Skip to main content
Log in

Dithizone-modified nanoporous fructose as a novel sorbent for solid-phase extraction of ultra-trace levels of heavy metals

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We are introducing nanoporous fructose (np-F) modified with dithizone as a new solid-phase for extraction of heavy metals ions including cadmium(II), copper(II), nickel(II) and lead(II). Effects of pH value, flow rates, type, concentration and volume of the eluent, breakthrough volume, and of other ions were studied. Under optimized conditions, the extraction efficiency is >97 %, and the limits of detection are 0.025, 0.15, 0.5 and 1.2 ng mL−1 for the ions of cadmium, copper, nickel, and lead, respectively, and the adsorption capacities for these ions are 101, 81, 74 and 178 mg g−1. The modified np-F sorbent was characterized by thermogravimetric analysis, differential thermal analysis, transmission electron microscopy, Fourier transform infrared spectrometry, X-ray diffraction, and nitrogen adsorption surface area (BET) measurements.

We are introducing nanoporous fructose (np-F) modified with dithizone as a new solid-phase for extraction of heavy metals ions including cadmium(II), copper(II), nickel(II) and lead(II). This SPE technique was successfully applied for separation, determination, and preconcentration of cadmium, copper, nickel and lead in biological, food and environmental water samples

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tabrizi HB (2007) Development of a cloud point extraction-spectrofluorimetric method for trace copper(II) determination in water samples and parenteral solutions. J Hazard Mater 139:260–264

    Article  CAS  Google Scholar 

  2. Gama EM, Lima AS, Lemos VA (2006) Preconcentration system for cadmium and lead determination in environmental samples using polyurethane foam/Me-BTANC. J Hazard Mater 136:757–762

    Article  CAS  Google Scholar 

  3. Maranho TA, Borges DLG, da Veiga MAMS, Curtius AJ (2005) Cloud point extraction for the determination of cadmium and lead in biological samples by graphite furnace atomic absorption spectrometry. Spectrochim Acta B 60:667–672

    Article  Google Scholar 

  4. Ferreira SLC, dos Santos WNL, Lemos VA (2001) On-line preconcentration system for nickel determination in food samples by flame atomic absorption spectrometry. Anal Chim Acta 445:145–151

    Article  CAS  Google Scholar 

  5. Mayer MG, Wilson DN (1998) Health and safety—the downward trend in lead levels. J Power Sources 73:17–22

    Article  CAS  Google Scholar 

  6. Duran C, Senturk HB, Elci L, Soylak M, Tufekci M (2009) Simultaneous preconcentration of Co(II), Ni(II), Cu(II), and Cd(II) from environmental samples on Amberlite XAD-2000 column and determination by FAAS. J Hazard Mater 162:292–299

    Article  CAS  Google Scholar 

  7. Komjarova I, Blust R (2006) Comparison of liquid–liquid extraction, solid-phase extraction and co-precipitation preconcentration methods for the determination of cadmium, copper, nickel, lead and zinc in seawater. Anal Chim Acta 576:221–228

    Article  CAS  Google Scholar 

  8. Wei GT, Yang Z, Jung Chen C (2003) Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions. Anal Chim Acta 488:183–192

    Article  CAS  Google Scholar 

  9. Matlock MM, Howerton BS, Atwood DA (2002) Chemical precipitation of lead from lead battery recycling plant wastewater. Ind Eng Chem Res 41:1579–1582

    Article  CAS  Google Scholar 

  10. Matlock MM, Howerton BS, Atwood DA (2002) Chemical precipitation of heavy metals from acid mine drainage. Water Res 36:4757–4764

    Article  CAS  Google Scholar 

  11. Maliou E, Malamis M (1992) Lead and cadmium removal by ion exchange. Water Sci Technol 25:133–138

    CAS  Google Scholar 

  12. Akcin N, Koyuncu L, Akcin G (2011) Determination of zinc, nickel and cadmium in natural water samples by flame atomic absorption spectrometry after preconcentration with ion exchange and flotation techniques. Rev Anal Chem 30:65–71

    Article  Google Scholar 

  13. Akieh MN, Lahtinen M, Väisänen A, Sillanpää M (2008) Preparation and characterization of sodium iron titanate ion exchanger and its application in heavy metal removal from waste waters. J Hazard Mater 152:640–647

    Article  CAS  Google Scholar 

  14. Camel V (2003) Solid phase extraction of trace elements. Spectrochim Acta B 58:1177–1233

    Article  Google Scholar 

  15. Hennion MC (1999) Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J Chromatogr A 856:3–54

    Article  CAS  Google Scholar 

  16. Ravelo-Pérez LM, Herrera-Herrera AV, Hernández-Borges J, Rodríguez-Delgado MÁ (2010) Carbon nanotubes: solid-phase extraction. J Chromatogr A 1217:2618–2641

    Article  Google Scholar 

  17. Hennion MC (2000) Graphitized carbons for solid-phase extraction. J Chromatogr A 885:73–95

    Article  CAS  Google Scholar 

  18. Vidal L, Riekkola ML, Canals A (2012) Ionic liquid-modified materials for solid-phase extraction and separation: a review. Anal Chim Acta 715:19–41

