Skip to main content
Log in

Unraveling Microbes as Potential Proxies for Remediation of Heavy Metal and Pesticide Contamination: A State-of-the Art Review

  • Review article
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

The stability of ecosystem and the well-being of humans have been significantly impacted by the contamination of heavy metals and pesticides, primarily due to their resistance, persistence, and high toxicity. Consequently, this paper attempts to provide a comprehensive elucidation of the bioremediation capabilities of microorganisms, considering the current environmental and health risks posed by these pollutants. This review has systematically discussed and analyzed the recent reports (2012–2023) on the applications of microbes for removal of heavy metals and degradation of pesticides, with the objective of understanding the underlying mechanisms associated with microbial behavior in diverse habitats. The study advocated the utilization of specific microorganisms, namely Pseudomonas aeruginosa, Jeotgalicoccus sp., Aspergillus sp., Penicillium chrysogenum, and Chlorella vulgaris for the remediation of cadmium, arsenic, chromium, lead, copper, mercury, and nickel. Similarly, Bacillus sp., Aspergillus sydowii, Pseudomonas putida, and Cordyceps militaris have demonstrated significant potential for remediating cypermethrin, organo-phosphate, chlorpyrifos, profenofos, and trichlorodibenzofuran. In addition, a brief explanation of molecular methods that aid in the bioremediation process has also been discussed. The paper also highlights the importance of evaluating the efficacy of microbial remediation methods and summarizes the existing assessment approaches. In conclusion, this paper highlights the importance of a universally designed assessment framework to support decisions and actions aimed at reducing environmental pollution. It emphasizes that such a framework is crucial in preventing unintentional worsening of environmental concerns.

Graphical Abstract

Highlights

  • Microbe exertion is a promising tool in environmental remediation.

  • Pseudomonas aeruginosa bioaccumulate Cu, Pb, Zn, Cd and Ni.

  • Bacillus aryabhattai degrades chlorpyrifos and parathion pesticides.

  • Chlorella sp. reveals higher biosorption for Cu, Cr, Cd, Hg and Zn.

  • Omics-based methods enhance bioremediation mechanisms of microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Abha S, Swaranjit C (2012) Hydrocarbon pollution: effects on living organisms, remediation of contaminated environments, and effects of heavy metals co-contamination on bioremediation. InTech. https://doi.org/10.5772/48014

  • Abraham J, Gajendiran A (2019) Biodegradation of fipronil and its metabolite fipronil sulfone by Streptomyces rochei strain AJAG7 and its use in bioremediation of contaminated soil. Pestic Biochem Physiol 155:90–100

    Article  CAS  Google Scholar 

  • Agarry S, Olu-Arotiowa O, Aremu M, Jimoda L (2013) Biodegradation of dichlorovos (organophosphate pesticide) in soil by bacterial isolates. Biodegradation 3(8):11–16

    Google Scholar 

  • Akbar S, Sultan S (2016) Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Brazil J Microbiol 47:563–570

    Article  CAS  Google Scholar 

  • Akhtar N, Ilyas N, Yasmin H, Sayyed R, Hasnain Z, A. Elsayed E, El Enshasy HA, (2021) Role of Bacillus cereus in improving the growth and phytoextractability of Brassica nigra (L.) K. Koch in chromium contaminated soil. Molecules 26(6):1569

    Article  CAS  Google Scholar 

  • Al-Ansari MM, Benabdelkamel H, AlMalki RH, Rahman AMA, Alnahmi E, Masood A, Ilavenil S, Choi KC (2021) Effective removal of heavy metals from industrial effluent wastewater by a multi metal and drug resistant Pseudomonas aeruginosa strain RA-14 using integrated sequencing batch reactor. Environ Res 199:111240

    Article  CAS  Google Scholar 

  • Al-Homaidan AA, Al-Houri HJ, Al-Hazzani AA, Elgaaly G, Moubayed NM (2014) Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arab J Chem 7(1):57–62

    Article  CAS  Google Scholar 

  • Alothman ZA, Bahkali AH, Khiyami MA, Alfadul SM, Wabaidur SM, Alam M, Alfarhan BZ (2020). Low cost biosorbents from fungi for heavy metals removal from wastewater. Separation Science and Technology 55(10):1766-1775

  • Ali A, Guo D, Mahar A, Wahid F, Jeyasundar PGSA, Azeem M, Li R, Zhang Z (2020) Phytoremediation of heavy metals-polluted soil. Contaminants and clean technologies. CRC Press, Boca Raton, pp 213–229

    Chapter  Google Scholar 

  • Alvarenga N, Birolli WG, Seleghim MH, Porto AL (2014) Biodegradation of methyl parathion by whole cells of marine-derived fungi Aspergillus sydowii and Penicillium decaturense. Chemosphere 117:47–52

    Article  CAS  Google Scholar 

  • Alvarez A, Saez JM, Costa JSD, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Polti MA, Amoroso MJ (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62

    Article  CAS  Google Scholar 

  • Amani F, Safari Sinegani AA, Ebrahimi F, Nazarian S (2018) Biodegradation of chlorpyrifos and diazinon organophosphates by two bacteria isolated from contaminated agricultural soils. Biol J Microorg 7(28):27–39

    Google Scholar 

  • Amanze C, Zheng X, Man M, Yu Z, Ai C, Wu X, Xiao S, Xia M, Yu R, Wu X (2022) Recovery of heavy metals from industrial wastewater using bioelectrochemical system inoculated with novel Castellaniella species. Environ Res 205:112467

    Article  CAS  Google Scholar 

  • Amirnia S, Ray MB, Margaritis A (2015) Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor–biosorption system. Chem Eng J 264:863–872

    Article  CAS  Google Scholar 

  • Amoakwah E, Van Slycken S, Essumang DK (2014) Comparison of the solubilizing efficiencies of some pH lowering (sulphur and (NH4)2SO4) amendments on Cd and Zn mobility in soils. Bull Environ Contam Toxicol 93(2):187–191

    Article  CAS  Google Scholar 

  • Anli M, Baslam M, Tahiri A, Raklami A, Symanczik S, Boutasknit A, Ait-El-Mokhtar M, Ben-Laouane R, Toubali S, Ait Rahou Y (2020) Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm. Front Plant Sci 11:516818

    Article  Google Scholar 

  • Ansari MS, Moraiet MA, Ahmad S (2014) Insecticides: impact on the environment and human health. Environmental deterioration and human health. Springer, Cham, pp 99–123

    Chapter  Google Scholar 

  • Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168(1):400–405

    Article  CAS  Google Scholar 

  • Aparicio JD, Saez JM, Raimondo EE, Benimeli CS, Polti MA (2018) Comparative study of single and mixed cultures of actinobacteria for the bioremediation of co-contaminated matrices. J Environ Chem Eng 6(2):2310–2318

    Article  CAS  Google Scholar 

  • Arazoe T, Kondo A, Nishida K (2018) Targeted nucleotide editing technologies for microbial metabolic engineering. Biotechnol J 13(9):1700596

    Article  Google Scholar 

  • Ashmore MH, Nathanail CP (2008) A critical evaluation of the implications for risk based land management of the environmental chemistry of Sulphur Mustard. Environ Int 34(8):1192–1203

