Skip to main content

Dropwise Condensation: Experiments

  • Chapter
  • First Online:
Drop Dynamics and Dropwise Condensation on Textured Surfaces

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

Experimental determination of the heat transfer coefficient during dropwise condensation is a difficult task because of the many intricacies involved. The driving temperature difference is small, essentially resulting in a high heat transfer coefficient. Further, uncertainties associated with the microscale sub-structure of contact line shapes and motions, dynamic temperature variations below the condensing drops, effect of roughness and inhomogeneity of the substrate structure, control of true boundary conditions, microscale instrumentation, and transport dynamics of coalescence, merger, wipe-off, renucleation cycles, and the leaching rates of the promoter layer add to the difficulty in conducting repeatable experiments. Very high heat transfer rates (and therefore a very low temperature differential) coupled with the above factors also hinder generation of repeatable experimental data. Consequently, many conflicting experimental results have been published over the years, some results showing considerable scatter. In this chapter, experimental results of condensation patterns and the corresponding predictions of numerical simulation for water vapor are compared. The prediction of the model is in fair agreement with the experimental data for condensation of water vapor. Average heat flux as a function of degree of subcooling for water and mercury are compared. Although there is some discrepancy in the data obtained, major phenomena related to dropwise condensation underneath horizontal substrates are well simulated by the mathematical model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

θadv; θrcd:

Advancing and receding angles of the liquid drop on the chosen substrate, degree

hc(α):

Heat transfer coefficient for a substrate at an angle α, W/m2K

hc(90°):

Heat transfer coefficient for a vertical substrate, W/m2K

r min :

Minimum radius of the liquid drop at nucleation, m

t :

Time, s

Tsat, Tw, ΔT:

Saturation temperature of pure vapor, wall temperature, and degree of subcooling Tsat − Tw, K

References

  • Bakulin, N. V., Ivanovskii, M. N., Sorokin, V. P., Subbotin, V. I., & Chulkov, B. A. (1967). Phase and diffusion resistance in the condensation of an alkali metal. Journal of Atomic Energy, 22(5), 413–415.

    Google Scholar 

  • Baojin, Q., Li, Z., Hong, X., & Yan, S. (2011). Experimental study on condensation heat transfer of steam on vertical titanium plates with different surface energies. Experimental Thermal and Fluid Science, 35, 211–218.

    Google Scholar 

  • Bonner, R. (2009). Condensation on surfaces with graded hydrophobicity. In ASME Summer Heat Transfer Conference, San Francisco, CA, USA.

    Google Scholar 

  • Bonner, R. W., III (2010). Dropwise condensation life testing of self-assembled monolayers. In Proceedings of the International Heat Transfer Conference (IHTC14), Washington, DC, USA.

    Google Scholar 

  • Briscoe, B. J., & Galvin, K. P. (1991b). The sliding of sessile and pendent droplets the critical condition. Journal of Colloid and Interface Science, 52, 219–229.

    Google Scholar 

  • Chen, L., Liang, S., Yan, R., Cheng, Y., Huai, X., & Chen, S. (2009). N-octadecanethiol self-assembled monolayer coating with microscopic roughness for dropwise condensation of steam. Journal of Thermal Science, 18(2), 60–165.

    Google Scholar 

  • Citakoglu, E., & Rose, J. W. (1968a). Dropwise condensation some factors influencing the validity of heat-transfer measurements. International Journal of Heat and Mass Transfer, 11, 523–537.

    Google Scholar 

  • Citakoglu, E., & Rose, J. W. (1968b). Dropwise condensation the effect of surface inclination. International Journal of Heat and Mass Transfer, 12, 645–451.

    Google Scholar 

  • Daniel, S., Chaudhury, M. K., & Chen, J. C. (2001). Fast drop movements resulting from the phase-change on a gradient surface. Science, 291, 633–636.

    Google Scholar 

  • Das, A. K., Kilty, H. P., & Marto, P. J. (2000a). Dropwise condensation of steam on horizontal corrugated tubes using an organic self-assembled monolayer coating. Journal of Enhanced Heat Transfer, 7(2), 109–123.

