Advertisement

Heavy Metals in Sediments and Fish in the Caribbean Coast of Colombia: Assessing the Environmental Risk

  • Roberto Fernandez-MaestreEmail author
  • Boris Johnson-Restrepo
  • Jesus Olivero-Verbel
Research paper

Abstract

Heavy metals have accumulated in fish and marine sediments, especially near large cities or ports. To monitor heavy metal contamination along the Caribbean coast of Colombia, we analyzed sediments and fish by atomic absorption spectrometry to establish a baseline. Fish species were Brown chub (Kyphosus Sp.), Almaco jack (Seriola rivoliana) Grey snapper (Lutjanus cf. griseus), Mullet (Mugil incilis), and catfish (Cathorops mapale, Bagre marinus). Samples were lyophilized and microwave digested. Metal concentrations in fish dorsal muscle (dry weight) were ND-5.3 (Cd), ND-500 (Ni), 10–110 (Pb) and 330–3900 μg/kg (Zn) and in sediments 0.01–0.42 (Cd), 8.4–25 (Ni), 0.4–7.0 (Pb) and 9.3–199 (Zn) mg/kg (Zn > Ni > Pb > Cd). Metal concentrations were low compared with those reported in other regions and the maximum set by international monitoring organizations and coincided with the degree of industrialization and frequency of navigation activities. Relatively high metal concentrations were found in the main waterway of Colombia, the Magdalena River, which has become the sewage of the country’s 80% population. Although the contamination risk by fish consumption from the Colombian Caribbean Sea was low in the species studied, the cumulative risk produced by various pollutants from fish, other foods, air and water might exceed acceptable levels of exposure to hazardous chemicals.

Keywords

Cadmium Fish Sediment Heavy metals Caribbean Sea Colombia 

Notes

Acknowledgements

We thank the Universidad de Cartagena for funding, Dr. Gabriel Navas for the classification and diet of fish, students Freddy Vergara, Sofia Pareja, Karen Mejia, and Dr. Jorge Ropero, PhD, and Gamaliel Mejia, MSc, for sampling, data collection, and analysis and processing of samples.

Supplementary material

41742_2018_91_MOESM1_ESM.docx (2.1 mb)
ESM_1: Parameters of the analysis by atomic absorption, limits of detection and quantification in fish, reproducibility of fish muscle analysis and repeatability, average limits of detection and quantification for fish and sediment analysis, regression coefficient, characteristic concentration and regression equations of calibration curves, absorbances, parameters of the furnace temperature programs, size, weight, and classification of fish, and average per area, detectability and quantifiability in fish and sediment by station, photos of fish collected and graphic comparison of metal concentrations and BSAF. Supplementary material 1 (DOCX 2162 kb)