    Article  CAS  Google Scholar 

  • Asksonthong R, Siripongvutikorn S, Usawakesmanee W (2018) Heavy metal removal ability of Halomonas elongata and Tetragenococcus halophilus in a media model system as affected by pH and incubation time. International Food Research Journal 25(1):234–240

  • Aslam A, Thomas-Hall SR, Mughal T, Zaman Q-u, Ehsan N, Javied S, Schenk PM (2019) Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO2 concentrations. J Environ Manage 241:243–250

    Article  CAS  Google Scholar 

  • Ata A, Nalcaci OO, Ovez B (2012) Macro algae Gracilaria verrucosa as a biosorbent: a study of sorption mechanisms. Algal Res 1(2):194–204

    Article  Google Scholar 

  • Barquilha C, Cossich E, Tavares C, Silva E (2017) Biosorption of nickel (II) and copper (II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. J Clean Prod 150:58–64

    Article  CAS  Google Scholar 

  • Barros AI, Gonçalves AL, Simões M, Pires JC (2015) Harvesting techniques applied to microalgae: a review. Renew Sustain Energy Rev 41:1489–1500

    Article  Google Scholar 

  • Beltrán F, Masa F, Pocostales J (2009) A comparison between catalytic ozonation and activated carbon adsorption/ozone-regeneration processes for wastewater treatment. Appl Catal B 92(3–4):393–400

    Google Scholar 

  • Benimeli CS, Amoroso M, Chaile AP, Castro GR (2003) Isolation of four aquatic streptomycetes strains capable of growth on organochlorine pesticides. Biores Technol 89(2):133–138

    Article  CAS  Google Scholar 

  • Bhatt P, Rene ER, Huang Y, Wu X, Zhou Z, Li J, Kumar AJ, Sharma A, Chen S (2022) Indigenous bacterial consortium-mediated cypermethrin degradation in the presence of organic amendments and Zea mays plants. Environ Res 212:113137

    Article  CAS  Google Scholar 

  • Bilal M, Iqbal HM (2020) Microbial bioremediation as a robust process to mitigate pollutants of environmental concern. Case Stud Chem Environ Eng 2:100011

    Article  Google Scholar 

  • Birolli WG, Alvarenga N, Seleghim MH, Porto AL (2016) Biodegradation of the pyrethroid pesticide esfenvalerate by marine-derived fungi. Mar Biotechnol 18(4):511–520

    Article  CAS  Google Scholar 

  • Bisht J, Harsh N, Palni LMS, Agnihotri V, Kumar A (2019) Biodegradation of chlorinated organic pesticides endosulfan and chlorpyrifos in soil extract broth using fungi. Remediat J 29(3):63–77

    Article  Google Scholar 

  • Booth SC, Weljie AM, Turner RJ (2015) Metabolomics reveals differences of metal toxicity in cultures of Pseudomonas pseudoalcaligenes KF707 grown on different carbon sources. Front Microbiol 6:827

    Article  Google Scholar 

  • Bordoloi N, Goswami R, Kumar M, Kataki R (2017) Biosorption of Co (II) from aqueous solution using algal biochar: kinetics and isotherm studies. Biores Technol 244:1465–1469

    Article  CAS  Google Scholar 

  • Borja A (2018) Testing the efficiency of a bacterial community-based index (microgAMBI) to assess distinct impact sources in six locations around the world. Ecol Ind 85:594–602

    Article  CAS  Google Scholar 

  • Borsetti F, Francia F, Turner RJ, Zannoni D (2007) The thiol: disulfide oxidoreductase DsbB mediates the oxidizing effects of the toxic metalloid tellurite (TeO32−) on the plasma membrane redox system of the facultative phototroph Rhodobacter capsulatus. J Bacteriol 189(3):851–859

    Article  CAS  Google Scholar 

  • Boudh S, Singh JS (2019) Pesticide contamination: environmental problems and remediation strategies. Emerging and eco-friendly approaches for waste management. Springer, Cham, pp 245–269

    Chapter  Google Scholar 

  • Boughattas I, Hattab S, Alphonse V, Livet A, Giusti-Miller S, Boussetta H, Banni M, Bousserrhine N (2019) Use of earthworms Eisenia andrei on the bioremediation of contaminated area in north of Tunisia and microbial soil enzymes as bioindicator of change on heavy metals speciation. J Soils Sediments 19(1):296–309

    Article  CAS  Google Scholar 

  • Bradu P, Biswas A, Nair C, Sreevalsakumar S, Patil M, Kannampuzha S, Mukherjee AG, Wanjari UR, Renu K, Vellingiri B (2022) Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. Environmental Science and Pollution Research 1-32. https://doi.org/10.1007/s11356-022-20024-4.

  • Briceño G, Fuentes MS, Palma G, Jorquera M, Amoroso M, Diez M (2012) Chlorpyrifos biodegradation and 3, 5, 6-trichloro-2-pyridinol production by actinobacteria isolated from soil. Int Biodeterior Biodegrad 73:1–7

    Article  Google Scholar 

  • Briceño G, Fuentes MS, Rubilar O, Jorquera M, Tortella G, Palma G, Amoroso MJ, Diez MC (2015) Removal of the insecticide diazinon from liquid media by free and immobilized Streptomyces sp. isolated from agricultural soil. J Basic Microbiol 55(3):293–302

    Article  Google Scholar 

  • Carvajal M, Jeldres P, Vergara A, Lobaina E, Olivares M, Meza D, Velásquez A, Dorta F, Jorquera F, Seeger M (2023) Bioremoval of copper by filamentous fungi isolated from contaminated soils of Puchuncaví-Ventanas Central Chile. Environ Geochem Health. https://doi.org/10.1007/s10653-023-01493-z

    Article  Google Scholar 

  • Ceci A, Pinzari F, Riccardi C, Maggi O, Pierro L, Petrangeli Papini M, Gadd GM, Persiani AM (2018) Metabolic synergies in the biotransformation of organic and metallic toxic compounds by a saprotrophic soil fungus. Appl Microbiol Biotechnol 102(2):1019–1033

    Article  CAS  Google Scholar 

  • Chamizo-Ampudia A, Sanz-Luque E, Llamas A, Galvan A, Fernandez E (2017) Nitrate reductase regulates plant nitric oxide homeostasis. Trends Plant Sci 22(2):163–174

    Article  CAS  Google Scholar 

  • Chan SS, Khoo KS, Chew KW, Ling TC, Show PL (2022) Recent advances biodegradation and biosorption of organic compounds from wastewater: Microalgae-bacteria consortium-a review. Biores Technol 344:126159

    Article  CAS  Google Scholar 

  • Chen Y, Huang H, Ding Y, Chen W, Luo J, Li H, Wu J, Chen W, Qi S (2019) Trace metals in aquatic environments of a mangrove ecosystem in Nansha, Guangzhou, South China: pollution status, sources, and ecological risk assessment. Environ Monit Assess 191(10):1–11

    Article  Google Scholar 

  • Chen B, Zhao J, Zhang R, Zhang L, Zhang Q, Yang H, An J (2022a) Neuroprotective effects of natural compounds on neurotoxin-induced oxidative stress and cell apoptosis. Nutr Neurosci 25(5):1078–1099

    Article  CAS  Google Scholar 

  • Chen ZJ, Zhai XY, Liu J, Zhang N, Yang H (2022b) Detoxification and catabolism of mesotrione and fomesafen facilitated by a Phase II reaction acetyltransferase in rice. Journal of Advanced Research 2090-1232(22)00268-5

  • Chiarle S, Ratto M, Rovatti M (2000) Mercury removal from water by ion exchange resins adsorption. Water Res 34(11):2971–2978

    Article  CAS  Google Scholar 

  • Choudhary S, Wani KI, Naeem M, Khan MMA, Aftab T (2022) Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: polyamines and nitric oxide crosstalk. Journal of Plant Growth Regulation 42:539–553

  • Christoforidis A, Orfanidis S, Papageorgiou S, Lazaridou A, Favvas E, Mitropoulos AC (2015) Study of Cu (II) removal by Cystoseira crinitophylla biomass in batch and continuous flow biosorption. Chem Eng J 277:334–340

    Article  CAS  Google Scholar 

  • Cobb AH (2022) Herbicides and plant physiology. John Wiley & Sons

    Google Scholar 

  • Concha C, Manzano CA (2022) Priority pesticides in Chile: predicting their environmental distribution, bioaccumulation, and transport potential. Integr Environ Assess Manag. https://doi.org/10.1002/ieam.4680

    Article  Google Scholar 

  • Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M (2019) Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci 20(24):6249

    Article  Google Scholar 

  • Damodaran D, Balakrishnan RM, Shetty VK (2013) The uptake mechanism of Cd (II), Cr (VI), Cu (II), Pb (II), and Zn (II) by mycelia and fruiting bodies of Galerina vittiformis. BioMed research international, 2013

  • del Pilar CM, Andersson A, Ander P, Stenström J, Torstensson L (2001) Establishment of the white rot fungus Phanerochaete chrysosporium on unsterile straw in solid substrate fermentation systems intended for degradation of pesticides. World J Microbiol Biotechnol 17(6):627–633

    Article  Google Scholar 

  • Demey H, Vincent T, Guibal E (2018) A novel algal-based sorbent for heavy metal removal. Chem Eng J 332:582–595

    Article  CAS  Google Scholar 

  • Deng J, Fu D, Hu W, Lu X, Wu Y, Bryan H (2020) Physiological responses and accumulation ability of Microcystis aeruginosa to zinc and cadmium: implications for bioremediation of heavy metal pollution. Biores Technol 303:122963

    Article  CAS  Google Scholar 

  • Devi MS, Mishra VK, Shyam R, Pankaj U (2023) Microbial remediation of hazardous chemical pesticides toward sustainable agriculture. Microbial based land restoration handbook, vol 1. CRC Press, Boca Raton, pp 245–272

    Google Scholar 

  • DiBartolomeis M, Kegley S, Mineau P, Radford R, Klein K (2019) An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PLoS ONE 14(8):e0220029

    Article  CAS  Google Scholar 

  • Dyguda-Kazimierowicz E, Roszak S, Sokalski WA (2014) Alkaline hydrolysis of organophosphorus pesticides: the dependence of the reaction mechanism on the incoming group conformation. J Phys Chem B 118(26):7277–7289

    Article  CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8(3):268–275

    Article  Google Scholar 

  • El-Bondkly AMA, El-Gendy MMAA (2022) Bioremoval of some heavy metals from aqueous solutions by two different indigenous fungi Aspergillus sp. AHM69 and Penicillium sp. AHM96 isolated from petroleum refining wastewater. Heliyon 8(7):e09854

    Article  CAS  Google Scholar 

  • Erguven GO, Yildirim N (2019) The evaluation of imidacloprid remediation in soil media by two bacterial strains. Curr Microbiol 76(12):1461–1466

    Article  CAS  Google Scholar 

  • Ergüven GÖ, Yıldırım N, Adar E (2017) The ability of Phanerochaete chrysosporium (ME446) on chemical oxygen demand remediation in submerged culture medium supplemented with malathion insecticide. Desalination and water treatment 94:231–235. https://doi.org/10.1007/s41742-023-00544-8

  • Esmaeili A, Aghababai Beni A (2018) Optimization and design of a continuous biosorption process using brown algae and chitosan/PVA nano-fiber membrane for removal of nickel by a new biosorbent. Int J Environ Sci Technol 15(4):765–778

    Article  CAS  Google Scholar 

  • Fan J, Okyay T O, Rodrigues D F (2014) The synergism of temperature, pH and growth phases on heavy metal biosorption by two environmental isolates. Journal of hazardous materials 279:236-243

  • Freitas APP, Schneider IAH, Schwartzbold A (2011) Biosorption of heavy metals by algal communities in water streams affected by the acid mine drainage in the coal-mining region of Santa Catarina state. Brazil Miner Eng 24(11):1215–1218

    Article  CAS  Google Scholar 

  • Fu Z, Xi S (2020) The effects of heavy metals on human metabolism. Toxicol Mech Methods 30(3):167–176

    Article  CAS  Google Scholar 

  • Fuentes MS, Raimondo EE, Amoroso MJ, Benimeli CS (2017) Removal of a mixture of pesticides by a Streptomyces consortium: influence of different soil systems. Chemosphere 173:359–367

    Article  CAS  Google Scholar 

  • Fulekar M, Singh A, Bhaduri AM (2009) Genetic engineering strategies for enhancing phytoremediation of heavy metals. African Journal of Biotechnology 8(4):529–535

  • Gaber SE, Hussain MT, Jahin HS (2020) Bioremediation of diazinon pesticide from aqueous solution by fungal-strains isolated from wastewater. World J Chem 15(1):15–23

    CAS  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Engineering in life sciences 4 (3):219–232

  • Gianfreda L, Rao MA (2017) Soil microbial and enzymatic diversity as affected by the presence of xenobiotics. Xenobiotics in the soil environment. Springer, Cham, pp 153–169

    Chapter  Google Scholar 

  • Gill HK, Garg H (2014) Pesticide: environmental impacts and management strategies. Pesticides-Toxic Aspects 8:187

    Google Scholar 

  • Goldblum DK, Rak A, Ponnapalli MD, Clayton CJ (2006) The Fort Totten mercury pollution risk assessment: a case history. J Hazard Mater 136(3):406–417

    Article  CAS  Google Scholar 

  • Gong D, Ye F, Pang C, Lu Z, Shang C (2020) Isolation and characterization of Pseudomonas sp. Cr13 and its application in removal of heavy metal chromium. Curr Microbiol 77(11):3661–3670

    Article  CAS  Google Scholar 

  • Gu B, Chen D, Yang Y, Vitousek P, Zhu Y-G (2021) Soil-food-environment-health nexus for sustainable development. Research. https://doi.org/10.34133/2021/9804807

    Article  Google Scholar 

  • Guo S, Li F, Li P, Wang S, Zhao Q, Li G, Wu B, Tai P (2018) Study on remediation technologies of organic and heavy metal contaminated soils. Twenty years of research and development on soil pollution and remediation in china. Springer, Cham, pp 703–723

    Chapter  Google Scholar 

  • Guria MK, Guha AK, Bhattacharyya M (2014) A green chemical approach for biotransformation of Cr (VI) to Cr (III), utilizing Fusarium sp. MMT1 and consequent structural alteration of cell morphology. J Environ Chem Eng 2(1):424–433

