi.org/10.14237/ebl.4.2013.4

    Article  Google Scholar 

  16. Press release. NobelPrize.org. Nobel Prize Outreach AB 2022. Thu. 22 Sep 2022. https://www.nobelprize.org/prizes/medicine/1973/press-release/

  17. Frisch KV (1965) The dance language and communication of bees. The Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  18. Behling I (1929) Über das Zeitgedächtnis der Bienen. Z vergl Physiol A 9:259–338. https://doi.org/10.1007/BF00340159

    Article  Google Scholar 

  19. Munz T (2016) The dancing bee: Karl von Frisch and the discovery of the honeybee language. The University of Chicago Press, Chicago

    Book  Google Scholar 

  20. Lindauer M (1952) Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat. Z vergl Physiol 34:299–345. https://doi.org/10.1007/BF00298048

    Article  Google Scholar 

  21. Seeley TD, Kühnholz S, Seeley HR (2002) An early chapter in behavioral physiology and sociobiology: the science of Martin Lindauer. J Comp Physiol 188:439–453. https://doi.org/10.1007/s00359-002-0318-6

    Article  Google Scholar 

  22. Lindauer M (1955) Swarmbienen auf Wohnungssuche. Z vergl Physiol 37:263–324. https://doi.org/10.1007/BF00303153

    Article  Google Scholar 

  23. Lindauer M (1954) Temperaturregulierung und Wasserhaushalt im Bienenstaat. Z vergl Physiol 36:391–432. https://doi.org/10.1007/BF00345028

    Article  Google Scholar 

  24. Lindauer M (1956) Über die Verständigung bei indischen Bienen. Z vergl Physiol 28:512–557. https://doi.org/10.1007/BF00341108

    Article  Google Scholar 

  25. Seeley TD (1982) Adaptive significance of the age polyethism schedule in honeybee colonies. Behav Ecol Sociobiol 11:287–293. https://doi.org/10.1007/BF00299306

    Article  Google Scholar 

  26. Dyer FC, Seeley TD (1987) Interspecific comparisons of endothermy in honey-bees (Apis): deviations from the expected size-related patterns. J Exp Biol 127:1–26. https://doi.org/10.1242/jeb.127.1.1

    Article  Google Scholar 

  27. Dyer FC, Seeley TD (1991) Nesting behavior and the evolution of worker tempo in four honey bee species. Ecology 72:156–170. https://doi.org/10.2307/1938911

    Article  Google Scholar 

  28. Dyer FC, Seeley TD (1991) Dance dialects and foraging range in three Asian honey bee species. Behav Ecol Sociobiol 8:227–233. https://doi.org/10.1007/BF00175094

    Article  Google Scholar 

  29. Seeley TD (2022) Remembrance of a honey bee biologist. Ann Rev Entomol 67:13–25. https://doi.org/10.1146/annurev-ento-033121-100228

    Article  Google Scholar 

  30. Alexander B (1991) A cladistic analysis of the genus Apis. In: Smith DR (ed) Diversity in the genus Apis. Westview Press, Boulder, pp 1–28

    Google Scholar 

  31. Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72649-1

    Book  Google Scholar 

  32. Dyer FC (2002) The biology of the dance language. Annu Rev Entomol 47:917–949. https://doi.org/10.1146/annurev.ento.47.091201.145306

    Article  Google Scholar 

  33. Jordan A, Patch HM, Grozinger CM, Khanna V (2021) Economic dependence and vulnerability of United States agricultural sector on insect-mediated pollination service. Environ Sci Technol 55:2243–2253. https://doi.org/10.1021/acs.est.0c04786

    Article  Google Scholar 

  34. Teichroew JL, Xu J, Ahrends A, Huang ZY, Tan K, Xie Z (2017) Is China’s unparalleled and understudied bee diversity at risk? Biol Conserv 210(B):19–28. https://doi.org/10.1016/j.biocon.2016.05.023

    Article  Google Scholar 

  35. Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge

    Google Scholar 

  36. Oldroyd BP, Wongsiri S (2006) Asian honey bees. Biology, conservation and human interactions. Harvard University Press, Cambridge