References

  1. Abdallah MAM (2008) Trace element levels in some commercially valuable fish species from coastal waters of Mediterranean Sea. Egypt J Mar Syst 73:114–122CrossRefGoogle Scholar
  2. Abu-Hilal AH, Ismail NS (2008) Heavy metals in eleven common species of fish from the Gulf of Aqaba, Red Sea. Jordan J Biol Sci 1(1):13–18Google Scholar
  3. Ahmed NS, El-Deek MS, Emara HI (1996) Heavy metals in the muscle and bone of some fish species from the Red Sea. J KAU Mar Sci 7:25–31CrossRefGoogle Scholar
  4. Al-Busaidi M, Yesudhason P, Al-Mughairi S, Al-Rahbi WAK, Al-Harthy KS, Al-Mazrooei NA et al (2011) Toxic metals in commercial marine fish in Oman with reference to national and international standards. Chemosphere 85(1):67–73CrossRefGoogle Scholar
  5. Ali AA, Elazein EM, Alian MA (2011) Investigation of heavy metals pollution in water, sediment and fish at Red Sea—Jeddah Coast—KSA at two different locations. J Appl Environ Biol Sci 1(12):630–637Google Scholar
  6. Alonso D, Pineda P, Olivero J, Gonzalez H, Campos N (2000) Mercury levels in muscle of two fish species and sediments from the Cartagena Bay and the Cienaga Grande de Santa Marta, Colombia. Environ Pollut 109:157–163CrossRefGoogle Scholar
  7. Alonso-Hernández CM, Conte F, Misic C, Barsanti M, Gómez-Batista M, Díaz-Asencio M et al (2011) An overview of the Gulf of Batabano (Cuba): environmental features as revealed by surface sediment characterisation. Cont Shelf Res 31:749–775CrossRefGoogle Scholar
  8. Amundsen PA, Staldvik FJ, Lukin A, Kashulin N, Popova O, Reshetnikov Y (1997) Heavy metals contamination in freshwater fish from the border region between Norway and Russia. Sci Total Environ 201:211–224CrossRefGoogle Scholar
  9. Bearhop S, Colin EA, Waldron S, Fuller RA, MacLeod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012CrossRefGoogle Scholar
  10. Behbahani M, Najafi M, Amini MM, Sadeghi O, Bagheri A, Salarian M (2013) Dithizone-modified nanoporous fructose as a novel sorbent for solid-phase extraction of ultra-trace levels of heavy metals. Microchim Acta 180:911–920CrossRefGoogle Scholar
  11. Bernard D (1995) Metals in sediments from two lagoons off Guadelupe, West Indies. Mar Pollut Bull 30:619–621CrossRefGoogle Scholar
  12. Buljac M, Bogner D, Bralić M, Periš N, Buzuk M, Brinić S, Vladislavić N (2014) Cadmium and lead distribution in marine soil sediments, terrestrial soil, terrestrial rock, and atmospheric particulate matter around split, Croatia. Anal Lett 47(11):1952–1964CrossRefGoogle Scholar
  13. Bustamante P, Bocher P, Cherel Y, Miramand P, Caurant F (2003) Distribution of trace elements in the tissues of benthic and pelagic fish from the Kerguelen Islands. Sci Total Environ 313:25–39CrossRefGoogle Scholar
  14. Campos NH (1990) La contaminacion por metales pesados en la Cienaga Grande de Santa Marta, Caribe Colombiano. Caldasia 16:231–244Google Scholar
  15. Campos NH (1992) Concentraciones de metales traza en Ariopsis bonillai (Pisces: Siluriformes) de Santa Marta. Caribe colombiano. Rev Biol Trop. 40:179–183Google Scholar
  16. Campos NH, Gallo MC (1997) Contenidos de Cd, Cu y Zn en Rhizophora mangle y Avicennia germinans de la Cienaga Grande de Santa Marta y la bahia de Chengue, Costa Caribe Colombiana. Rev Acad Colomb Cienc 21:73–90Google Scholar
  17. CFR Code of Federal Regulations (1998) Title 40, Chapter 1, Part 180, Subpart A, §180.3, July 1, 1998. [http://www.ecfr.gov/cgi-bin/text-idx?node=se40.24.180_13&rgn=div8]. Accessed Jul 5/2017
  18. Chakraborty P, RaghunadhBabu PV, Sarma VV (2012) A study of lead and cadmium speciation in some estuarine and coastal sediments. Chem Geol 294:217–225CrossRefGoogle Scholar
  19. Chen Y, Chen M (2001) Heavy metal concentrations in nine species of fishes caught in coastal waters off Ann-Ping, S. W. Taiwan. J Food Drug Anal 9(2):107–114Google Scholar
  20. EC European Community (2005) Commission Regulation No 78/2005 (pp. L16/43–L16/45). Official Journal of the European Union (20.1.2005). [http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32005R0078&from=EN#ntr2-L_2005016EN.01004301-E0002]. Accessed Jul 5, 2017
  21. Eisler R (1993) Zinc Hazards to fish, Wildlife and Invertebrates: a synoptic review. Contaminant Hazard Reviews Report 26; Biological Report 10. U.S. Department of the Interior, Fish and Wildlife Service, Laurel, MDGoogle Scholar
  22. El-Moselhy KM, Othman AI, El-Azem HA, El-Metwally MEA (2014) Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egypt J Basic Appl Sci 1(2):97–105CrossRefGoogle Scholar
  23. Elnabris KJ, Muzyed SK, El-Ashgar NM (2013) Heavy metal concentrations in some commercially important fishes and their contribution to heavy metals exposure in Palestinian people of Gaza Strip (Palestine). J Assoc Arab Univ Basic Appl Sci 13(1):44–51Google Scholar
  24. Emara HI, El-Deek MS, Ahmed NS (1993) A comparative study on the levels of trace metals in some Mediterranean and Red Sea fishes. Chem Ecol 8:119–127CrossRefGoogle Scholar
  25. EPA (1986) Guidance for health risk from exposure to chemical mixtures. Fed Reg 51:34014Google Scholar
  26. EPA (1989) Waste and Cleanup Risk Assessment. Human Health: Toxicity (Hazard Identification and Dose Response). Risk Assessment Guidance for Superfund (RAGS) Volume I. Part A. Chapter 8: Risk Characterization. [http://www.epa.gov/oswer/riskassessment/ragsa/pdf/rags_ch8.pdf]. Accessed Jul 8, 2017
  27. EPA (1998) Integrated Risk Information System (IRIS). National Center for Environmental Assessment, Cincinnati, OH, USA. [http://www.epa.gov/iris]. Accessed Jul 5, 2017
  28. EPA (2007) Method 7010: graphite furnace atomic absorption spectrophotometry. [http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/7010.pdf]. Accessed Jul 5, 2017
  29. EPA (2007a) Method 3051A, Microwave assisted acid digestion of sediments, sludges, soils, and oils Revision 1. [http://www.epa.gov/solidwaste/hazard/testmethods/sw846/pdfs/3051a.pdf]. Accessed Jul 5, 2017
  30. EPA (2011a) Inorganic Analytes. [http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/chap3.pdf]. Accessed Jul 5, 2017
  31. EPA (2011b) method 7000B: Flame Atomic Absorption Spectrophotometry. [http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/7000b.pdf]. Accessed Jul 5/2017
  32. EPA (2013) Reference dose (RfD): Description and use in health risk assessments, Background Document 1A, Integrated risk information system (IRIS); Washington, DC, 15 Jul 2013; [http://www.epa.gov/iris/rfd.htm]. Accessed Jul 5, 2017
  33. Espinosa LF, Parra JP, Villamil C (2011) Determinacion del contenido de metales pesados en las fracciones geoquimicas del sedimento superficial asociado a los manglares de la Cienaga Grande de Santa Marta, Colombia. Bol Invest Mar Cost 40:7–23Google Scholar
  34. FAO-WHO (1972) Evaluation of certain food additives and the contaminants mercury, lead and cadmium. FAO Nutrition Meetings Report Series No. 51. WHO Technical Report, Series No. 505. Geneva April 4–12, 1972. [http://whqlibdoc.who.int/trs/WHO_TRS_505.pdf]. Accessed Jul 5/2017
  35. Farkas A, Salanki J, Pecziar A (2003) Age and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Res 37:959–964CrossRefGoogle Scholar