    Article  CAS  Google Scholar 

  • Hadibarata T, Kristanti RA, Bilal M, Yilmaz M, Sathishkumar P (2023) Biodegradation mechanism of chlorpyrifos by halophilic bacterium Hortaea sp. B15. Chemosphere 312:137260

    Article  CAS  Google Scholar 

  • Hai FI, Modin O, Yamamoto K, Fukushi K, Nakajima F, Nghiem LD (2012) Pesticide removal by a mixed culture of bacteria and white-rot fungi. J Taiwan Inst Chem Eng 43(3):459–462

    Article  CAS  Google Scholar 

  • Hamby D (1996) Site remediation techniques supporting environmental restoration activities—a review. Sci Total Environ 191(3):203–224

    Article  CAS  Google Scholar 

  • Han KY, Kröger L, Buchholz F, Dewan I, Quaas M, Schulenburg H, Reusch TB (2023) The economics of microbiodiversity. Ecol Econ 204:107664

    Article  Google Scholar 

  • Hassan S, Bhat SA, Kumar V, Ganai BA, Ameen F (2022a) Phytoremediation of heavy metals: an indispensable contrivance in green remediation technology. Plants 11(9):1255

    Article  Google Scholar 

  • Hassan S, Khurshid Z, Bali BS, Ganai BA, Sayyed R, Poczai P, Zaman M (2022b) A critical assessment of the congruency between environmental DNA and palaeoecology for the biodiversity monitoring and palaeoenvironmental reconstruction. Int J Environ Res Public Health 19(15):9445

    Article  CAS  Google Scholar 

  • Hassan S, Sabreena KZ, Bhat SA, Kumar V, Ameen F, Ganai BA (2022c) Marine bacteria and omic approaches: a novel and potential repository for bioremediation assessment. J Appl Microbiol 133(4):2299–2313. https://doi.org/10.1111/jam.15711

    Article  CAS  Google Scholar 

  • Hassan S, Zaman M, Yaseen A, Ganai BA (2022d) Biochar and its potential use for bioremediation of contaminated soils. Microbes and microbial biotechnology for green remediation. Elsevier, Amsterdam, pp 169–183

    Chapter  Google Scholar 

  • He J, Chen X, Zhang Q, Achal V (2019) More effective immobilization of divalent lead than hexavalent chromium through carbonate mineralization by Staphylococcus epidermidis HJ2. Int Biodeterior Biodegrad 140:67–71

    Article  CAS  Google Scholar 

  • He Y, Li C, Sun Z, Zhang W, He J, Zhao Y, Xu Z, Zhao W (2023) Penicillium spp. XK10, fungi with potential to repair cadmium and antimony pollution. Appl Sci 13(3):1228

    Article  CAS  Google Scholar 

  • Heidari P, Mazloomi F, Sanaeizade S (2020) Optimization study of nickel and copper bioremediation by Microbacterium oxydans strain CM3 and CM7. Soil Sediment Contam: Int J 29(4):438–451

    Article  CAS  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92(11):1450–1457

    Article  CAS  Google Scholar 

  • Hu W, Zhang Y, Huang B, Teng Y (2017) Soil environmental quality in greenhouse vegetable production systems in eastern China: current status and management strategies. Chemosphere 170:183–195

    Article  CAS  Google Scholar 

  • Hu K, Li J, Zhao T, Zhou Q, Li Q, Hu X, Han G, Li S, Zou L, Liu S (2023) Transcriptomic analysis reveals peripheral pathway in 3-phenoxybenzoic acid degradation by Aspergillus oryzae M-4. J Environ Manage 325:116626

    Article  CAS  Google Scholar 

  • Hussain I, Aleti G, Naidu R, Puschenreiter M, Mahmood Q, Rahman MM, Wang F, Shaheen S, Syed JH, Reichenauer TG (2018) Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: a review. Sci Total Environ 628:1582–1599

    Article  Google Scholar 

  • Hussain A, Rehman F, Rafeeq H, Waqas M, Asghar A, Afsheen N, Rahdar A, Bilal M, Iqbal HM (2022) In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air–a review. Chemosphere 289:133252

    Article  CAS  Google Scholar 

  • Ibrahim WM, Karam MA, El-Shahat RM, Adway AA (2014) Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria. BioMed Res Int. https://doi.org/10.1155/2014/392682

    Article  Google Scholar 

  • Igiri BE, Okoduwa SI, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol. https://doi.org/10.1155/2018/2568038

    Article  Google Scholar 

  • Intisar A, Ramzan A, Sawaira T, Kareem AT, Hussain N, Din MI, Bilal M, Iqbal HM (2022) Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials–a review. Chemosphere 293:133538

    Article  CAS  Google Scholar 

  • Iram S, Shabbir R, Zafar H, Javaid M (2015) Biosorption and bioaccumulation of copper and lead by heavy metal-resistant fungal isolates. Arab J Sci Eng 40(7):1867–1873

    Article  CAS  Google Scholar 

  • Ismanto A, Hadibarata T, Kristanti RA, Maslukah L, Safinatunnajah N, Kusumastuti W (2022) Endocrine disrupting chemicals (EDCs) in environmental matrices: occurrence, fate, health impact, physio-chemical and bioremediation technology. Environ Pollut 302:119061

    Article  CAS  Google Scholar 

  • Jaafari J, Yaghmaeian K (2019) Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere 217:447–455

    Article  CAS  Google Scholar 

  • Jalilvand N, Akhgar A, Alikhani HA, Rahmani HA, Rejali F (2020) Removal of heavy metals zinc, lead, and cadmium by biomineralization of urease-producing bacteria isolated from Iranian mine calcareous soils. J Soil Sci Plant Nutr 20(1):206–219

    Article  CAS  Google Scholar 

  • Jayashree R, Vasudevan N (2007) Organochlorine pesticide residues in ground water of Thiruvallur district, India. Environ Monitor Assess 128(1):209–215

    Article  CAS  Google Scholar 

  • Ji L, Xie S, Feng J, Li Y, Chen L (2012) Heavy metal uptake capacities by the common freshwater green alga Cladophora fracta. J Appl Phycol 24(4):979–983

    Article  CAS  Google Scholar 

  • Jia Z, Deng J, Chen N, Shi W, Tang X, Xu H (2017) Bioremediation of cadmium-dichlorophen co-contaminated soil by spent Lentinus edodes substrate and its effects on microbial activity and biochemical properties of soil. J Soils Sediments 17(2):315–325

    Article  CAS  Google Scholar 

  • Jiang R, Wang M, Chen W, Li X (2018) Ecological risk evaluation of combined pollution of herbicide siduron and heavy metals in soils. Sci Total Environ 626:1047–1056

    Article  CAS  Google Scholar 

  • Kaur M, Sharma S, Sodhi HS (2022) Phytoremediation of pesticides. Phytoremediation. Elsevier, Amsterdam, pp 323–350

    Chapter  Google Scholar 

  • Khan S, Ullah A, Ayaz T, Hassan N, Khan AZ, Lei M, Habib M, Amin FU, Aziz A (2022) Phycoremediation Of Cd And Pb Contaminated Industrial Effluents Using Cladophora Glomerata And Vaucheria Debaryana.

  • Khan S, Ullah A, Ayaz T, Aziz A, Aman K, Habib M, Ali Q (2023) Phycoremediation of industrial wastewater using Vaucheria debaryana and Cladophora glomerata. Environmental Monitoring and Assessment 195(7):825.

  • Kim K-S, Lee SC, Kim K-H, Shim WJ, Hong SH, Choi KH, Yoon JH, Kim J-G (2009) Survey on organochlorine pesticides, PCDD/Fs, dioxin-like PCBs and HCB in sediments from the Han river. Korea Chemosphere 75(5):580–587

    Article  CAS  Google Scholar 

  • Kong W, Meldgin DR, Collins JJ, Lu T (2018) Designing microbial consortia with defined social interactions. Nat Chem Biol 14(8):821–829

    Article  CAS  Google Scholar 

  • Koul B, Ahmad W, Singh J (2021) Mycoremediation: A novel approach for sustainable development. Microbe mediated remediation of environmental contaminants. Elsevier, Amsterdam, pp 409–420

    Chapter  Google Scholar 

  • Kulakovskaya T (2018) Inorganic polyphosphates and heavy metal resistance in microorganisms. World J Microbiol Biotechnol 34(9):1–8

    Article  CAS  Google Scholar 

  • Kumar V, Dwivedi S (2019) Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater. Chemosphere 237:124567

    Article  CAS  Google Scholar 

  • Kumar P, Sachan SG (2021) Exploring microbes as bioremediation tools for the degradation of pesticides. Advanced oxidation processes for effluent treatment plants. Elsevier, Amsterdam, pp 51–67

    Google Scholar 

  • Kumar V, Pandita S, Setia R (2022) A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. Gondwana Res 103:487–501

    Article  CAS  Google Scholar 

  • Kumari S, Jamwal R (2022) Isolation and identification of Jeotgalicoccus sp. CR2 and evaluation of its resistance towards heavy metals. Cleaner Waste Syst 3:100062

    Article  Google Scholar 

  • Li J, Zhang S, Wu C, Li C, Wang H, Wang W, Ye Q (2016) Stereoselective degradation and transformation products of a novel chiral insecticide, paichongding, in flooded paddy soil. Journal of agricultural and food chemistry 64(40):7423-7430.

  • Li J, Metruccio MM, Evans DJ, Fleiszig SM (2017a) Mucosal fluid glycoprotein DMBT1 suppresses twitching motility and virulence of the opportunistic pathogen Pseudomonas aeruginosa. PLoS Pathog 13(5):e1006392

    Article  Google Scholar 

  • Li X, Yin X, Lian B (2017b) The degradation of dimethoate and the mineral immobilizing function for Cd2+ by Pseudomonas putida. Geomicrobiol J 34(4):346–354

    Article  CAS  Google Scholar 

  • Li W, Chen A, Shang C, Zhang X, Chai Y, Luo S, Shao J, Peng L (2022) Remediation of thiamethoxam contaminated wetland soil by Phanerochaete chrysosporium and the response of microorganisms. J Environ Chem Eng 10(5):108333

    Article  CAS  Google Scholar 

  • Li M, Li L, Sun Y, Ma H, Zhang H, Li F (2023) Facile synthesis of dual-hydrolase encapsulated magnetic ZIF-8 composite for efficient removal of multi-pesticides induced pollution in water. Chemosphere 314:137673

    Article  CAS  Google Scholar 

  • Liaquat F, Haroon U, Munis MFH, Arif S, Khizar M, Ali W, Shengquan C, Qunlu L (2021) Efficient recovery of metal tolerant fungi from the soil of industrial area and determination of their biosorption capacity. Environ Technol Innov 21:101237

    Article  CAS  Google Scholar 

  • Lin Z, Pang S, Zhou Z, Wu X, Li J, Huang Y, Zhang W, Lei Q, Bhatt P, Mishra S (2022) Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation. J Hazard Mater 426:127841

    Article  CAS  Google Scholar 

  • Lin W, Zhang Z, Chen Y, Zhang Q, Ke M, Lu T, Qian H (2023) The mechanism of different cyanobacterial responses to glyphosate. J Environ Sci 125:258–265

    Article  CAS  Google Scholar 

  • Liu S-H, Zeng G-M, Niu Q-Y, Liu Y, Zhou L, Jiang L-H, Tan X-f, Xu P, Zhang C, Cheng M (2017) Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review. Biores Technol 224:25–33

    Article  CAS  Google Scholar 

  • Long D, Tang X, Cai K, Chen G, Chen L, Duan D, Chen Y (2013) Cr (VI) reduction by a potent novel alkaliphilic halotolerant strain Pseudochrobactrum saccharolyticum LY10. Journal of hazardous materials 256:24–32

  • Luo H, Yang C, Pang M, Wang Y, Cheng W, Jiang K, Ling L (2023) Efficient removal of heavy metals by endophytic bacteria Staphylococcus succinus H3. J Appl Microbiol 134(1):lxac040

    Article  Google Scholar 

  • Mahesh N, Balakumar S, Danya U, Shyamalagowri S, Babu PS, Aravind J, Kamaraj M, Govarthanan M (2022) A review on mitigation of emerging contaminants in an aqueous environment using microbial bio-machines as sustainable tools: progress and limitations. J Water Process Eng 47:102712

    Article  Google Scholar 

  • Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR (2016) Effects of pesticides on environment. Plant, soil and microbes. Springer, Cham, pp 253–269

    Chapter  Google Scholar 

  • Mala JGS, Sujatha D, Rose C (2015) Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiological research 170:235–241

  • Medfu Tarekegn M, Zewdu Salilih F, Ishetu AI (2020) Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agriculture 6(1):1783174

    Article  Google Scholar 

  • Mishra S, Pang S, Zhang W, Lin Z, Bhatt P, Chen S (2021) Insights into the microbial degradation and biochemical mechanisms of carbamates. Chemosphere 279:130500

    Article  CAS  Google Scholar 

  • Mohapatra D, Rath S, Mohapatra P (2022) Soil fungi for bioremediation of pesticide toxicants: a perspective. Geomicrobiol J 39(3–5):352–372

    Article  CAS  Google Scholar 

  • Mori T, Watanabe M, Taura H, Kuno T, Kamei I, Kondo R (2015) Degradation of chlorinated dioxins and polycyclic aromatic hydrocarbons (PAHs) and remediation of PAH-contaminated soil by the entomopathogenic fungus, Cordyceps militaris. J Environ Chem Eng 3(4):2317–2322

    Article  CAS  Google Scholar 

  • Nahar K, Baillie J, Zulkarnain NA (2023) Herbicide fate and transport in the great barrier reef: a review of critical parameters. Water 15(2):237

    Article  CAS  Google Scholar 

  • Nam S-H, Kim D, An S, An Y-J (2022) Validation of the paper-disc soil method using soil alga Chlorococcum infusionum to quantitatively determine the toxicity of heavy metals. Comp Biochem Physiol C: Toxicol Pharmacol 258:109380

    CAS  Google Scholar 

  • Narayanan M, Kumarasamy S, Ranganathan M, Kandasamy S, Kandasamy G, Gnanavel K (2020). Enzyme and metabolites attained in degradation of chemical pesticides ß Cypermethrin by Bacillus cereus. Materials Today: Proceedings 33:3640-3645

  • Narayanan M, Murugan JM, Kandasamy G, Kandasamy S, Nasif O, Rajendran M, Pugazhendhi A (2022) The biotransformation potential of Bacillus cereus on β-cypermethrin to protect the earthworm (Perionyx excavatus) on insecticide-contaminated soil. Arch Agronomy Soil Sci 68(7):944–955

    Article  CAS  Google Scholar 

  • Negi G, Srivastava A, Sharma A (2014) In situ biodegradation of endosulfan, imidacloprid, and carbendazim using indigenous bacterial cultures of agriculture fields of Uttarakhand, India. Int J Bioeng Life Sci 8(9):973–981

    Google Scholar 

  • von Netzer F, Granitsiotis MS, Szalay AR, Lueders T (2020) Next-generation sequencing of functional marker genes for anaerobic degraders of petroleum hydrocarbons in contaminated environments. In: Boll, M. (eds) Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-50391-2_15.