    Book  Google Scholar 

  37. Hepburn HR, Radloff SE (2011) Honeybees of Asia. Springer-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  38. Abrol DP (2020) The future of the dwarf honey bees in natural and agricultural systems. CRC Press, Taylor and Francis Group, Boca Raton, London, New York NY

    Book  Google Scholar 

  39. Huber F (1806) New observations on the natural history of bees. John Anderson Edinburgh, and Longman, Hurst, Rees and Orms, London

  40. Unnikrishnan S, Shah A, Bais D, Suryanarayanan A, Brockmann A (2021) Conserved hormonal and molecular mechanisms underlying behavioral maturation in open- and cavity-nesting honey bees. bioRxiv posted March 26. https://doi.org/10.1101/2021.03.25.436783

  41. Johnson BR (2010) Division of labor in honey bees: form, function, and proximate mechanisms. Behav Ecol Sociobiol 64:305–316. https://doi.org/10.1007/s00265-009-0874-7

    Article  Google Scholar 

  42. Robinson GE (1987) Hormonal regulation of age polyethism in the honeybee, Apis mellifera. In: Menzel R, Mercer A (eds) Neurobiology and behavior of honeybees. Springer, Berlin, Heidelberg, pp 266–279

    Chapter  Google Scholar 

  43. Withers GS, Fahrbach SE, Robinson GE (1993) Selective neuroanatomical plasticity and division of labour in the honeybee. Nature 364:238–240. https://doi.org/10.1038/364238a0

    Article  Google Scholar 

  44. Hamilton AR, Shpigler H, Bloch G, Wheeler DE, Robinson GE (2017) Endocrine influences on insect societies. In: Pfaff DW, Joëls M (eds) Hormones, brain, and behavior, vol 2, 3rd edn. Elsevier, Amsterdam, pp 421–451

    Chapter  Google Scholar 

  45. Kaminski BA, Palmert MR (2017) Human puberty: physiology, progression, and genetic regulation of variation in onset. In: Pfaff DW, Joëls M (eds) Hormones, brain, and behavior, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  46. Tautz J, Maier S, Groh C, Rössler W, Brockmann A (2003) Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development. Proc Natl Acad Sci USA 100:7343–7347. https://doi.org/10.1073/pnas.1232346100

    Article  Google Scholar 

  47. Groh C, Tautz J, Rössler W (2004) Synaptic organization in the adult honey bee brain is influenced by brood-temperature control during pupal development. Proc Natl Acad Sci USA 101(12):4268–4273. https://doi.org/10.1073/pnas.0400773101

    Article  Google Scholar 

  48. Rittschof CC, Robinson GE (2013) Manipulation of colony environment modulates honey bee aggression and brain gene expression. Genes Brain Behav 12:802–811. https://doi.org/10.1111/gbb.12087

    Article  Google Scholar 

  49. Jones BM, Rao VD, Gernat T, Jagla T, Cash-Ahmed AC, Rubin BE, Comi TJ, Bhogale S, Husain SS, Blatti C, Middendorf M, Sinha S, Chandrasekaran S, Robinson GE (2020) Individual differences in honey bee behavior enabled by plasticity in brain gene regulatory networks. Elife 9:e62850. https://doi.org/10.7554/eLife.62850

    Article  Google Scholar 

  50. Whitfield CW, Cziko AM, Robinson GE (2003) Gene expression profiles in the brain predict behavior in individual honey bees. Science 302:296–299. https://doi.org/10.1126/science.1086807

    Article  Google Scholar 

  51. Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949. https://doi.org/10.1038/nature05260