  36. Fernandez A, Singh A, Jaffe R (2007) A literature review on trace metals and organic compounds of anthropogenic origin in the Wider Caribbean Region. Mar Pollut Bull. 54:1681–1691CrossRefGoogle Scholar
  37. Figueira E, Lima A, Branco D, Quintino V, Rodrigues AM, Freitas R (2011) Health concerns of consuming cockles (Cerastoderma edule L.) from a low contaminated coastal system. Environ Int 37:965–972CrossRefGoogle Scholar
  38. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, Cambridge, p 333Google Scholar
  39. Franco-Barrio AJ, Leon-Luna IM (2012) Bioacumulacion de metales traza en Mugil incilis (Hancock, 1830); una herramienta util para el biomonitoreo de la contaminacion metalica en el litoral costero del departamento del Atlantico-Colombia. Costas 1:98–106Google Scholar
  40. Fuentes MV, de Astudillo LR, Diaz A, Martinez AG (2010) Heavy metal distribution in superficial sedimenta ta Saco, Gulf of Cariaco, Sucre, Venezuela. Int J Trop Biol Conserv 58:129–140Google Scholar
  41. Garay J (ed) (2004) Programa Nacional de Investigacion, Evalucion, Prevencion, Reduccion y Control de Fuentes Terrestres y Marinas de Contaminacion al Mar, PNICM. INVEMAR (Instituto de Investigaciones Marinas y Costeras de Colombia), Santa MartaGoogle Scholar
  42. Garcia EM, Cruz-Motta JJ, Farina O, Bastidas C (2008) Anthropogenic influences on heavy metals across marine habitats in the western coast of Venezuela. Cont Shelf Res 28:2757–2766CrossRefGoogle Scholar
  43. Garcia EM, Bastidas C, Cruz-Motta JJ, Farina O (2011) Metals in waters and sediments of the Morrocoy National Park, Venezuela: increased contamination levels of cadmium over time. Water Air Soil Poll. 214:609–621CrossRefGoogle Scholar
  44. GESAMP (1985) IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP Joint group of experts on the scientific aspects of marine pollution. Review of potentially harmful substances—Cadmium, lead and tin. Rep. Stud, GESAMP (22):116. UNEP Reg Seas Rep Stud 56:85Google Scholar
  45. GESAMP (1988) IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution. 1988. Review of potentially harmful substances—Arsenic, mercury and selenium. Rep. Stud, GESAMP (28):172. UNEP Reg. Seas Rep. Stud. (92):172Google Scholar
  46. Gil F, Hernandez AF, Marquez C, Femia P, Olmedo P, Lopez-Guarnido O, Pla A (2011) Biomonitorization of cadmium, chromium, manganese, nickel and lead in whole blood, urine, axillary hair and saliva in an occupationally exposed population. Sci Total Environ 409:1172–1178CrossRefGoogle Scholar
  47. Gonzalez H (1991) Heavy metal surveys in sediments of five important Cuban Bays. Biogeochemistry 14:113–128CrossRefGoogle Scholar
  48. Gonzalez H, Ramirez M (1995) The effect of nickel mining and metallurgical activities on the distribution of heavy metals in Levisa Bay Cuba. J Geochem Explor 52:183–192CrossRefGoogle Scholar
  49. Gonzalez H, Torres I (1990) Heavy metals in sediments around a sewage outfall at Havana Cuba. Mar Pollut Bull 21:253–255CrossRefGoogle Scholar
  50. Gonzalez H, Pomares M, Ramirez M, Torres I (1999) Heavy metals in organisms and sediments from the discharge zone of the submarine sewage outfall of Havana City, Cuba. Mar Pollut Bull 38:1048–1051CrossRefGoogle Scholar
  51. Gorur FK, Keser R, Akcay N, Dizman S (2012) Radioactivity and heavy metal concentrations of some commercial fish species consumed in the Black Sea Region of Turkey. Chemosphere 87:356–361CrossRefGoogle Scholar
  52. Guzman HM, Jimenez CE (1992) Contamination of coral reefs by heavy metals along the Caribbean Coast of Central America (Costa Rica and Panama). Mar Pollut Bull 24:554–561CrossRefGoogle Scholar