  • Nwankwegu AS, Onwosi CO (2017) Bioremediation of gasoline contaminated agricultural soil by bioaugmentation. Environ Technol Innov 7:1–11

    Article  Google Scholar 

  • Nykiel-Szymańska J, Bernat P, Słaba M (2018) Potential of Trichoderma koningii to eliminate alachlor in the presence of copper ions. Ecotoxicol Environ Saf 162:1–9

    Article  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504

    Article  Google Scholar 

  • Oladoye PO, Olowe OM, Asemoloye MD (2022) Phytoremediation technology and food security impacts of heavy metal contaminated soils: a review of literature. Chemosphere 288:132555

    Article  CAS  Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E, Dantán-González E, Castrejón-Godínez ML (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. Biodegrad-Life Sci 10:251–287

    Google Scholar 

  • Ossai IC, Ahmed A, Hassan A, Hamid FS (2020) Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov 17:100526

    Article  CAS  Google Scholar 

  • Ozdemir S, Turkan Z, Kilinc E, Bayat R, Sen F (2023) The removal of heavy metal pollution from wastewaters using thermophilic B. cereus SO-16 bacteria. Chemosphere 311:136986

    Article  CAS  Google Scholar 

  • Pailan S, Gupta D, Apte S, Krishnamurthi S, Saha P (2015) Degradation of organophosphate insecticide by a novel Bacillus aryabhattai strain SanPS1, isolated from soil of agricultural field in Burdwan, West Bengal, India. Int Biodeterior Biodegrad 103:191–195

    Article  CAS  Google Scholar 

  • Palanivel TM, Pracejus B, Novo LA (2023) Bioremediation of copper using indigenous fungi Aspergillus species isolated from an abandoned copper mine soil. Chemosphere 314:137688

    Article  CAS  Google Scholar 

  • Pan LW, Siegrist RL, Crimi M (2012) Effects of in situ remediation using oxidants or surfactants on subsurface organic matter and sorption of trichloroethene. Groundwater Monitor Remediat 32(2):96–105

    Article  CAS  Google Scholar 

  • Paria K, Pyne S, Chakraborty SK (2022) Optimization of heavy metal (lead) remedial activities of fungi Aspergillus penicillioides (F12) through extra cellular polymeric substances. Chemosphere 286:131874

    Article  CAS  Google Scholar 

  • Patel AK, Singhania RR, Albarico FPJB, Pandey A, Chen C-W, Dong C-D (2022) Organic wastes bioremediation and its changing prospects. Sci Total Environ 824:153889

    Article  CAS  Google Scholar 

  • Pepper IL, Gentry TJ, Newby DT, Roane TM, Josephson KL (2002) The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. Environ Health Perspect 110(suppl 6):943–946

    Article  CAS  Google Scholar 

  • Phulpoto IA, Yu Z, Qazi MA, Ndayisenga F, Yang J (2022) A comprehensive study on microbial-surfactants from bioproduction scale-up toward electrokinetics remediation of environmental pollutants: Challenges and perspectives. Chemosphere 311:136979

  • Piergiacomo F, Brusetti L, Pagani L (2023) Understanding the interplay between antimicrobial resistance, microplastics and xenobiotic contaminants: a leap towards one health? Int J Environ Res Public Health 20(1):42

    Article  Google Scholar 

  • Pinto A, Serrano C, Pires T, Mestrinho E, Dias L, Teixeira DM, Caldeira A (2012) Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci Total Environ 435:402–410

    Article  Google Scholar 

  • Polti MA, Aparicio JD, Benimeli CS, Amoroso MJ (2014) Simultaneous bioremediation of Cr (VI) and lindane in soil by actinobacteria. Int Biodeterior Biodegrad 88:48–55

    Article  CAS  Google Scholar 

  • Poo K-M, Son E-B, Chang J-S, Ren X, Choi Y-J, Chae K-J (2018) Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution. J Environ Manage 206:364–372

    Article  CAS  Google Scholar 

  • Puyen ZM, Villagrasa E, Maldonado J, Diestra E, Esteve I, Solé A (2012) Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008. Bioresource technology 126:233-237.

  • Qian X, Fang C, Huang M, Achal V (2017) Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil. Journal of Cleaner Production 164:198-208.

  • Quiton KG, Doma B Jr, Futalan CM, Wan M-W (2018) Removal of chromium (VI) and zinc (II) from aqueous solution using kaolin-supported bacterial biofilms of Gram-negative E. coli and Gram-positive Staphylococcus epidermidis. Sustain Environ Res 28(5):206–213

    Article  CAS  Google Scholar 

  • Rahman Z (2020) An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. J Hazard Mater 396:122682

    Article  CAS  Google Scholar 

  • Raja B-L, Ait-El-Mokhtar M, Mohamed A, Abderrahim B, Youssef AR, Anas R, Khalid O, Said W, Abdelilah M (2021) Green compost combined with mycorrhizae and rhizobia: a strategy for improving alfalfa growth and yield under field conditions. Gesunde Pflanzen 73(2):193–207

    Article  Google Scholar 

  • Rajendran S, Priya T, Khoo KS, Hoang TK, Ng H-S, Munawaroh HSH, Karaman C, Orooji Y, Show PL (2022) A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere 287:132369

    Article  CAS  Google Scholar 

  • Rajmohan K, Chandrasekaran R, Varjani S (2020) A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian J Microbiol 60(2):125–138

    Article  CAS  Google Scholar 

  • Raklami A, Oufdou K, Tahiri A-I, Mateos-Naranjo E, Navarro-Torre S, Rodríguez-Llorente ID, Meddich A, Redondo-Gómez S, Pajuelo E (2019) Safe cultivation of Medicago sativa in metal-polluted soils from semi-arid regions assisted by heat-and metallo-resistant PGPR. Microorganisms 7(7):212

    Article  CAS  Google Scholar 

  • Raklami A, Oubane M, Meddich A, Hafidi M, Marschner B, Heinze S, Oufdou K (2021) Phytotoxicity and genotoxicity as a new approach to assess heavy metals effect on Medicago sativa L.: role of metallo-resistant rhizobacteria. Environ Technol Innova 24:101833

    Article  CAS  Google Scholar 

  • Ramrakhiani L, Majumder R, Khowala S (2011) Removal of hexavalent chromium by heat inactivated fungal biomass of Termitomyces clypeatus: surface characterization and mechanism of biosorption. Chem Eng J 171(3):1060–1068