    Article  Google Scholar 

  52. Elsik CG, Worley KC, Bennett AK, Beye M, Camara F, Childers CP, de Graaf DC, Debyser G, Deng J, Devreese B, Elhaik E, Evans JD, Foster LJ, Graur D, Guigo R, HGSC production teams, Hoff KJ, Holder ME, Hudson ME, Hunt GJ, Jiang H, Joshi V, Khetani RS, Kosarev P, Kovar CL, Ma J, Maleszka R, Moritz RF, Munoz-Torres MC, Murphy TD, Muzny DM, Newsham IF, Reese JT, Robertson HM, Robinson GE, Rueppell O, Solovyev V, Stanke M, Stolle E, Tsuruda JM, Vaerenbergh MV, Waterhouse RM, Weaver DB, Whitfield CW, Wu Y, Zdobnov EM, Zhang L, Zhu D, Gibbs RA, Honey Bee Genome Sequencing Consortium (2014) Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics 15:86. https://doi.org/10.1186/1471-2164-15-86

    Article  Google Scholar 

  53. Whitfield CW, Ben-Shahar Y, Brillet C, Leoncini I, Crauser D, Leconte Y, Rodriguez-Zas S, Robinson GE (2006) Genomic dissection of behavioral maturation in the honey bee. Proc Natl Acad Sci USA 103:16068–16075. https://doi.org/10.1073/pnas.0606909103

    Article  Google Scholar 

  54. Khamis AM, Hamilton AR, Medvedeva YA, Alam T, Alam I, Essack M, Umylny B, Jankovic BR, Naeger NL, Suzuki M, Harbers M, Robinson GE, Bajic VB (2015) Insights into the transcriptional architecture of behavioral plasticity in the honey bee Apis mellifera. Sci Rep 5:11136. https://doi.org/10.1038/srep11136

    Article  Google Scholar 

  55. Bhagavan H, Muthmann O, Brockmann A (2016) Structural and temporal dynamics of the bee curtain in the open-nesting honey bee species, Apis florea. Apidologie 47:749–758. https://doi.org/10.1007/s13592-016-0428-8

    Article  Google Scholar 

  56. Bhagavan H, Brockmann A (2019) Apis florea workers show a prolonged period of nursing behavior. Apidologie 50:60–70. https://doi.org/10.1007/s13592-018-0618-7

    Article  Google Scholar 

  57. Pfaff DW (2017) How the vertebrate brain regulates behaviour. Direct from the lab. Harvard University Press, Cambridge

    Book  Google Scholar 

  58. Döke MA, Frazier M, Grozinger CM (2015) Overwintering honey bees: biology and management. Curr Opin Insect Sci 10:185–193. https://doi.org/10.1016/j.cois.2015.05.014

    Article  Google Scholar 

  59. West Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York

    Book  Google Scholar 

  60. Corona M, Libbrecht R, Wheeler DE (2016) Molecular mechanisms of phenotypic plasticity in social insects. Curr Opin Insect Sci 13:55–60. https://doi.org/10.1016/j.cois.2015.12.003

    Article  Google Scholar 

  61. Esslen J, Kaissling KE (1976) Zahl und Verteilung antennaler Sensillen bei der Honigbiene (Apis mellifera L.). Zoomorphol 83:227–251. https://doi.org/10.1007/BF00993511

    Article  Google Scholar 

  62. Chapman RF (1982) Chemoreception: the significance of receptor numbers. Adv Insect Physiol 16:247–356. https://doi.org/10.1016/S0065-2806(08)60155-1

    Article  Google Scholar 

  63. Brockmann A, Brückner D (2001) Structural differences in the drone olfactory system of two phylogenetically distant Apis species, A. florea and A. mellifera. Naturwissenschaften 88:78–81. https://doi.org/10.1007/s001140000199

    Article  Google Scholar 

  64. Brockmann A, Brückner D (2005) Drone antennae and the evolution of sex-pheromone communication in honeybees. Indian Bee J 65:131–138

    Google Scholar 

  65. Nagaraja N, Brockmann A (2009) Drones of the dwarf honey bee Apis florea are attracted to (2E)-9-oxodecenoic acid and (2E)-10-hydroxydecenoic acid. J Chem Ecol 35:653–655. https://doi.org/10.1007/s10886-009-9648-y

    Article  Google Scholar 

  66. Plettner E, Otis GW, Wimalaratne PDC, Winston ML, Slessor KN, Pankiw T, Punchihewa PWK (1997) Species- and caste-determined mandibular gland signals in honeybees (Apis). J Chem Ecol 23(2):363–377. https://doi.org/10.1023/B:JOEC.0000006365.20996.a2

