Skip to main content
Log in

Thermal Expansion in Organic Crystals

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Though a large number of thermal expansion studies have been reported on inorganic systems, a considerably large number on metal–organic-based systems, but those on purely organic systems are too few. Moreover, owing to the complexity of the crystal structure of the organic systems, their thermal expansion behaviors are poorly understood. This review focuses on some interesting thermal expansion studies conducted on purely organic crystals and also on some important structure–property relationships of thermal expansion of organic crystals with intermolecular interactions, melting point of systems, guest molecules in inclusion compounds, and hydrogen bond dimensionality in the crystal structures. Most studies discussed here have been reported in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1:
Scheme 2:
Figure 1:
Figure 2:
Figure 3:
Figure 4:
Scheme 3:
Figure 5:
Figure 6:
Scheme 4:
Figure 7:
Figure 8:

Similar content being viewed by others

References

  1. Chen J, Hu L, Deng J, Xing X (2015) Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chem Soc Rev 44:3522–3567

    Article  Google Scholar 

  2. Evans JSO (1999) Negative thermal expansion materials. J Chem Soc Dalton Trans 19:3317–3326

    Article  Google Scholar 

  3. Barrera GD, Bruno JAO, Barron THK, Allan NL (2005) Negative thermal expansion. J Phys Condens Matter 17:R217–R252

    Article  Google Scholar 

  4. Miller W, Smith CW, Mackenzie DS, Evans KE (2009) Negative thermal expansion: a review. J Mater Sci 44:5441–5451

    Article  Google Scholar 

  5. Krishnan RS, Srinivasan R, Devanarayanan S (1979) Thermal expansion of crystals. Pergamon Press Ltd., Oxford OX3 0BW, England

  6. Newnham RE (2005) Properties of materials anisotropy, symmetry, structure. Oxford University Press Inc., New York

    Google Scholar 

  7. Cliffe MJ, Goodwin AL (2012) PASCal: a principal axis strain calculator for thermal expansion and compressibility determination. J Appl Cryst 45:1321–1329

    Article  Google Scholar 

  8. Sleight AW (1998) Isotropic negative thermal expansion. Annu Rev Mater Sci 28:29–43

    Article  Google Scholar 

  9. Loughrey JJ, Comyn TP, Apperley DC, Little MA, Halcrow MA (2014) Complex thermal expansion properties in a molecular honeycomb lattice. Chem Commun 50:7601–7603

    Article  Google Scholar 

  10. Yang C, Wang X, Omary MA (2009) Crystallographic observation of dynamic gas adsorption sites and thermal expansion in a breathable fluorous metal–organic framework. Angew Chem Int Ed 48:2500–2505

    Article  Google Scholar 

  11. Marmier A, Lethbridge ZAD, Walton RI, Smith CW, Parker SC, Evans KE (2010) A computer program for the analysis and representation of anisotropic elastic properties. Comput Phys Commun 181:2102–2115

    Article  Google Scholar 

  12. Ohashi Y (1982) A program to calculate the strain tensor from two sets of unit-cell parameters. In: Hazen RM, Finger LW (eds) Comparative crystal chemistry. Wiley, New York, pp 92–102

    Google Scholar 

  13. Roy R, Agrawal DK, McKinstry HA (1989) Very low thermal expansion coefficient materials. Annu Rev Mater Sci 19:59–81

    Article  Google Scholar 

  14. Lightfoot P, Woodcock DA, Maple MJ, Villaescusa LA, Wright PA (2001) The widespread occurrence of negative thermal expansion in zeolites. J Mater Chem 11:212–216

    Article  Google Scholar 

  15. Lind C (2012) Two decades of negative thermal expansion research: where do we stand? Materials 5:1125–1154

    Article  Google Scholar 

  16. Takenaka K (2012) Negative thermal expansion materials: technological key for control of thermal expansion. Sci Technol Adv Mater 13:013001