    Article  CAS  Google Scholar 

  • Rani S, Sud D (2015) Effect of temperature on adsorption-desorption behaviour of triazophos in Indian soils. Plant Soil Environ 61(1):36–42

    Article  Google Scholar 

  • Rani A, Souche Y, Goel R (2013) Comparative in situ remediation potential of Pseudomonas putida 710A and Commamonas aquatica 710B using plant (Vigna radiata (L.) wilczek) assay. Ann Microbiol 63(3):923–928

    Article  CAS  Google Scholar 

  • Rasheed T, Bilal M, Nabeel F, Iqbal HM, Li C, Zhou Y (2018) Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Sci Total Environ 615:476–485

    Article  CAS  Google Scholar 

  • Richards R, Mullins B (2013) Using microalgae for combined lipid production and heavy metal removal from leachate. Ecol Model 249:59–67

    Article  CAS  Google Scholar 

  • Rodriguez-Iruretagoiena A, Rementeria A, Zaldibar B, de Vallejuelo SF-O, Gredilla A, Arana G, de Diego A (2016) Is there a direct relationship between stress biomarkers in oysters and the amount of metals in the sediments where they inhabit? Mar Pollut Bull 111(1–2):95–105

    Article  CAS  Google Scholar 

  • Rugnini L, Costa G, Congestri R, Antonaroli S, Di Toppi LS, Bruno L (2018) Phosphorus and metal removal combined with lipid production by the green microalga Desmodesmus sp.: an integrated approach. Plant Physiol Biochem 125:45–51

    Article  CAS  Google Scholar 

  • Samuel MS, Ravikumar M, John JA, Selvarajan E, Patel H, Chander PS, Soundarya J, Vuppala S, Balaji R, Chandrasekar N (2022) A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications. Catalysts 12(5):459

    Article  CAS  Google Scholar 

  • Saravanan A, Kumar PS, Jeevanantham S, Karishma S, Tajsabreen B, Yaashikaa P, Reshma B (2021) Effective water/wastewater treatment methodologies for toxic pollutants removal: processes and applications towards sustainable development. Chemosphere 280:130595

    Article  CAS  Google Scholar 

  • Sargın İ, Arslan G, Kaya M (2016) Efficiency of chitosan–algal biomass composite microbeads at heavy metal removal. React Funct Polym 98:38–47

    Article  Google Scholar 

  • Sharma A, Shukla A, Attri K, Kumar M, Kumar P, Suttee A, Singh G, Barnwal RP, Singla N (2020) Global trends in pesticides: a looming threat and viable alternatives. Ecotoxicol Environ Saf 201:110812

    Article  CAS  Google Scholar 

  • Sharma A, Mistry V, Kumar V, Tiwari P (2022) Production of effective Phyto-antimicrobials via metabolic engineering strategies. Current Topics in Medicinal Chemistry 22(13):1068-1092

  • Seh-Bardan BJ, Othman R, Wahid SA, Husin A, Sadegh-Zadeh F (2012) Bioleaching of heavy metals from mine tailings by Aspergillus fumigatus. Bioremediation Journal 16(2):57-65.

  • Siddiquee S, Rovina K, Azad SA, Naher L, Suryani S, Chaikaew P (2015) Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microb Biochem Technol 7(6):384–395

    Article  CAS  Google Scholar 

  • Silambarasan S, Abraham J (2013) Ecofriendly method for bioremediation of chlorpyrifos from agricultural soil by novel fungus Aspergillus terreus JAS1. Water Air Soil Pollut 224(1):1–11

    Article  CAS  Google Scholar 

  • Simon Sola MZ, Pérez Visñuk D, Benimeli CS, Polti MA, Alvarez A (2017) Cr (VI) and lindane removal by Streptomyces M7 is improved by maize root exudates. J Basic Microbiol 57(12):1037–1044

    Article  CAS  Google Scholar 

  • Singh NS, Sharma R, Parween T, Patanjali P (2018) Pesticide contamination and human health risk factor. Modern age environmental problems and their remediation. Springer, Cham, pp 49–68

    Chapter  Google Scholar 

  • Singh N, Goutam U, Ghosh M (2022) Deep-marine bacteria—the Frontier alternative for heavy metals bioremediation. Development in wastewater treatment research and processes. Elsevier, Amsterdam, pp 429–450

    Chapter  Google Scholar 

  • Singh AD, Khanna K, Kour J, Dhiman S, Bhardwaj T, Devi K, Sharma N, Kumar P, Kapoor N, Sharma P (2023) Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere 319:137917

    Article  CAS  Google Scholar 

  • Sisay A (2019) Contamination of heavy metals, source, effects on leaving things and different remediation techniques in soil: A. Am J Nanosci 5:67–75

    Article  Google Scholar 

  • Soares PRS, Birolli WG, Ferreira IM, Porto ALM (2021) Biodegradation pathway of the organophosphate pesticides chlorpyrifos, methyl parathion and profenofos by the marine-derived fungus Aspergillus sydowii CBMAI 935 and its potential for methylation reactions of phenolic compounds. Mar Pollut Bull 166:112185

    Article  CAS  Google Scholar 

  • Solá MZS, Lovaisa N, Costa JSD, Benimeli CS, Polti MA, Alvarez A (2019) Multi-resistant plant growth-promoting actinobacteria and plant root exudates influence Cr (VI) and lindane dissipation. Chemosphere 222:679–687

    Article  Google Scholar 

  • Song B, Zeng G, Gong J, Liang J, Xu P, Liu Z, Zhang Y, Zhang C, Cheng M, Liu Y (2017a) Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ Int 105:43–55

    Article  CAS  Google Scholar 

  • Song B, Zeng G, Gong J, Zhang P, Deng J, Deng C, Yan J, Xu P, Lai C, Zhang C (2017b) Effect of multi-walled carbon nanotubes on phytotoxicity of sediments contaminated by phenanthrene and cadmium. Chemosphere 172:449–458

    Article  CAS  Google Scholar 

  • Spain O, Plöhn M, Funk C (2021) The cell wall of green microalgae and its role in heavy metal removal. Physiol Plant 173(2):526–535

    Article  CAS  Google Scholar 

  • Sun Q, Li Y, Shi L, Hussain R, Mehmood K, Tang Z, Zhang H (2022) Heavy metals induced mitochondrial dysfunction in animals: molecular mechanism of toxicity. Toxicology 469:153136

    Article  CAS  Google Scholar 

  • Tahir MB, Kiran H, Iqbal T (2019) The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: a review. Environ Sci Pollut Res 26(11):10515–10528

    Article  CAS  Google Scholar 

  • Talukdar D, Jasrotia T, Sharma R, Jaglan S, Kumar R, Vats R, Kumar R, Mahnashi MH, Umar A (2020) Evaluation of novel indigenous fungal consortium for enhanced bioremediation of heavy metals from contaminated sites. Environ Technol Innov 20:101050

    Article  CAS  Google Scholar 

  • Teng Y, Wang X, Zhu Y, Chen W, Christie P, Li Z, Luo Y (2017) Biodegradation of pentachloronitrobenzene by Cupriavidus sp. YNS-85 and its potential for remediation of contaminated soils. Environ Sci Pollut Res 24(10):9538–9547

