Skip to main content
Log in

Modeling and Simulation of Dropwise Condensation: A Review

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

In this review, we present significant developments that have been made in the mathematical modeling and simulations of dropwise condensation. In dropwise condensation, vapor condenses in the form of distinct drops. Modeling of DWC involves modeling heat transfer through a single drop and applying it to a population of drops. In the first part, we discuss heat transfer through a single droplet and compare the approximate analytical solution with the results of numerical simulations. We also address the shortcomings of the analytical model. In the second part, we present methods utilized to find the drop size distribution which are coupled with a model for heat transfer through the single droplet to obtain overall dropwise condensation heat transfer rate. In particular, we discuss the population balance method and the Monte Carlo method to predict drop size distribution and heat transfer rate. We support our discussion with the results from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:

Reprinted from Vemuri et al.25 Copyright 2005, with permission from Elsevier.

Figure 3:

Reprinted from Daniel et al.21 Copyright 2001, with permission from AAAS.

Figure 4:
Figure 5:

Reprinted from Singh et al.24 Copyright 2018.

Figure 6:
Figure 7:

Reprinted with permission from Chavan et al.34. Copyright 2016, American Chemical Society.

Figure 8:

Reprinted from Phadnis and Rykaczewski35. Copyright 2017, with permission from Elsevier.

Figure 9:

Reprinted with permission from Xu et al.37. Copyright 2018, American Chemical Society.

Figure 10:

Reprinted with permission from Xu et al.37. Copyright 2018, American Chemical Society.

Figure 11:
Figure 12:

Reprinted from Singh et al. 24 Copyright 2018.

Figure 13:

Reprinted from Burnside and Hadi49. Copyright 1999, with permission from Elsevier.

Figure 14:

Similar content being viewed by others

References

  1. Ber JM (2007) High efficiency electric power generation: the environmental role. Prog Energy Combust Sci 33(2):107

    Article  Google Scholar 

  2. Agency IE (2015) Key world energy statistics. International Energy Agency, Paris

    Google Scholar 

  3. Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy Build 40(3):394

    Article  Google Scholar 

  4. Humplik T, Lee J, O’Hern SC, Fellman BA, Baig MA, Hassan SF, Atieh MA, Rahman F, Laoui T, Karnik R, Wang EN (2011) Nanostructured materials for water desalination. Nanotechnology 22(29):292001

    Article  CAS  Google Scholar 

  5. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12(7):3602

    Article  CAS  Google Scholar 

  6. Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B 112(5):1427

    Article  CAS  Google Scholar 

  7. Khawaji AD, Kutubkhanah IK, Wie JM (2008) Advances in seawater desalination technologies. Desalination 221(1):47

    Article  CAS  Google Scholar 

  8. Andrews HG, Eccles EA, Schofield WCE, Badyal JPS (2011) Three-dimensional hierarchical structures for fog harvesting. Langmuir 27(7):3798

    Article  CAS  Google Scholar 

  9. Lee A, Moon MW, Lim H, Kim WD, Kim HY (2012) Water harvest via dewing. Langmuir 28(27):10183

    Article  CAS  Google Scholar 

  10. Schemenauer RS, Cereceda P (1991) Fog-water collection in arid coastal locations. Ambio 20(7):303–308

    Google Scholar 

  11. Leach RN, Stevens F, Langford SC, Dickinson JT (2006) Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir 22(21):8864

    Article  CAS  Google Scholar 

  12. Peters TB, McCarthy M, Allison J, Dominguez-Espinosa F, Jenicek D, Kariya H, Staats WL, Brisson JG, Lang JH, Wang EN (2012) Design of an integrated loop heat pipe air-cooled heat exchanger for high performance electronics. IEEE Trans Compon Packag Manuf Technol 2(10):1637

    Article  Google Scholar 

  13. Kim MH, Bullard CW (2002) Air-side performance of brazed aluminum heat exchangers under dehumidifying conditions. Int J Refrig 25(7):924

    Article  CAS  Google Scholar 

  14. Wen R, Ma X, Lee YC, Yang R (2018) Liquid-vapor phase-change heat transfer on functionalized nanowired surfaces and beyond. Joule 2(11):2307

    Article  CAS  Google Scholar 

  15. Khandekar S, Muralidhar K (2014) Dropwise condensation on inclined textured surfaces. Springer, New York, NY (electronic resource)