    Google Scholar 

  • Das, A. K., Kilty, H. P., & Marto, P. J. (2000b). The use of an organic self-assembled monolayer coating to promote dropwise condensation of steam on horizontal tubes. ASME Journal of Heat Transfer, 122(2), 278–286.

    Google Scholar 

  • Dietz, C., Rykaczewski, K., Fedorov, A. G., & Joshi, Y. (2010). Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation. Applied Physics Letters, 97, 033104–033103.

    Google Scholar 

  • Graham, C. (1969). The limiting heat transfer mechanism of dropwise condensation. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.

    Google Scholar 

  • Griffith, P., & Lee, M. S. (1967). The effect of surface thermal properties and finish on dropwise condensation. International Journal of Heat and Mass Transfer, 10, 697–707.

    Google Scholar 

  • Gu, Y., Liao, Q., Zhu, X., & Wang, H. (2005). Dropwise condensation heat transfer coefficient on the horizontal surface with gradient surface energy. Journal of Engineering Thermophysics, 26(5), 820–822.

    Google Scholar 

  • Hatamiya, S., & Tanaka, H. (1986). A study on the mechanism of dropwise condensation (1st report, measurement of heat-transfer coefficient of steam at low pressures). Transactions of the Japan Society of Mechanical Engineers Series B, 52(476), 1828–1833.

    Google Scholar 

  • Kim, S., & Kim, K. J. (2011). Dropwise condensation modeling suitable for superhydrophobic surfaces. ASME Journal of Heat Transfer, 133(8), 081502, 1–8.

    Google Scholar 

  • Koch, G., Kraft, K., & Leipertz, A. (1998a). Parameter study on the performance of dropwise condensation. Revue Générale de Thermique, 37, 539–548.

    Google Scholar 

  • Koch, G., Zhang, D., & Leipertz, A. (1998b). Study of plasma enhanced CVD coated material to promote dropwise condensation. International Journal of Heat and Mass Transfer, 41(13), 1899–1900.

    Google Scholar 

  • Lan, Z., Ma, X. Z., Zhang, Y., & Zhou, X. D. (2009). Theoretical study of dropwise condensation heat transfer: Effect of the liquid-solid surface free energy difference. Journal of Enhanced Heat Transfer, 16, 61–71.

    Google Scholar 

  • Lara, J. R., & Holtzapple, M. T. (2011). Experimental investigation of dropwise condensation on hydrophobic heat exchangers. Part II: Effect of coatings and surface geometry. Desalination, 280, 363–369.

    Google Scholar 

  • Lawal, A., & Brown, R. A. (1982). The stability of an inclined pendent drop. Journal of Colloid and Interface Science, 89, 332–345.

    Google Scholar 

  • Le Fevre, E. J., & Rose, J. W. (1964). Heat-transfer measurement during dropwise condensation of steam. International Journal of Heat and Mass Transfer, 7, 272–273.

    Google Scholar 

  • Le Fevre, E. J., & Rose, J. W. (1965). An experimental study of heat transfer by dropwise condensation. International Journal of Heat and Mass Transfer, 8, 1117–1133.

    Google Scholar 

  • Le Fevre, E. J., & Rose J. W. (1966). A theory of heat transfer by dropwise condensation. In Proceedings of the 3rd International Heat Transfer Conference, Chicago (Vol. 2, pp. 362–375).

    Google Scholar 

  • Lee, L. Y., Fang, T. H., Yang, Y. M., & Maa, J. R. (1998). The enhancement of dropwise condensation by wettability modification of solid surface. International Communications in Heat and Mass Transfer, 25(8), 1095–1103.

    Google Scholar 

  • Leipertz, A., & Choi, K. H. (2000). Dropwise condensation on ion-implanted metallic surfaces. In Proceedings of the 3rd European Thermal Sciences Conference (pp. 917–921).