    Article  CAS  Google Scholar 

  • Teng Z, Shao W, Zhang K, Huo Y, Li M (2019) Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization. J Environ Manage 231:189–197

    Article  CAS  Google Scholar 

  • Tian H, Lu C, Pan S, Yang J, Miao R, Ren W, Yu Q, Fu B, Jin F-F, Lu Y (2018) Optimizing resource use efficiencies in the food–energy–water nexus for sustainable agriculture: From conceptual model to decision support system. Curr Opin Environ Sustain 33:104–113

    Article  Google Scholar 

  • Tripathi S, Purchase D, Al-Rashed S, Chandra R (2022) Microbial community dynamics and their relationships with organic and metal pollutants of sugarcane molasses-based distillery wastewater sludge. Environ Pollut 292:118267

    Article  CAS  Google Scholar 

  • Tudi M, Daniel Ruan H, Wang L, Lyu J, Sadler R, Connell D, Chu C, Phung DT (2021) Agriculture development, pesticide application and its impact on the environment. Int J Environ Res Public Health 18(3):1112

    Article  CAS  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • Van Eerd LL, Hoagland RE, Zablotowicz RM, Hall JC (2003) Pesticide metabolism in plants and microorganisms. Weed Sci 51(4):472–495

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Sagar R (2014) Pesticide relevance and their microbial degradation: a-state-of-art. Rev Enviro Sci Bio/technol 13(4):429–466

    Article  Google Scholar 

  • Vijayan P N, Abdulhameed S (2020) Cyanobacterial degradation of organophosphorus pesticides. In: Zakaria, Z., Boopathy, R., Dib, J. (eds) Valorisation of Agro-industrial Residues – Volume I: Biological Approaches. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-39137-9_12

  • Wang J, Taylor A, Xu C, Schlenk D, Gan J (2018a) Evaluation of different methods for assessing bioavailability of DDT residues during soil remediation. Environ Pollut 238:462–470

    Article  CAS  Google Scholar 

  • Wang Y, Zhang B, Chen N, Wang C, Feng S, Xu H (2018b) Combined bioremediation of soil co-contaminated with cadmium and endosulfan by Pleurotus eryngii and Coprinus comatus. J Soils Sediments 18(6):2136–2147

    Article  CAS  Google Scholar 

  • Wang X, Sial MU, Bashir MA, Bilal M, Raza Q-U-A, Ali Raza HM, Rehim A, Geng Y (2022) Pesticides xenobiotics in soil ecosystem and their remediation approaches. Sustainability 14(6):3353

    Article  CAS  Google Scholar 

  • Waryah CB, Moses C, Arooj M, Blancafort P (2018) Zinc fingers, TALEs, and CRISPR systems: a comparison of tools for epigenome editing. Epigenome editing In: Jeltsch, A., Rots, M. (eds) Epigenome Editing. Methods in Molecular Biology, vol 1767. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7774-1_2.

  • Wcisło E, Bronder J, Bubak A, Rodríguez-Valdés E, Gallego JLR (2016) Human health risk assessment in restoring safe and productive use of abandoned contaminated sites. Environ Int 94:436–448

    Article  Google Scholar 

  • Wołejko E, Jabłońska-Trypuć A, Wydro U, Butarewicz A, Łozowicka B (2020) Soil biological activity as an indicator of soil pollution with pesticides–a review. Appl Soil Ecol 147:103356

    Article  Google Scholar 

  • Xia L, Tan J, Huang R, Zhang Z, Zhou K, Hu Y, Song S, Xu L, Farías ME, Sánchez RMT (2023) Enhanced Cd (II) biomineralization induced by microalgae after cultivating modification in high-phosphorus culture. J Hazard Mater 443:130243

    Article  CAS  Google Scholar 

  • Xiao P, Mori T, Kamei I, Kiyota H, Takagi K, Kondo R (2011) Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white rot fungi of the genus Phlebia. Chemosphere 85(2):218–224

    Article  CAS  Google Scholar 

  • Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang P, Gao X, Li F, Li H, Yu H (2018) Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front Microbiol 9:2885

    Article  Google Scholar 

  • Yadav AN (2021) Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 9(1):i–v

    Google Scholar 

  • Yagnik SM, Arya PS, Raval VH (2023) Microbial enzymes in bioremediation. Biotechnology of microbial enzymes. Elsevier, Amsterdam, pp 685–708

    Chapter  Google Scholar 

  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359

    Article  Google Scholar 

  • Yang C, Yu H, Jiang H, Qiao C, Liu R (2016) An engineered microorganism can simultaneously detoxify cadmium, chlorpyrifos, and γ-hexachlorocyclohexane. J Basic Microbiol 56(7):820–826

    Article  CAS  Google Scholar 

  • Yin K, Lv M, Wang Q, Wu Y, Liao C, Zhang W, Chen L (2016) Simultaneous bioremediation and biodetection of mercury ion through surface display of carboxylesterase E2 from Pseudomonas aeruginosa PA1. Water research 103:383–390

  • Zapana-Huarache S, Romero-Sánchez C, Gonza A, Torres-Huaco FD, Rivera A (2020) Chromium (VI) bioremediation potential of filamentous fungi isolated from Peruvian tannery industry effluents. Braz J Microbiol 51(1):271–278

    Article  CAS  Google Scholar 

  • Zhang C, Tao Y, Li S, Tian J, Ke T, Wei S, Wang P, Chen L (2019) Simultaneous degradation of trichlorfon and removal of Cd (II) by Aspergillus sydowii strain PA F-2. Environ Sci Pollut Res 26(26):26844–26854

    Article  CAS  Google Scholar 

  • Zhang H, Yuan X, Xiong T, Wang H, Jiang L (2020a) Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chem Eng J 398:125657

    Article  CAS  Google Scholar 

  • Zhao J, Chi Y, Xu Y, Jia D, Yao K (2016) Co-metabolic degradation of β-cypermethrin and 3-phenoxybenzoic acid by co-culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4. PLoS ONE 11(11):e0166796

    Article  Google Scholar 

  • Zhao Q, Li X, Wang Y, Cheng Y, Fan W (2023) Long-term bioremediation of cadmium contaminated sediment using sulfate reducing bacteria: Perspective on different depths of the sediment profile. Chem Eng J 451:138697

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Centre of Research for Development, University of Kashmir for offering facilities to make this investigation possible. The author Shahnawaz Hassan acknowledges the fellowship received from University Grants Commission for his Ph.D. work (beneficiary Code BININ01669533). Vineet Kumar gratefully acknowledges the Science and Engineering Research Board (SERB), Government of India for providing National Postdoctoral fellowship (F.No.PDF/2022/000038).

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Sabreena: conceptualization, visualization, software, writing—original draft preparation; SH: conceptualization, visualization, software, writing—original draft preparation; VK: writing—reviewing and editing; SAB: writing—reviewing and editing; BAG: conceptualization, supervision; resources; writing—reviewing and editing.

Corresponding authors

Correspondence to Sartaj Ahmad Bhat or Bashir Ahmad Ganai.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabreena, Hassan, S., Kumar, V. et al. Unraveling Microbes as Potential Proxies for Remediation of Heavy Metal and Pesticide Contamination: A State-of-the Art Review. Int J Environ Res 17, 55 (2023). https://doi.org/10.1007/s41742-023-00544-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41742-023-00544-8

Keywords

Navigation