  53. Guzman D, Ruiz JF, Cadena M (2014) Regionalizacion de Colombia segun la estacionalidad de la precipitacion media mensual, a traves analisis de componentes principales (ACP) IDEAM. [http://www.ideam.gov.co/documents/21021/21789/Regionalizaci%C3%B3n+de+la+lluvia+en+Colombia.pdf/92287f96-840f-4408-8e76-98b668b83664]. Accessed April 7, 2017
  54. Hall L, Chang-Yen I (1986) Metals in sediments off Trinidad, West Indies. Mar Pollut Bull 17:274–276CrossRefGoogle Scholar
  55. Hanna RGM (1989) Levels of heavy metals in some Red Sea fish before Hot Brine pools’ mining. Mar Pollut Bull 20:631–635CrossRefGoogle Scholar
  56. Hernandez JM, González H (1993) Metales pesados en la bahía de Manatí, Cuba. Bol Invest Mar Cost 22:60–68Google Scholar
  57. Hertler H, Boettner AR, Ramirez-Toro GI, Minnigh H, Spotila J, Kreeger D (2009) Spatial variability associated with shifting land use: water quality and sediment metals in La Parguera, Southwest Puerto Rico. Mar Pollut Bull 58:672–678CrossRefGoogle Scholar
  58. INVEMAR (2003) Manual de tecnicas Analiticas para la determinacion de parametros fisicoquimicos y contaminantes marinos (aguas, sedimentos y organismos). Garay-Tinoco, J, G Ramirez, J Betancourt. Santa Marta, ColombiaGoogle Scholar
  59. INVEMAR (2005) Informe Tecnico, Primer monitoreo de metales pesados en aguas, sedimentos y organismos de la Cienaga de Mallorquin. Departamento del Atlantico, From Franco, Leon, p 2012Google Scholar
  60. Jaffe R, Gardinali PR, Cai Y, Sudburry A, Fernandez A, Hay BJ (2003) Organic compounds and trace metals of anthropogenic origin in sediments from Montego Bay, Jamaica: assessment of sources and distribution pathways. Environ Pollut 123:291–299CrossRefGoogle Scholar
  61. Keith LH, Crummett W, Deegan J Jr, Libby RA, Taylor JK, Wentler G (1983) Principles of environmental analysis. Anal Chem 55:2210–2218CrossRefGoogle Scholar
  62. Khaled A (2004) Seasonal determination of some heavy metals in muscle tissues of Siganus rivulatus and Sargus sargus fish from El-Mex Bay and Eastern Harbor, Alexandria, Egypt. Egypt J Aquat Biol Fish 8(1):65–81Google Scholar
  63. Kim WI, Lee JH, Kunhikrishnan A, Kim DH (2013) Dietary exposure estimates of trace elements in selected agricultural products grown in greenhouse and associated health risks in Korean population. J Agric Chem Environ 2:35–41Google Scholar
  64. Kouadio I, Trefry JH (1987) Sediment trace metals contamination in Ivory Coast, West Africa. Water Air Soil Pollut 32:145–54. From FAO 1994Google Scholar
  65. Lafabrie C, Pergent G, Kantin Pergent-Martini C, Gonzalez JL (2007) Trace metals assessment in water, sediment, mussel and seagrass species—validation of the use of Posidonia oceanica as a metal biomonitor. Chemosphere 68:2033–2039CrossRefGoogle Scholar
  66. Long ER, MacDonald DD (1998) Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Hum Ecol Risk Assess. 4:1019–1039CrossRefGoogle Scholar
  67. Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine estuarine sediments. Environ Manage 19:81–97CrossRefGoogle Scholar
  68. MAFF, Ministry of Agriculture, Fisheries and Food (2000) Monitoring and surveillance of non-radioactive contaminants in the aquatic environment and activities regulating the disposal of wastes at sea, 1997. In: Aquatic Environment Monitoring Report No. 52. Center for Environment. J Fish Aquat Sci, Lowestoft, UKGoogle Scholar
  69. Manjarrez G, Castro I, Utria L (2008) Bio-accumulation cadmium in oysters of Cartagena bay. Rev Ing Univ Medel 7:11–20Google Scholar