    Book  Google Scholar 

  16. Schmidt E, Schurig W, Sellschopp W (1930) Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform. Tech Mech Thermodyn 1(2):53

    Google Scholar 

  17. Carey VP (2007) Liquid-vapor phase-change phenomena: an introduction to the thermophysics of vaporization and condensation process in heat transfer equipment. Taylor & Francis, New York, NY

    Google Scholar 

  18. Rose JW (2002) Dropwise condensation theory and experiment: a review. Proc Inst Mech Eng Part A 216(2):115

    Article  CAS  Google Scholar 

  19. Tanasawa I, Utaka Y (1983) Measurement of condensation curves for dropwise condensation of steam at atmospheric pressure. J Heat Transf 105(3):633

    Article  Google Scholar 

  20. Stylianou S, Rose J (1983) Drop-to-filmwise condensation transition: heat transfer measurements for ethanediol. Int J Heat Mass Transf 26(5):747

    Article  CAS  Google Scholar 

  21. Daniel S, Chaudhury MK, Chen JC (2001) Fast drop movements resulting from the phase change on a gradient surface. Science 291(5504):633

    Article  CAS  Google Scholar 

  22. Macner AM, Daniel S, Steen PH (2014) Condensation on surface energy gradient shifts drop size distribution toward small drops. Langmuir 30(7):1788

    Article  CAS  Google Scholar 

  23. Singh M, Kondaraju S, Bahga SS (2017) Enhancement of thermal performance of micro heat pipes using wettability gradients. Int J Heat Mass Transf 104:400

    Article  Google Scholar 

  24. Singh M, Kondaraju S, Bahga SS (2018) Mathematical model for dropwise condensation on a surface with wettability gradient. J Heat Transf 140:071502

    Article  Google Scholar 

  25. Vemuri S, Kim K, Wood B, Govindaraju S, Bell T (2006) Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan. Appl Therm Eng 26(4):421

    Article  CAS  Google Scholar 

  26. Enright R, Miljkovic N, Alvarado JL, Kim K, Rose JW (2014) Dropwise condensation on micro- and nanostructured surfaces. Nanoscale Microscale Thermophys Eng 18(3):223

    Article  Google Scholar 

  27. Cho HJ, Preston DJ, Zhu Y, Wang EN (2017) Nanoengineered materials for liquid-vapour phase-change heat transfer. Nat Rev Mater 2(2):16092

    Article  CAS  Google Scholar 

  28. Tanaka H (1975) A theoretical study of dropwise condensation. J Heat Transf 97(1):72

    Article  Google Scholar 

  29. Kim S, Kim KJ (2011) Dropwise condensation modeling suitable for superhydrophobic surfaces. J Heat Transf 133(8):081502

    Article  Google Scholar 

  30. Ranodolph A (2012) Theory of particulate processes 2e: analysis and techniques of continuous crystallization. Elsevier, California, CA

    Google Scholar 

  31. LeFevre E, Rose J (1966) A theory of heat transfer by dropwise condensation. In: Proceedings of the third international heat transfer conference, vol. 2 (Chicago, IL), vol. 2, pp 362 – 375

  32. Savino R, Fico S (2004) Transient Marangoni convection in hanging evaporating drops. Phys Fluids 16(10):3738

    Article  CAS  Google Scholar 

  33. Guadarrama-Cetina J, Narhe RD, Beysens DA, González-Viñas W (2014) Droplet pattern and condensation gradient around a humidity sink. Phys Rev E 89:012402

    Article  CAS  Google Scholar 

  34. Chavan S, Cha H, Orejon D, Nawaz K, Singla N, Yeung YF, Park D, Kang DH, Chang Y, Takata Y, Miljkovic N (2016) Heat transfer through a condensate droplet on hydrophobic and nanostructured superhydrophobic surfaces. Langmuir 32(31):7774

    Article  CAS  Google Scholar 

  35. Phadnis A, Rykaczewski K (2017) The effect of Marangoni convection on heat transfer during dropwise condensation on hydrophobic and omniphobic surfaces. Int J Heat Mass Transf 115:148

    Article  CAS  Google Scholar 

  36. Rykaczewski K (2012) Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. Langmuir 28(20):7720

    Article  CAS  Google Scholar 

  37. Xu Z, Zhang L, Wilke K, Wang EN (2018) Multiscale dynamic growth and energy transport of droplets during condensation. Langmuir 34(30):9085

    Article  CAS  Google Scholar 

  38. Maa JR (1978) Drop size distribution and heat flux of dropwise condensation. Chem Eng J 16(3):171

    Article  CAS  Google Scholar 

  39. Abu-Orabi M (1998) Modeling of heat transfer in dropwise condensation. Int J Heat Mass Transf 41(1):81

    Article  CAS  Google Scholar 

  40. Daniel S, Chaudhury MK (2002) Rectified motion of liquid drops on gradient surfaces induced by vibration. Langmuir 18(9):3404

    Article  CAS  Google Scholar 

  41. Vemuri S, Kim K (2006) An experimental and theoretical study on the concept of dropwise condensation. Int J Heat Mass Transf 49(3–4):649

    Article  CAS  Google Scholar 

  42. De Gennes PG, Brochard-Wyart F, Quéré D (2013) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer-Verlag, New York, NY

    Google Scholar 

  43. Chandra S, Avedisian C (1991) On the collision of a droplet with a solid surface. In: Proceedings of the royal society of london a: mathematical, physical and engineering sciences, vol. 432 (The Royal Society), vol. 432, pp 13–41

  44. Wang FC, Yang F, Zhao YP (2011) Size effect on the coalescence-induced self-propelled droplet. Appl Phys Lett 98(5):053112

    Article  Google Scholar 

  45. Lv C, Hao P, Yao Z, Song Y, Zhang X, He F (2013) Condensation and jumping relay of droplets on lotus leaf. Appl Phys Lett 103(2):021601

    Article  Google Scholar 

  46. Chaudhury MK, Chakrabarti A, Daniel S (2015) Generation of motion of drops with interfacial contact. Langmuir 31(34):9266

    Article  CAS  Google Scholar 

  47. Gose EE, Mucciardi A, Baer E (1967) Model for dropwise condensation on randomly distributed sites. Int J Heat Mass Transf 10(1):15

    Article  CAS  Google Scholar 

  48. Glicksman LR, Hunt AW (1972) Numerical simulation of dropwise condensation. Int J Heat Mass Transf 15(11):2251

    Article  Google Scholar 

  49. Burnside B, Hadi H (1999) Digital computer simulation of dropwise condensation from equilibrium droplet to detectable size. Int J Heat Mass Transf 42(16):3137

    Article  CAS  Google Scholar 

  50. Tanaka H (1975) Measurements of drop-size distributions during transient dropwise condensation. J Heat Mass Transf 97(3):341

    Google Scholar 

  51. Sikarwar BS, Battoo NK, Khandekar S, Muralidhar K (2011) Dropwise condensation underneath chemically textured surfaces: simulation and experiments. J Heat Mass Transf 133(2):021501

    Google Scholar 

  52. Beysens D, Knobler CM (1986) Growth of breath figures. Phys Rev Lett 57:1433

    Article  CAS  Google Scholar 

  53. Viovy JL, Beysens D, Knobler CM (1988) Scaling description for the growth of condensation patterns on surfaces. Phys Rev A 37:4965

    Article  CAS  Google Scholar 

  54. Fritter D, Knobler CM, Roux D, Beysens D (1988) Computer simulations of the growth of breath figures. J Stat Phys 52(5):1447

    Article  Google Scholar 

  55. Steyer A, Guenoun P, Beysens D, Fritter D, Knobler CM (1990) Growth of droplets on a one-dimensional surface: experiments and simulation. Europhys Lett (EPL) 12(3):211

    Article  CAS  Google Scholar 

  56. Steyer A, Guenoun P, Beysens D, Knobler CM (1991) Growth of droplets on a substrate by diffusion and coalescence. Phys Rev A 44:8271

    Article  CAS  Google Scholar 

  57. Meakin P (1992) Dropwise condensation: the deposition growth and coalescence of fluid droplets. Phys Scr T44:31

    Article  CAS  Google Scholar 

  58. Narhe RD, Khandkar MD, Shelke PB, Limaye AV, Beysens DA (2009) Condensation-induced jumping water drops. Phys Rev E 80:031604

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supreet Singh Bahga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Pawar, N.D., Kondaraju, S. et al. Modeling and Simulation of Dropwise Condensation: A Review. J Indian Inst Sci 99, 157–171 (2019). https://doi.org/10.1007/s41745-019-0106-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-019-0106-8

Keywords

Navigation