    Article  CAS  Google Scholar 

  19. Berrueta LA, Gallo B, Vicente F (1995) A review of solid phase extraction: basic principles and new developments. Chromatographia 40:474–483

    Article  CAS  Google Scholar 

  20. Yang H, Xu R, Xue X, Li F, Liu G (2008) Hybrid surfactant templated mesoporous silica formed in ethanol and its application for heavy metal removal. J Hazard Mater 152:690–698

    Article  CAS  Google Scholar 

  21. Ghaedi M, Montazerozohori M, Behfar M, Khodadoust S, Andikaey Z, Nejati Biareh M (2011) Chemically modified multiwalled carbon nanotubes as efficient material for construction of new zinc (II) ion selective carbon paste electrode. Sens Lett 9:1718–1725

    Article  CAS  Google Scholar 

  22. Shawabkeh R, Rockstraw D, Bhada R (2002) Copper and strontium adsorption by a novel carbon material manufactured from pecan shells. Carbon 40:781–786

    Article  CAS  Google Scholar 

  23. Kubo S, White RJ, Yoshizawa N, Antonietti M, Titirici M (2011) Ordered carbohydrate-derived porous carbons. Chem Mater 23:4882–4885

    Article  CAS  Google Scholar 

  24. Zhou HY, Cheung RYH, Chan KM, Wong MH (1998) Metal concentrations in sediments and tilapia collected from inland waters of Hong Kong. Water Res 32:3331–3334

    Article  CAS  Google Scholar 

  25. Wua X, Yang Y (2011) Heavy metal (Pb, Co, Cd, Cr, Cu, Fe, Mn and Zn) concentrations in harvest-size white shrimp Litopenaeus vannamei tissues from aquaculture and wild source. J Food Compos Anal 24:62–65

    Article  Google Scholar 

  26. Bagheri A, Behbahani M, Amini MM, Sadeghi O, Taghizade M, Baghayi L, Salarian M (2012) Simultaneous separation and determination of trace amounts of Cd(II) and Cu(II) in environmental samples using novel diphenylcarbazide modified nanoporous silica. Talanta 89:455–461

    Article  CAS  Google Scholar 

  27. Behbahani M, Salarian M, Amini MM, Sadeghi O, Bagheri A, Bagheri S (2012) Application of a new functionalized nanoporous silica for simultaneous trace separation and determination of Cd(II), Cu(II), Ni(II), and Pb(II) in food and agricultural products. Food Anal Methods. doi:10.1007/s12161-012-9545-9

    Google Scholar 

  28. Barnes K, Liang J, Worley SD, Lee J, Broughton RM, Huang TS (2007) Modification of silica gel, cellulose, and polyurethane with a sterically hindered N-Halamine moiety to produce antimicrobial activity. J Appl Polym Sci 105:2306–2613

    Article  CAS  Google Scholar 

  29. ALOthman ZA, Habila M, Yilmaz E, Soylak M (2012) Solid phase extraction of Cd(II), Pb(II), Zn(II) and Ni(II) from food samples using multiwalled carbon nanotubes impregnated with 4-(2-thiazolylazo)resorcinol. Microchim Acta 177:397–403

    Article  CAS  Google Scholar 

  30. Sohrabi MR, Matbouie Z, Asgharinezhad AA, Dehghani A (2013) Solid phase extraction of Cd(II) and Pb(II) using a magnetic metal-organic framework, and their determination by FAAS. Microchim Acta. doi:10.1007/s00604-013-0952-4

    Google Scholar 

  31. Ayata S, Bozkurt SS, Ocakoglu K (2011) Separation and preconcentration of Pb(II) using ionic liquid-modified silica and its determination by flame atomic absorption spectrometry. Talanta 84:212–215

    Article  CAS  Google Scholar 

  32. Silva EL, Roldan PS, Giné MF (2009) Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry. J Hazard Mater 171:1133–1138

    Article  CAS  Google Scholar 

  33. Ghaedi M, Ahmadi F, Shokrollahi A (2007) Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J Hazard Mater 142:272–278

    Article  CAS  Google Scholar 

  34. Kumar M, Rathore DPS, Singh AK (2000) Amberlite XAD-2 functionalized with o-aminophenol: synthesis and applications as extractant for copper(II), cobalt(II), cadmium(II), nickel(II), zinc(II) and lead(II). Talanta 51:1187–1196

    Article  CAS  Google Scholar 

  35. Nabid MR, Sedghi R, Bagheri A, Behbahani M, Taghizadeh M, Abdi Oskooie H, Heravi MM (2012) Preparation and application of poly(2-amino thiophenol)/MWCNTs nanocomposite for adsorption and separation of cadmium and lead ions via solid phase extraction. J Hazard Mater 203–204:93–100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Bagheri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behbahani, M., Najafi, M., Amini, M.M. et al. Dithizone-modified nanoporous fructose as a novel sorbent for solid-phase extraction of ultra-trace levels of heavy metals. Microchim Acta 180, 911–920 (2013). https://doi.org/10.1007/s00604-013-1013-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1013-8

Keywords

Navigation