  70. Marcovecchio J (2004) The use of Micropogonias furnieri and Mugil liza as bioindicators of heavy metals pollution in La Plata River Estuary, Argentina. Sci Total Environ 323:219–226CrossRefGoogle Scholar
  71. May TW, Wiedmeyer RH, Brumbaugh WG, Schmitt CJ (1997) The determination of metals in sediment pore waters and in 1N HCl-extracted sediments by ICP-MS. Atom Spectrosc 18:133–139Google Scholar
  72. Mazo-Gray V, Sbriz L, Alvarez M (1997) Determination of traces of heavy metals in estuarine waters of Barbacoas Bay, Colombia, by X-Ray fluorescence spectrometry. X-Ray Spectrom 26:57–64CrossRefGoogle Scholar
  73. Medeiros RJ, dos Santos LMG, Freire AS, Santelli RE, Braga AMCB, Krauss TM, Jacob SC (2012) Determination of inorganic trace elements in edible marine fish from Rio de Janeiro State. Brazil Food Control 23:535–541CrossRefGoogle Scholar
  74. Mendoza-Carranza M, Sepulveda-Lozada A, Dias-Ferreira C, Geissen V (2016) Distribution and bioconcentration of heavy metals in a tropical aquatic food web: a case study of a tropical estuarine lagoon in SE Mexico. Environ Pollut 210:155–165CrossRefGoogle Scholar
  75. Monsalve MV, Chiappe C (1987) Genetic effects of methylmercury in human chromosomes: I. A cytogenetic study of people exposed through eating contaminated fish. Environ Mol Mutagen 10:367–376CrossRefGoogle Scholar
  76. Ndiokwere CL (1984) An investigation of heavy metal content of sediments and algae from the River Niger and Nigerian Atlantic coastal water. Environ Pollut B 7:247–54. From FAO 1994Google Scholar
  77. Okoye BCO (1991) Heavy metals and organisms in the Lagos Lagoon. Int J Environ Stud 37:285–292. From FAO 1994Google Scholar
  78. Olivero-Verbel J, Johnson-Restrepo B, Mendoza-Marin C, Paz-Martinez R, Olivero-Verbel R (2004) Mercury in the aquatic environment of the village of Caimito at the Mojana region, north of Colombia. Water Air Soil Poll. 159:409–420CrossRefGoogle Scholar
  79. Olivero-Verbel J, Johnson-Restrepo B, Baldiris-Avila R, Güette-Fernandez J, Magallanes-Carreazo E, Vanegas-Ramirez L, Kunihiko N (2008) Human and crab exposure to mercury on the Caribbean coastal shoreline of Colombia: impact from an abandoned chlor-alkali plant. Environ Int 34:476–482CrossRefGoogle Scholar
  80. Olmedo P, Pla A, Hernandez AF, Lopez-Guarnido O, Rodrigo L, Gil F (2010) Validation of a method to quantify chromium, cadmium, manganese, nickel and lead in human whole blood, urine, saliva and hair samples by electrothermal atomic absorption spectrometry. Anal Chim Acta 9:60–67CrossRefGoogle Scholar
  81. Papagiannis I, Kagalou I, Leonardos J, Petridis D, Kalfakakou V (2004) Copper and zinc in four freshwater fish species from Lake Pamvotis (Greece). Environ Int 30:357–362CrossRefGoogle Scholar
  82. Parra JP, Espinosa LF (2007) Acumulación de Pb, Cd y Zn en sedimentos asociados a Rhizophora mangle, en el río Sevilla, Ciénaga Grande de Santa Marta, Colombia. Rev Acad Colomb Cienc. 31:347–354Google Scholar
  83. Persad D, Rajkumar W (1995) A synoptic view of the levels of dispersed/dissolved petroleum hydrocarbons (DDPH) and heavy metals in the south-eastern Caribbean Sea. Mar Poll Bull. 30:487–489CrossRefGoogle Scholar
  84. Saad MA, El-Rayis OA, El-Nady FE (1981) Occurrence of organic matter and heavy metals in sediments from the Mediterranean. In: Stuckey D, Hamza A (eds) Management of Industrial Wastewater in Developing Nations. Proceedings of the International Symposium, Alexandria, March 1981. Pergamon Press, Oxford, pp 127–39. From FAO 1994Google Scholar
  85. Saad MAH, El-Rayis OA, El-Nady F (1981) Occurrence of some trace metals in bottom deposits from Abu-Kir Bay, Egypt. J Etud Pollut CIESM 5:555–60. From FAO 1994Google Scholar