    Article  Google Scholar 

  67. Keeling CI, Slessor KN, Koeniger N, Koeniger G, Punchihewa RWK (2000) Quantitative analysis of the mandibular gland components of the dwarf honey bee (Apis florea Fabricius). Apidologie 31(2):293–299. https://doi.org/10.1051/apido:2000123

    Article  Google Scholar 

  68. Wanner KW, Nichols AS, Walden KKO, Brockmann A, Luetje CW, Robertson HM (2007) A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proc Natl Acad Sci USA 104:14383–14388. https://doi.org/10.1073/pnas.0705459104

    Article  Google Scholar 

  69. Karpe SD, Jain R, Brockmann A, Sowdhamini R (2016) Identification of complete repertoire of Apis florea odorant receptors reveals complex orthologous relationships with Apis mellifera. Genome Biol Evol 8(9):2879–2895. https://doi.org/10.1093/gbe/evw202

    Article  Google Scholar 

  70. Bastin F, Couto A, Larcher V, Phiancharoen M, Koeniger G, Koeniger N, Sandoz JC (2018) Marked interspecific differences in the neuroanatomy of the male olfactory system of honey bees (genus Apis). J Comp Neurol 526:3020–3034. https://doi.org/10.1002/cne.24513

    Article  Google Scholar 

  71. Koeniger N, Koeniger G (2000) Reproductive isolation among species of the genus Apis. Apidologie 31(2):313–339. https://doi.org/10.1051/apido:2000125

    Article  Google Scholar 

  72. Slessor KN, Kaminski L-A, King GGS, Borden JH, Winston ML (1988) Semiochemical basis of the retinue response to queen honey bees. Nature 332:354–356. https://doi.org/10.1038/332354a0

    Article  Google Scholar 

  73. Keeling CI, Slessor KN, Higo HA, Winston ML (2003) New components of the honey bee (Apis mellifera L.) queen retinue pheromone. Proc Natl Acad Sci USA 100(8):4486–4491. https://doi.org/10.1073/pnas.0836984100

    Article  Google Scholar 

  74. Brockmann A, Dietz D, Spaethe J, Tautz J (2006) Beyond 9ODA: sex pheromone communication in the European honey bee Apis mellifera L. J Chem Ecol 32:657–667. https://doi.org/10.1007/s10886-005-9027-2

    Article  Google Scholar 

  75. Kocher SD, Richard FJ, Tarpy DR, Grozinger CM (2009) Queen reproductive state modulates pheromone production and queen-worker interactions in honeybees. Behav Ecol 20(5):1007–1014. https://doi.org/10.1093/beheco/arp090

    Article  Google Scholar 

  76. Alagona PS (2022) The accidental ecosystem: people and wildlife in American Cities. University of California Press, Oakland

    Book  Google Scholar 

  77. Stewart AB, Sritongchuay T, Teartisup P, Kaewsomboon S, Bumrungsri S (2018) Habitat and landscape factors influence pollinators in a tropical megacity, Bangkok. Thailand PeerJ 6:e5335. https://doi.org/10.7717/peerj.5335

    Article  Google Scholar 

  78. Casiker CV, Jagadishakumara B, Sunil GM, Chaithra K, Devy MS (2021) Bee diversity in the rural–urban interface of Bengaluru and scope for pollinator-integrated urban agriculture. In: Hoffmann E, Buerkert A, von Cramon-Taubadel S, Umesh KB, Pethandlahalli Shivaraj P, Vazhacharickal PJ (eds) The rural–urban interface. The urban book series. Springer, New York. https://doi.org/10.1007/978-3-030-79972-4_18

    Chapter  Google Scholar 

  79. Marcacci G, Grass I, Rao VS, Shabarish Kumar S, Tharini KB, Belavadi VV, Nölke N, Tscharntke T, Westphal C (2022) Functional diversity of farmland bees across rural-urban landscapes in a tropical megacity. Ecol Appl. https://doi.org/10.1002/eap.2699