    Google Scholar 

  • Leipertz, A., & Fröba A. P. (2006). Improvement of condensation heat transfer by surface modification. In Proceedings of the 7th ASME, Heat and Mass Transfer Conference, IIT Guwahati, India (Vol. K7, pp. k85–k99).

    Google Scholar 

  • Leipertz, A., & Fröba, A. P. (2008). Improvement of condensation heat transfer by surface modifications. Heat Transfer Engineering, 29(4), 343–356.

    Google Scholar 

  • Liao, Q., Wang, H., Zhu, X., & Li, M. (2006). Liquid droplet movement on horizontal surface with gradient surface energy. Science in China Series E: Technological Sciences, 49(6), 733–741.

    Google Scholar 

  • Ma, X., & Wang, B. (1999). Life-time test of dropwise condensation on polymer-coated surfaces. Heat Transfer-Asian Research, 28(7), 551–558.

    Google Scholar 

  • Ma, X. H., Zhou, X. D., Lan, Z., Li, Y. M., & Zhang, Y. (2008). Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation. International Journal of Heat and Mass Transfer, 51, 1728–1737.

    MATH  Google Scholar 

  • Ma, X., Wang, S., Lan, Z., Peng, B., Ma, H. B., & Cheng, P. (2012). Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of non-condensable gas. ASME Journal of Heat Transfer, 134, 021501–021509.

    Google Scholar 

  • Majumdar, A., & Mezic, I. (1999). Instability of ultra-thin water film and the mechanism of droplet formation on hydrophobic surfaces. Journal of Heat Transfer, 121, 964–970.

    Google Scholar 

  • Marto, P. J., Looney, D. J., & Rose, J. W. (1986). Evaluation of organic coating for the promotion of dropwise condensation of steam. International Journal of Heat and Mass Transfer, 29, 1109–1117.

    Google Scholar 

  • Miljkovic, N., Enright, R., & Wang, E. N. (2012). Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano, 6, 1776–1785.

    Google Scholar 

  • Necmi, S., & Rose, J. W. (1977). Heat-transfer measurements during dropwise condensation of mercury. International Journal of Heat and Mass Transfer, 20, 877–880.

    Google Scholar 

  • Neeumaqnn, A. W., Abdelmessihm, A. H., & Hameed, A. (1978). The role of contact angles and contact angles hysteresis in dropwise condensation heat transfer. International Journal of Heat and Mass Transfer, 21, 947–953.

    Google Scholar 

  • Niknejad, J., & Rose, J. W. (1984). Comparisons between experiment and theory for dropwise condensation. International Journal of Heat and Mass Transfer, 20, 2253–2257.

    Google Scholar 

  • Rausch, M. H., Fröba, A. P., & Leipertz, A. (2007). Dropwise condensation on plasma-ion implanted aluminum surface. International Journal of Heat and Mass Transfer, 51, 1061–1070.

    MATH  Google Scholar 

  • Rausch, M. H., Leipertz, A., & Fröba, A. P. (2010a). Dropwise condensation of steam on ion-implanted titanium surfaces. International Journal of Heat and Mass Transfer, 53, 423–430.

    MATH  Google Scholar 

  • Rausch, M. H., Leipertz, A., & Fröba, A. P. (2010b). On the mechanism of dropwise condensation on ion-implanted metallic surface. ASME Journal of Heat Transfer, 132, 94503, 1–3.

    Google Scholar 

  • Rose, J. W. (1972). Dropwise condensation of mercury. International Journal of Heat and Mass transfer, 15, 1431–1434.

    Google Scholar 

  • Rose, J. W. (2002). Dropwise condensation theory and experiment: A review. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 216, 115–128.

    Google Scholar 

  • Rose, J. W. (2004). Surface tension effects and enhancements of condensation heat transfer. Chemical Engineering Research and Design, 82, 419–429.

    Google Scholar 

  • Rose, J. W., Tanasawa, I., & Utaka, Y. (1999). Dropwise condensation. In Handbook of phase-change: Boiling and condensation (pp. 581–594). Boca Raton, FL: Taylor and Francis.