    Article  Google Scholar 

  17. Phillips AE, Goodwin AL, Halder GJ, Southon PD, Kepert CJ (2008) Nanoporosity and exceptional negative thermal expansion in single-network cadmium cyanide. Angew Chem Int Ed 47:1396–1399

    Article  Google Scholar 

  18. Sahoo PP, Sumithra S, Madras G, Guru Row TN (2011) Synthesis, structure, negative thermal expansion, and photocatalytic property of Mo doped ZrV2O7. Inorg Chem 50:8774–8781

    Article  Google Scholar 

  19. Panda MK, Runčevski T, Sahoo SC, Belik AA, Nath NK, Dinnebier RE, Naumov P (2014) Colossal positive and negative thermal expansion and thermosalient effect in a pentamorphic organometallic martensite. Nat Commun 5:4811

    Article  Google Scholar 

  20. Wu Y, Kobayashi A, Halder GJ, Peterson VK, Chapman KW, Lock N, Southon PD, Kepert CJ (2008) Negative thermal expansion in the metal–organic framework material Cu3(1,3,5-benzenetricarboxylate)2. Angew Chem Int Ed 47:8929–8932

    Article  Google Scholar 

  21. Wu Y, Peterson VK, Luks E, Darwish TA, Kepert CJ (2014) Interpenetration as a mechanism for negative thermal expansion in the metal–organic framework Cu3(btb)2 (MOF-14). Angew Chem Int Ed 53:5175–5178

    Google Scholar 

  22. Siegrist T, Besnard C, Haas S, Schiltz M, Pattison P, Chernyshov D, Batlogg B, Kloc C (2007) A polymorph lost and found: the high-temperature crystal structure of pentacene. Adv Mater 19:2079–2082

    Article  Google Scholar 

  23. Wójcik G, Mossakowska I (2006) Polymorphs of p-nitrophenol as studied by variable temperature X-ray diffraction and calorimetry: comparison with m-nitrophenol. Acta Cryst B62:143–152

    Article  Google Scholar 

  24. Drebushchak TN, Boldyreva EV, Mikhailenko MA (2008) Crystal structures of sulfathiazole polymorphs in the temperature range 100–295 K: a comparative analysis. J Struct Chem 49:84–94

    Article  Google Scholar 

  25. DeVries LD, Barron PM, Hurley EP, Hu C, Choe W (2011) “Nanoscale Lattice Fence” in a metal organic framework: interplay between hinged topology and highly anisotropic thermal response. J Am Chem Soc 133:14848–14851

    Article  Google Scholar 

  26. Dubbeldam D, Walton KS, Ellis DE, Snurr RQ (2007) Exceptional negative thermal expansion in isoreticular metal– organic frameworks. Angew Chem Int Ed 46:4496–4499

    Article  Google Scholar 

  27. Desiraju GR (2007) Crystal engineering: a holistic view. Angew Chem Int Ed 46:8342–8356

    Article  Google Scholar 

  28. Desiraju GR (2013) Crystal engineering: from molecule to crystal. J Am Chem Soc 135:9952–9967

    Article  Google Scholar 

  29. Desiraju GR, Vittal JJ, Ramanan A (2011) Crystal engineering: a text book. World Scientific, Singapore

    Book  Google Scholar 

  30. Seddon KR, Zaworotko M (1999) Crystal engineering: the design and application of functional solids. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  31. Nangia A (2010) Supramolecular chemistry and crystal engineering. J Chem Sci 122:295–310

    Article  Google Scholar 

  32. Chopra D, Row TNG (2011) Role of organic fluorine in crystal engineering. Cryst Eng Comm 13:2175–2186

    Article  Google Scholar 

  33. Kitaigorodsky AI (1973) Molecular crystals and molecules, physical chemistry series no. 29. Academic Press, New York

    Google Scholar 

  34. Weigel D, Beguemsi T, Garnier P, Berar JF (1978) Evolution des tenseurs de dilatation thermique en function de la temperature. I. Loi generate devolution de la symmetric du tenseur. J Solid State Chem 23:241–251