    Article  Google Scholar 

  80. Seeley TD (2016) Following the wild bees. The craft and science of bee hunting. Princeton University Press, Princeton

    Book  Google Scholar 

  81. Kohl PL, Rutschmann B (2018) The neglected bee trees: European beech forests as a home for feral honey bee colonies. PeerJ 6:e4602. https://doi.org/10.7717/peerj.4602

    Article  Google Scholar 

  82. Kohl PL, Rutschmann B, Steffan-Dewenter I (2022) Population demography of feral honeybee colonies in central European forests. R Soc Open Sci 9(8):220565. https://doi.org/10.1098/rsos.220565

    Article  Google Scholar 

  83. Naresh Kumar GM (1998) Comparative studies on the comb building activity of Indian honeybees. Doctoral Thesis Bangalore University

  84. Nagaraja N (2017) Population fluctuation of giant honeybee, Apis dorsata (Hymenoptera: Apidae) colonies in Bengaluru, Karnataka, India. J Entomol Res 41:307–310. https://doi.org/10.5958/0974-4576.2017.00049.4

    Article  Google Scholar 

  85. Koeniger N, Koeniger G (1980) Observations and experiments on migration and dance communication of Apis dorsata in Sri Lanka. J Apic Res 19:21–34. https://doi.org/10.1080/00218839.1980.11099994

    Article  Google Scholar 

  86. Underwood BA (1990) Seasonal nesting cycle and migration patterns of the Himalayan honey bee Apis laboriosa. Natl Geogr Res 6:276–290

    Google Scholar 

  87. Dyer FC, Seeley TD (1994) Colony migration in the tropical honey bee Apis dorsata F. (Hymenoptera: Apidae). Insect Soc 140:129–140. https://doi.org/10.1007/BF01240473

    Article  Google Scholar 

  88. Vijayan S, Somanathan H (2023) Migration in honey bees. Insect Soc 70:127–140. https://doi.org/10.1007/s00040-022-00892-2

    Article  Google Scholar 

  89. Ratna T, Wongsiri S (2011) Giant honeybees use wax specks to recognize old nest sites. Bee World 88(4):79–81. https://doi.org/10.1080/0005772X.2011.11417432

    Article  Google Scholar 

  90. Robinson WS (2021) Surfing the sweet wave: migrating giant honey bees (Hymenoptera: Apidae: Apis dorsata) display spatial and temporal fidelity to annual stopover site in Thailand. J Insect Sci 21(6):1. https://doi.org/10.1093/jisesa/ieab037

    Article  Google Scholar 

  91. Sukumar R (2003) The living elephants: evolutionary ecology, behaviour, and conservation. Oxford University Press, Oxford, New York, p 164

    Book  Google Scholar 

  92. Nagendra H (2016) Nature in the City. Bengaluru in the past, present, and future. Oxford University Press, New Delhi

    Book  Google Scholar 

  93. Kaiser W, Steiner-Kaiser J (1987) Sleep research on honeybees: neurophysiology and behavior. In: Menzel R, Mercer A (eds) Neurobiology and behavior of honeybees. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71496-2_10

    Chapter  Google Scholar 

  94. Guglielmi G (2018) Honeybees can count to zero. Nature NEWS, 07 June 2018. https://www.nature.com/articles/d41586-018-05354-z

  95. Menzel R (2021) A short history of studies on intelligence and brain in honeybees. Apidologie 52:23–34. https://doi.org/10.1007/s13592-020-00794-x

    Article  Google Scholar 

  96. Menzel R (2016) Die Intelligenz der Bienen: Wie sie denken, planen, fühlen und was wir daraus lernen koennen. Albrecht Knaus Verlag, München

    Google Scholar 

  97. Menzel R (2019) Search strategies for intentionality in the honeybee brain. In: Byrne JH (ed) The Oxford handbook of invertebrate neurobiology. Oxford University Press, Oxford, pp 1–37

    Google Scholar 

  98. Chittka L (2022) The mind of a bee. Princeton University Press, Princeton

    Book  Google Scholar 

  99. Frisch KV (1914) Der Farbensinn und Formensinn der Biene. Zool Jahrb Abt allg Zool Physiol Tiere 37(1):1–187

    Google Scholar 

  100. Moore D, Siegfried D, Wilson R, Rankin MA (1989) The influence of time of day on the foraging behavior of the honeybee, Apis mellifera. J Biol Rhythms 4:305–325. https://doi.org/10.1177/074873048900400301

    Article  Google Scholar 

  101. Seeley TD (1996) The wisdom of the hive. The social physiology of honey bee colonies. Harvard University Press, Boston

    Google Scholar 

  102. Biesmeijer JC, de Vries H (2001) Exploration and exploitation of food sources by social insect colonies: a revision of the scout-recruit concept. Behav Ecol Sociobiol 49:89–99. https://doi.org/10.1007/s002650000289

    Article  Google Scholar 

  103. Free JB (1969) Influence of the odour of a honeybee colony’s food stores on the behaviour of its foragers. Nature 222:778. https://doi.org/10.1038/222778a0

    Article  Google Scholar 

  104. Reinhard J, Srinivasan MV, Zhang S (2004) Olfaction: scent-triggered navigation in honeybees. Nature 427(6973):411. https://doi.org/10.1038/427411a

    Article  Google Scholar 

  105. Reinhard J, Srinivasan MV, Guez D, Zhang SW (2004) Floral scents induce recall of navigational and visual memories in honeybees. J Exp Biol 207:4371–4381. https://doi.org/10.1242/jeb.01306

    Article  Google Scholar 

  106. Brockmann A, Annangudi SP, Richmond TA, Ament SA, Xie F, Southey BR, Rodriguez-Zas SR, Robinson GE, Sweedler JV (2009) Quantitative peptidomics reveal brain peptide signatures of behavior. Proc Natl Acad Sci USA 106(7):2383–2388. https://doi.org/10.1073/pnas.0813021106

    Article  Google Scholar 

  107. Kiya T, Kubo T (2010) Analysis of GABAergic and non-GABAergic neuron activity in the optic lobes of the forager and re-orienting worker honeybee (Apis mellifera L.). PLoS ONE 5(1):e8833. https://doi.org/10.1371/journal.pone.0008833

    Article  Google Scholar 

  108. Kiya T, Kubo T (2011) Dance type and flight parameters are associated with different mushroom body neural activities in worker honeybee brains. PLoS ONE 6(4):e19301. https://doi.org/10.1371/journal.pone.0019301

    Article  Google Scholar 

  109. McNeill MS, Kapheim KM, Brockmann A, McGill TA, Robinson GE (2016) Brain regions and molecular pathways responding to food reward type and value in honey bees. Genes Brain Behav 15(3):305–317. https://doi.org/10.1111/gbb.12275

    Article  Google Scholar 

  110. Singh AS, Shah A, Brockmann A (2018) Honey bee foraging induces upregulation of early growth response protein 1, hormone receptor 38 and candidate downstream genes of the ecdysteroid signalling pathway. Insect Mol Biol 27(1):90–98. https://doi.org/10.1111/imb.12350

    Article  Google Scholar 

  111. Shah A, Jain R, Brockmann A (2018) Egr-1: a candidate transcription factor involved in molecular processes underlying time-memory. Research topic the mechanisms of insect cognition. Front Psychol 9:865. https://doi.org/10.3389/fpsyg.2018.00865

    Article  Google Scholar 

  112. Kaiser W, Steiner-Kaiser J (1983) Neuronal correlates of sleep, wakefulness and arousal in a diurnal insect. Nature 301:707–709. https://doi.org/10.1038/301707a0

    Article  Google Scholar 

  113. Klein BA, Olzsowy KM, Klein A, Saunders KM, Seeley TD (2008) Caste-dependent sleep of worker honey bees. J Exp Biol 211(Pt 18):3028–3040. https://doi.org/10.1242/jeb.017426

    Article  Google Scholar 

  114. Dudai Y (2012) The restless engram: consolidations never end. Annu Rev Neurosci 35:227–247. https://doi.org/10.1146/annurev-neuro-062111-150500