  86. Sbriz L, Aquino MR, Fowler SW, Sericano JL (1998) Levels of chlorinated hydrocarbons and trace metals in bivalves and nearshore sediments from the Dominican Republic. Mar Pollut Bull 36:971–979CrossRefGoogle Scholar
  87. Soylak M, Unsal YE, Kizil N, Aydin A (2010) Utilization of membrane filtration for preconcentration and determination of Cu(II) and Pb(II) in food, water and geological samples by atomic absorption Spectrometry. Food Chem Toxicol 48:517–521CrossRefGoogle Scholar
  88. Sultana R, Rao D (1998) Bioaccumulation Patterns of Zinc, Copper, Lead, and Cadmium in Grey Mullet, Mugil cephalus, from Harbour Waters of Visakhapatnam, India. Bull Environ Contam Toxicol 69:949–955CrossRefGoogle Scholar
  89. Szefer P, Ali AA, Ba-Haroon AA, Rajeh AA, Geldon J, Nabrzyski M (1999) Distribution and relationships ofselected trace metals in molluscs and associated sediments from the Gulf of Aden, Yemen. Environ Poll 106:299–314CrossRefGoogle Scholar
  90. Tchounwou PB, Abdelghani AA, Pramar YV, Heyer LR, Steward CM (1996) Assessment of potential health risks associated with ingesting heavy metals in fish collected from a hazardous-waste contaminated wetland in Louisiana, USA. Rev Environ Health 11:191–203CrossRefGoogle Scholar
  91. Tejeda-Benitez L, Flegal R, Odigie K, Olivero-Verbel J (2016) Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. Environ Pollut 212:238–250CrossRefGoogle Scholar
  92. Toledo J, Lemus M, Chung KS (2000) Cooper, cadmium and lead in the fish Cyprinodon dearborni, in the sediments and in the water of two lagoons in Venezuela. Rev Biol Trop 48:225–228Google Scholar
  93. Turkmen M, Ciminli C (2007) Determination of metals in fish and mussel species by inductively coupled plasma-atomic emission spectrometry. Food Chem 103:670–675CrossRefGoogle Scholar
  94. Turkmen A, Turkmen M, Tepe Y, Akyurt I (2005) Heavy metals in three commercially valuable fish species from İskenderun Bay, Northern East Mediterranean Sea, Turkey. Food Chem 91:167–172CrossRefGoogle Scholar
  95. Turkmen M, Turkmen A, Tepe Y, Ates A, Gokkus K (2008) Determination of metal contaminations in sea foods from Marmara, Aegean and Mediterranean seas: twelve fish species. Food Chem 108:794–800CrossRefGoogle Scholar
  96. Uluozlu OD, Tuzen M, Mendil D, Soylak M (2007) Trace metal content in nine species of fish from the Black and Aegean Seas, Turkey. Food Chem. 104:835–840CrossRefGoogle Scholar
  97. Vazquez F, Florville-Alejandre TR, Herrera M, de Leon D, Maria L (2008) Heavy metals in muscular tissue of the catfish, Ariopsis felis, in the southern Gulf of Mexico (2001-2004). Lat Am J Aquat Res. 36:223–233CrossRefGoogle Scholar
  98. Watling RJ, Watling HR (1982) Metal surveys in South African estuaries. 2. Knysna River. Water S Afr 8:36–44. From FAO 1994Google Scholar
  99. Wilkinson CF, Christoph GR, Julien E, Kelley JM, Kronenberg J, McCarthy J, Reiss R (2000) Assessing the risks of exposures to multiple chemicals with a common mechanism of toxicity: how to cumulate? Regul Toxicol Pharmacol 31:30–43CrossRefGoogle Scholar
  100. Yılmaz F, Ozdemir N, Demirak A, Tuna AL (2007) Heavy metal levels in two fish species Leuciscus cephalus and Lepomis gibbosus. Food Chem 100:830–835CrossRefGoogle Scholar

Copyright information

© University of Tehran 2018

Authors and Affiliations

  1. 1.Programa de Quimica, Campus de San PabloUniversidad de CartagenaCartagenaColombia
  2. 2.Facultad de Ciencias Farmaceuticas, Campus de ZaragocillaUniversidad de CartagenaCartagenaColombia

Personalised recommendations