    Article  Google Scholar 

  35. Garnier P, Calvarin G, Weigel D (1972) Determination of thermal expansion tensors by X-ray diffraction: II-Expansion of lead oxides and interpretation as a function of their structure and chemical bonds. J Chim Phys Phys-Chim Biol 69(11–12):1711–1718

    Article  Google Scholar 

  36. Nelson JB, Riley DP (1945) The thermal expansion of graphite from 15 °C to 800 °C.: part I. Experimental. Proc Phys Soc 57:477–486

    Article  Google Scholar 

  37. Tsang DKL, Marsden BJ, Fok SL, Hall G (2005) Graphite thermal expansion relationship for different temperature ranges. Carbon 43:2902–2906

    Article  Google Scholar 

  38. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The halogen bond. Chem Rev 116:2478–2601

    Article  Google Scholar 

  39. Lifshits IM (1952) Thermal properties of chain and layer compounds at low temperatures. Russ J Theor Exp Phys 22:475–486

    Google Scholar 

  40. Bhattacharya S, Saha BK (2013) Interaction dependence and similarity in thermal expansion of a dimorphic 1D hydrogen-bonded organic complex. Cryst Growth Des 13:3299–3302

    Article  Google Scholar 

  41. Bhattacharya S, Saraswatula VG, Saha BK (2013) Thermal expansion in alkane diacids another property showing alternation in an Odd−Even Series. Cryst Growth Des 13:3651–3656

    Article  Google Scholar 

  42. Saraswatula VG, Saha BK (2014) The effect of temperature on interhalogen interactions in a series of isostructural organic systems. New J Chem 38:897–901

    Article  Google Scholar 

  43. Forni A, Metrangolo P, Pilati T, Resnati G (2004) Halogen bond distance as a function of temperature. Cryst Growth Des 4:291–295

    Article  Google Scholar 

  44. Mathews CK, Rajagopalan S, Kutty KVG, Asuvathraman R, Sivaraman N, Srinivasan TG, Rao PRV (1993) Crystal structures and thermal exapansion of fulerenes. Solid State Commun 85:377–379

    Article  Google Scholar 

  45. Thewlis J, Davey AR (1956) XL. Thermal expansion of diamond. Philos Mag 1(5):409–414

    Article  Google Scholar 

  46. Benghiat V, Leiserowitz L (1972) Molecular packing modes. Part V1. Crystal and molecular structures of two modifications of tetrolic acid. J Chem Soc Perkin Trans 2:1763–1768

    Article  Google Scholar 

  47. Saraswatula VG, Bhattacharya S, Saha BK (2015) Can the thermal expansion be controlled by varying the hydrogen bond dimensionality in polymorphs? New J Chem 39:3345–3348

    Article  Google Scholar 

  48. Bhattacharya S, Saha BK (2014) Steric guided anomalous thermal expansion in a dimorphic organic system. Cryst Eng Comm 16:2340–2343

    Article  Google Scholar 

  49. Saraswatula VG, Saha BK (2015) Modulation of thermal expansion by guests and polymorphism in a hydrogen bonded host. Cryst Growth Des 15:593–601

    Article  Google Scholar 

  50. Bhattacharya S, Saraswatula VG, Saha BK (2016) Does higher-dimensional hydrogen bonding guarantee a smaller thermal expansion? A thermal expansion study of an interdigitated 1D and interpenetrated 3D hydrogen-bonded colored dimorphic system. Cryst Growth Des 16:277–284

    Article  Google Scholar 

  51. Boldyreva EV, Drebushchak TN, Shutova ES (2003) Structural distortion of the α, β, and γ polymorphs of glycine on cooling. Z Kristallogr 218:366–376

    Google Scholar 

  52. Saha BK, Aitipamula S, Banerjee R, Nangia A, Jetti RKR, Boese R, Lam C-K, Mak TCW (2005) Hexagonal host framework of sym-aryloxytriazines stabilised by weak intermolecular interactions. Mol Cryst Liq Cryst 440:295–316

    Article  Google Scholar 

  53. Bhattacharya S, Saha BK (2013) Polymorphism through desolvation of the solvates of a van der Waals host. Cryst Growth Des 13:606–613

    Article  Google Scholar 

  54. Atwood JL, Davies JED, MacNicol DD (eds) (1984) Inclusion compounds, vol 1–3. Academic Press, London

  55. Caira MR (2004) Isostructurality of inclusion compounds. In: Atwood JL, Steed JW (eds) Encyclopedia of supramolecular chemistry. Marcel Dekker Inc., New York

    Google Scholar 

  56. Nassimbeni LR (2003) Structure–reactivity relations of inclusion compounds. Cryst Eng Comm 5:200–203

    Article  Google Scholar 

  57. Engel ER, Smith VJ, Bezuidenhout CX, Barbour LJ (2014) Uniaxial negative thermal expansion facilitated by weak host–guest interactions. Chem Commun 50:4238–4241

    Article  Google Scholar 

  58. Engel ER, Smith VJ, Bezuidenhout CX, Barbour LJ (2016) Thermoresponsive organic inclusion compounds: modification of thermal expansion behavior by simple guest replacement. Chem Mater 28:5073–5079

    Article  Google Scholar 

  59. Saraswatula VG, Bhat MA, Bhattacharya S, Saha BK (2014) Network and guest dependent thermal stability and thermal expansion in a trigonal host. J Chem Sci 126:1265–1273

    Article  Google Scholar 

  60. Saha BK, Jetti RKR, Reddy LS, Aitipamula S, Nangia A (2005) Halogen trimer-mediated hexagonal host framework of 2,4,6-tris(4-halophenoxy)-1,3,5-triazine supramolecular isomerism from hexagonal channel (X = Cl, Br) to cage structure (X= I). Cryst Growth Des 5:887–899

    Article  Google Scholar 

  61. Jetti RKR, Xue F, Mak TCW, Nangia A (1999) 2,4,6-tris-4-(bromophenoxy)-1,3,5-triazine: a hexagonal host framework assembled with robust Br⋯Br trimer synthons. Cryst Eng 2:215–224

    Article  Google Scholar 

  62. Anthony A, Desiraju GR, Jetti RKR, Kuduva SS, Madhavi NNL, Nangia A, Thaimattam R, Thalladi VR (1998) Crystal engineering: some further strategies. Cryst Eng 1:1–18

    Article  Google Scholar 

  63. Reichenbacher K, Suss HI, Stoeckli H-E, Bracco S, Sozzani P, Weber E, Hulliger J (2004) Modification of channel structures by fluorination. New J Chem 28:393–397

    Article  Google Scholar 

  64. Zakrzewski M, White MA (1990) Influence of guest molecular species on the thermal expansion of clathrates of dianin's compound and concomitant anharmonic interactions. J Phys Chem 94:2203–2206

    Article  Google Scholar 

  65. Lindemann FA (1910) The calculation of molecular natural frequencies. Phys Z 11:609–612

    Google Scholar 

  66. Granato AV, Joncich DM, Khonik VA (2010) Melting, thermal expansion, and the lindemann rule for elemental substances. Appl Phys Lett 97:171911

    Article  Google Scholar 

  67. Kumar Mishra M, Varughese S, Ramamurty U, Desiraju GR (2013) Odd−Even effect in the elastic modulii of α,ω-alkanedicarboxylic acids. J Am Chem Soc 135:8121–8124

    Article  Google Scholar 

  68. Thalladi VR, Nusse M, Boese R (2000) The melting point alternation in α,ω-alkanedicarboxylic acids. J Am Chem Soc 122:9227–9236

    Article  Google Scholar 

  69. Saraswatula VG, Saha BK (2015) A thermal expansion investigation of the melting point anomaly in trihalomesitylenes. Chem Commun 51:9829–9832

    Article  Google Scholar 

  70. Bosch E (2002) Triangular halogen-halogen-halogen interactions as a cohesive force in the structures of trihalomesitylenes. Cryst Growth Des 2:299–302

    Article  Google Scholar 

  71. Brockway LO, Robertson JM (1939) The crystal structure of hexamethylbenzene and the length of the methyl group bond to aromatic carbon atoms. J Chem Soc 1324–1332

  72. Birkedal H, Schwarzenbach D, Pattison P (2002) Observation of uniaxial negative thermal expansion in an organic crystal. Angew Chem Int Ed 41:754–756

    Article  Google Scholar 

  73. Bolotina NB, Hardie MJ, Speer RL Jr, Pinkerton AA (2004) Energetic materials: variable-temperature crystal structures of γ- and ε-HNIW polymorphs. J Appl Cryst 37:808–814

    Article  Google Scholar 

  74. Bolotina NB, Zhurova EA, Pinkerton AA (2003) Energetic materials: variable-temperature crystal structure of β-NTO. J Appl Cryst 36:280–285

    Article  Google Scholar 

  75. Robertson JM, Ubbelohde AR (1939) Structure and thermal properties associated with some hydrogen bonds in crystals. I. The isotope effect. Proc R Soc London Ser A 170:222–240

    Article  Google Scholar 

  76. Das D, Jacobs T, Barbour LJ (2010) Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material. Nat Mater 9:36–39

    Article  Google Scholar 

  77. Das D, Jacobs T, Pietraszkob A, Barbour LJ (2011) Anomalous thermal expansion of an organic crystal—implications for elucidating the mechanism of an enantiotropic phase transformation. Chem Commun 47:6009–6011

    Article  Google Scholar 

  78. Fortes AD, Suard E, Knight KS (2011) Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate. Science 331:742–746

    Article  Google Scholar 

  79. Bhattacharya S, Saha BK (2012) Uniaxial negative thermal expansion in an organic complex caused by sliding of layers. Cryst Growth Des 12:4716–4719

    Article  Google Scholar 

  80. Jones RH, Knight KS, Marshall WG, Clews J, Darton RJ, Pyatt D, Colesc SJ, Horton PN (2014) Colossal thermal expansion and negative thermal expansion in simple halogen bonded complexes. Cryst Eng Comm 16:237–243

    Article  Google Scholar 

  81. de Pedro I, Saiz AG, Dupont J, Migowski P, Vallcorba O, Junquera J, Rius J, Fernández JR (2015) On the colossal and highly anisotropic thermal expansion exhibited by imidazolium salts. Cryst Growth Des 15:5207–5212

    Article  Google Scholar 

  82. Hutchins KM, Groeneman RH, Reinheimer EW, Swenson DC, MacGillivray LR (2015) Achieving dynamic behaviour and thermal expansion in the organic solid state via cocrystallization. Chem Sci 6:4717–4722

    Article  Google Scholar 

  83. Hutchins KM, Kummer KA, Groeneman RH, Reinheimer EW, Sinnwell MA, Swenson DC, MacGillivray LR (2016) Thermal expansion properties of three isostructural co-crystals composed of isosteric components: interplay between halogen and hydrogen bonds. Cryst Eng Comm 18:8354–8357

    Article  Google Scholar 

Download references

Acknowledgements

BKS thanks DST and CSIR for financial support and Pondicherry University for providing infrastructure. The former and the present group members of BKS, Dr. Suman Bhattacharya and Mr. Viswanadha Ganesh Saraswatula are also thankfully acknowledged for their valuable contributions in thermal expansion studies in the group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binoy K. Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, B.K. Thermal Expansion in Organic Crystals. J Indian Inst Sci 97, 177–191 (2017). https://doi.org/10.1007/s41745-017-0030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-017-0030-8

Keywords

Navigation