    Article  Google Scholar 

  115. Dastgheib M, Kulanayagam A, Dringenberg HC (2022) Is the role of sleep in memory consolidation overrated? Neurosci Biobehav Rev 140:104799. https://doi.org/10.1016/j.neubiorev.2022.104799

    Article  Google Scholar 

  116. Klein BA, Klein A, Wray MK, Mueller UG, Seeley TD (2010) Sleep deprivation impairs precision of waggle dance signaling in honey bees. Proc Natl Acad Sci USA 107(52):22705–22709. https://doi.org/10.1073/pnas.1009439108

    Article  Google Scholar 

  117. Beyaert L, Greggers U, Menzel R (2012) Honeybees consolidate navigation memory during sleep. J Exp Biol 215:3981–3988. https://doi.org/10.1242/jeb.075499

    Article  Google Scholar 

  118. Zwaka H, Bartels R, Gora J, Franck V, Culo A, Götsch M, Menzel R (2015) Context odor presentation during sleep enhances memory in honeybees. Curr Biol 25:2869–2874. https://doi.org/10.1016/j.cub.2015.09.069

    Article  Google Scholar 

  119. Melnattur K, Dissel S, Shaw PJ (2015) Learning and memory: do bees dream? Curr Biol 25(21):R1040–R1041. https://doi.org/10.1016/j.cub.2015.09.001

    Article  Google Scholar 

  120. https://www.thehindu.com/opinion/columns/Decline-of-pollinators-threatens-food-supply/article14181840.ece

  121. Ji Y, Li X, Ji T, Tang J, Qiu L, Hu J, Dong J, Luo S, Liu S, Frandsen PB, Zhou X, Parey SH, Li L, Niu Q, Zhou X (2020) Gene reuse facilitates rapid radiation and independent adaptation to diverse habitats in the Asian honeybee. Sci Adv 6(51):eabd3590. https://doi.org/10.1126/sciadv.abd3590

    Article  Google Scholar 

  122. Hristov P, Shumkova R, Palova N, Neov B (2020) Factors associated with honey bee Colony losses: a mini-review. Vet Sci 7(4):166. https://doi.org/10.3390/vetsci70

    Article  Google Scholar 

  123. Sen Sarma M, Fuchs S, Tautz J (2000) Debris removal by head-pushing in A. florea Fabr Honeybees. Naturwiss 87:241–243. https://doi.org/10.1007/s001140050712

    Article  Google Scholar 

  124. Sen Sarma M, Fuchs S, Werber C, Tautz J (2002) Worker piping triggers hissing for a coordinated colony defence in the dwarf honeybee Apis florea. Zoology 105(3):215–223. https://doi.org/10.1078/0944-2006-00064

    Article  Google Scholar 

  125. Vijayan S, Balamurali GS, Johnson J, Kelber A, Warrant EJ, Somanathan H (2023) Dim-light color vision in the facultative nocturnal Asian giant honeybee. Apis dorsata Proc R Soc B 290:20231267. https://doi.org/10.1098/rspb.2023.1267

    Article  Google Scholar 

Download references

Funding

AB research was funded by NCBS-TIFR institutional funds (No. 12P4167) and the Department of Atomic Energy, Government of India (No. 12-R&D-TFR-5.04-0800 and 12-R&D-TFR-5.04-0900). My students were supported by funds from NCBS-TIFR, CSIR, ICMR, SERB, and DBT. Foreign students working my lab were supported by Grants from DFG, DAAD, BayIND, and USIEF. Research on the conflict of humans and honey bees was supported by a Grant from Google AI for Social Good.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Brockmann.

Ethics declarations

Conflict of interest

There is no conflict of interest with any funding sources quoted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript for the special issue of the Journal of the Indian Institute of Science to celebrate the centenary of the birth of the discipline of Insect Sociobiology, marked by the publication of "Social Life Among the Insects" by William Morton Wheeler (1865–1937) in 1923.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brockmann, A. How India Changed My Ideas About Honey Bees. J Indian Inst Sci 103, 981–995 (2023). https://doi.org/10.1007/s41745-023-00412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-023-00412-6

Navigation