    Google Scholar 

  • Stephan, K. (1992). Heat transfer in condensation and boiling (1st ed.). New York: Springer. ISBN #978-3642524592.

    Google Scholar 

  • Stylianou, S. A., & Rose, J. W. (1983). Drop-to-filmwise condensation transition: Heat transfer measurements for ethandiol. International Journal of Heat and Mass Transfer, 26(5), 747–760.

    Google Scholar 

  • Takeyama, T., & Shimizu S. (1974). On the transition of dropwise-film condensation. In Proceedings of the 5th International Heat Transfer Conference (Vol. 3, pp. 274–278).

    Google Scholar 

  • Tanasawa, I. (1991). Advance in condensation heat transfer. In J. P. Hartnett, T. F. Irvine, & I. Y. Cho (Eds.), Advances in heat transfer (Vol. 21, pp. 56–136). San Diego, CA: Academic Press.

    Google Scholar 

  • Tanasawa, I., & Utaka, Y. (1983). Measurement of condensation curves for dropwise condensation of steam at atmospheric pressure. Journal of Heat Transfer, 1(5), 633–638.

    Google Scholar 

  • Tanasawa, I., Ochiai, J., Utaka, Y., & Enya, S. (1976). Experimental study on dropwise condensation (Effect of departing drop size on heat-transfer coefficient). Transactions of the JSME, 42(361), 2846–2853.

    Google Scholar 

  • Tanner, D. W., Pope, D., Potter, C. J., & West, D. (1968). Heat transfer in dropwise condensation at low stem pressure in the absence of non-condensable gas. International Journal of Heat and Mass Transfer, 11, 181–190.

    Google Scholar 

  • Tsuruta, T. (1993). Constriction resistance in dropwise condensation. In Proceedings of the ASME Engineering Foundation Conference on Condensation and Condenser Design (pp. 109–170).

    Google Scholar 

  • Utaka, Y., Saito A., Ishikawa, H., & Yanagida, H. (1987). Transition from dropwise condensation to film condensation of propylene glycol, ethylene glycol, and glycerol vapors. In Proceedings of the 2nd ASME-JSME Thermal Engineering Conference (Vol. 4, pp. 377–384).

    Google Scholar 

  • Utaka, Y., Kubo, R., & Ishii, K. (1994). Heat transfer characteristics of condensation of camphor on a lyophobic Surface. In Proceedings of the 10th International Heat Transfer Conference (Vol. 3, pp. 401–406).

    Google Scholar 

  • Vemuri, S., Kim, K. J., Wood, B. D., Govindaraju, S., & Bell, T. W. (2006). Long term testing for dropwise condensation using self-assembled monolayer coating of n-octadecyl mercaptan. Applied Thermal Engineering, 26, 421–429.

    Google Scholar 

  • Wilmshurst, R., & Rose J. W. (1970). Dropwise condensation-further heat-transfer measurements. In Proceedings of the 4th International Heat Transfer Conference (Vol. 4, pp. l–4).

    Google Scholar 

  • Wilmshurst, R., & Rose J. W. (1974). Dropwise and filmwise condensation of aniline, ethandiol, and nitrobenzene. In Proceedings of the 5th International Heat Transfer Conference (Vol. 3, pp. 269–273).

    Google Scholar 

  • Zhao, H., & Beysens, D. (1995). From droplet growth to film growth on a heterogeneous surface: Condensation associated with a wettability gradient. Langmuir, 11(2), 627–634.

    Google Scholar 

  • Zhao, Q., Zhang, D. C., Lin, J. F., & Wang, G. M. (1996). Dropwise condensation on L-B film surface. Chemical Engineering and Processing, 35, 473–477.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sikarwar, B.S., Muralidhar, K., Khandekar, S. (2020). Dropwise Condensation: Experiments. In: Drop Dynamics and Dropwise Condensation on Textured Surfaces. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-48461-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48461-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48460-6

  • Online ISBN: 978-3-030-48461-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics