Skip to main content

Advertisement

Log in

Distribution and accumulation of major and trace elements in water, sediment, and fishes from protected areas of the Atlantic Rainforest

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Environmental pollution affects the quality of the natural environment where major and trace elements have been commonly found to accumulate in biotic and abiotic matrices. The purposes of this research were (1) to assess the accumulation and distribution of 24 major and trace elements in water, sediments, and muscle and gills of ten native fishes from two natural areas with different degree of protection in the Atlantic Rainforest, (2) to discuss potential origin of the elements related to the land use, and (3) to assess the human health risk for water and muscle fish consumption in general and fisher populations. Major and trace elements were determined by inductively coupled plasma mass spectrometry. Concentrations of Ag, Cu, and Se in water and Cr, Cu, Hg, Mn, Ni, and Zn in sediment were higher than the international guidelines for the aquatic biota protection. Muscle Cr, Cu, Ni, Pb, Hg, and Zn from several species (both studied areas) were above guidelines for human consumption. The bioaccumulation factor (< 6936) was higher in gills than in muscle, and indicated that Andromakhe saguazu, Andromakhe paris, Gymnogeophagus lipokarenos, and Steindachnerina biornata were macroconcentrators of Zn, and Australoheros ykeregua, G. lipokarenos, and Hemiancistrus fuliginosus were macroconcentrators of Se and Sr. The hazard index and target hazard quotient indicated that there is no risk from chronic consumption of water or fish. The results show the need to reduce the entry of pollutants into streams, paying special attention to reducing runoff in deforested areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Data generated or analyzed during this study are included in this published article and its supplementary information files. Additional datasets are available from the corresponding author on reasonable request.

References

  • APHA, Awwa, WEF (2012) Standard methods for examination of water and wastewater, 22nd edn. American Public Health Association, Washington

    Google Scholar 

  • ATSDR (2008) Agency for toxic substances and disease registry, MRL list. In: https://www.atsdr.cdc.gov/.

  • Avigliano E, Monferrán MV, Sánchez S et al (2019a) Distribution and bioaccumulation of 12 trace elements in water, sediment and tissues of the main fishery from different environments of the La Plata basin (South America): risk assessment for human consumption. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.124394

    Article  Google Scholar 

  • Avigliano E, Rosso JJ, Lijtmaer D et al (2019b) Biodiversity and threats in non-protected areas: a multidisciplinary and multi-taxa approach focused on the Atlantic Forest. Heliyon 5:e02292. https://doi.org/10.1016/j.heliyon.2019.e02292

    Article  Google Scholar 

  • Avigliano E, Lozano C, Plá RR, Volpedo AV (2016) Toxic element determination in fish from Paraná River Delta (Argentina) by neutron activation analysis: tissue distribution and accumulation and health risk assessment by direct consumption. J Food Compos Anal 54:27–36. https://doi.org/10.1016/j.jfca.2016.09.011

    Article  CAS  Google Scholar 

  • Avigliano E, Schenone N (2016) Water quality in Atlantic rainforest mountain rivers (South America): quality indices assessment, nutrients distribution, and consumption effect. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-6646-9

    Article  Google Scholar 

  • Avigliano E, Schenone NF (2015) Human health risk assessment and environmental distribution of trace elements, glyphosate, fecal coliform and total coliform in Atlantic Rainforest mountain rivers (South America). Microchem J 122:149–158. https://doi.org/10.1016/j.microc.2015.05.004

    Article  CAS  Google Scholar 

  • Azevedo MA, Malabarba LR, FCB, (2000) Reproductive biology of the inseminating glandulocaudine Diapoma speculiferum cope (Teleostei: Characidae). Copeia 2000:983–989

    Article  Google Scholar 

  • Bradshaw CJA, Giam X, Sodhi NS (2010) Evaluating the relative environmental impact of countries. PLoS ONE 5:e10440. https://doi.org/10.1371/journal.pone.0010440

    Article  CAS  Google Scholar 

  • Burress ED, Duarte A, Serra WS et al (2013) Species-specific ontogenetic diet shifts among Neotropical Crenicichla: using stable isotopes and tissue stoichiometry. J Fish Biol 82:1904–1915. https://doi.org/10.1111/jfb.12117

    Article  CAS  Google Scholar 

  • Butchart SHM, Walpole M, Collen B et al (2010) Global biodiversity: indicators of recent declines. Science (80- ) 328:1164–1168. https://doi.org/10.1126/science.1187512

  • Cardoso AR, Pezzi da Silva FJ (2004) Two new species of the genus Hemiancistrus Bleeker (Teleostei: Siluriformes: Loricariidae) from the upper rio Uruguai. Neotrop Ichthyol 2:1–8. https://doi.org/10.1590/S1679-62252004000100001

    Article  Google Scholar 

  • Casatti L, Castro RMC (1998) A fish community of the São Francisco River headwaters riffles, southeastern Brazil. Ichthyol Explor Freshwaters 9:229–242

    Google Scholar 

  • Casatti L, Langeani F, Silva AM, Castro RMC (2006) Stream fish, water and habitat quality in a pasture dominated basin, southeastern Brazil. Brazilian J Biol 66:681–696. https://doi.org/10.1590/S1519-69842006000400012

    Article  CAS  Google Scholar 

  • Casciotta JR, Almirón AE, De M, Azpelicueta M (2003) A new species of Astyanax from río Uruguay basin, Argentina (Characiformes : Characidae). Ichthyol Explor Freshwaters 14:329–334

  • CCME (2020) Guidelines for Canadian Drinking Water Quality—Summary Table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch. Health Canada, Ottawa, Ontario. p 28

  • Dallinger R (1993) Strategies of metal detoxification in terrestrial invertebrates. Composition of Biochemicals and Physiology 113:125–133

    Google Scholar 

  • Davutluoglu OI, Seckin G, Ersu CB et al (2011) Assessment of metal pollution in water and surface sediments of the Seyhan River. Turkey, Using Different Indexes 39:185–194. https://doi.org/10.1002/clen.201000266

    Article  CAS  Google Scholar 

  • De Armas ED, Monteiro RTR, Antunes PM et al (2007) Diagnóstico espaço-temporal da ocorrência de herbicidas nas águas superficiais e sedimentos do Rio Corumbataí e principais afluentes. Quim Nova. https://doi.org/10.1590/s0100-40422007000500013

    Article  Google Scholar 

  • De Lucena CAS (2007) Two new species of the genus Crenicichla Heckel, 1840 from the upper rio Uruguay drainage (Perciformes: Cichlidae). Neotrop Ichthyol 5:449–456

  • De Lucena CAS, Castro JB, Bertaco VA (2013) Three new species of astyanax from drainages of southern Brazil (Characiformes: Characidae). Neotrop Ichthyol 11:537–552. https://doi.org/10.1590/S1679-62252013000300007

  • Ehrlich PR, Pringle RM (2008) Where does biodiversity go from here? A grim business-as-usual forecast and a hopeful portfolio of partial solutions. Proc Natl Acad Sci U S A 105:11579–11586. https://doi.org/10.1073/pnas.0801911105

    Article  Google Scholar 

  • Farias M, Neto J, Lima V et al (2007) Riscos sociais e ambientais devido a presença de metais pesados nas águas superficiais no distrito industrial de Mangabeira. Qualis 6:11–10

    Google Scholar 

  • Fernández R, Sosa D, Pahr N, Von Wallis A, Bárbaro S, Albarracin S (2015) El deterioro del suelo y del ambiente en la Argentina provincia de Misiones. FECIC, Buenos Aires, p 23

  • Flores S, Hirt L, Araya P (2015) Estructura y dinámica de la comunidad íctica del arroyo Yabotí, Reserva de Biosfera Yabotí, Misiones, Argentina. Rev Mex Biodivers 86:386–395. https://doi.org/10.1016/j.rmb.2015.04.004

    Article  Google Scholar 

  • Fontana JL (2005) Poblacion Indigena en la Reserva de la Biosfera Yabotí, Provincia de Misiones, Argentina. La Comunidad Mbyá de Tekoa Yma. Folia Botánica Geobotánica Corrientes 19:1–37

    Google Scholar 

  • Frei R, Poiré D, Frei KM (2014) Weathering on land and transport of chromium to the ocean in a subtropical region (Misiones, NW Argentina): a chromium stable isotope perspective. Chem Geol 381:110–124. https://doi.org/10.1016/j.chemgeo.2014.05.015

    Article  CAS  Google Scholar 

  • Freire R, Schneider RM, de Freitas FH et al (2012) Monitoramento de compostos químicos tóxicos na bacia do ribeirão maringá. Acta Sci - Technol 34:295–302. https://doi.org/10.4025/actascitechnol.v34i3.10302

    Article  CAS  Google Scholar 

  • Hartz SM, Martins A, Barbieri G (1996) Dinamica da alimentacao e dieta de Oligosarcus jenynsii na Lagoa Caconde, Río Grande do sul. Boletim do Instituto de Pesca 23:21–29

    Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    Article  CAS  Google Scholar 

  • Heal G, Small A (2001) Agriculture and Ecosystem Services. In: Gordon G (ed) Handbook of Agricultural Economics, 2nd edn. Elsevier, North-Holand, pp 1341–1369

  • IBEROMaB (2016) Reservas de biosfera iberoamericanas-IBEROMaB. OAPN/UNESCO, Madrid, p 213

  • INDEC (2021) Estimaciones de población por sexo, departamento y año calendario 2010-2025., 1st edn. Instituto Nacional de Estadística y Censos, Ciudad Autónima de Buenos Aires, p115

  • INPE (2019) Atlas dos Remanescentes Florestais da Mata Atlântica - PERÍODO 2017-2018. São Paulo, p 68

  • JECFA (1993) Joint FAO/WHO expert Committee on Food Additives, Evaluation of certain food additives and contaminants: 41st report of JECFA, Technical Reports Series No. 837 (Switzerland).

  • Kuhlmann ML, Imbimbo HRV, Ogura LL et al (2014) Effects of human activities on rivers located in protected areas of the Atlantic Forest. Acta Limnol Bras. https://doi.org/10.1590/s2179-975x2014000100008

    Article  Google Scholar 

  • Ligier H, Polo H, Matteio H (1989) Potential water erosion in the province of Misiones; application of the universal soil loss equation to the soil map of the province of Misiones. Escale 1:50.000. INTA, Corrientes, p 48

  • Lopez CF, Vazquez S, Dalurzo HC (2002) Formas de fosforo en suelos altamente meteorizados del sur de la Provincia de Misiones. Ciencias del Suelo 20:81–87

    Google Scholar 

  • Mittermeier RA, Gil PR, Hoffmann M et al (2004) Hotspots revisited earth biological richest. Choice Rev Online 43:43–2786–43–2786. https://doi.org/10.5860/choice.43-2786

  • Monferrán MV, Garnero P, Bistoni DLA, M, et al (2016) From water to edible fish. Transfer of metals and metalloids in the San Roque Reservoir (Córdoba, Argentina). Implications associated with fish consumption. Ecol Indic 63:48–60. https://doi.org/10.1016/j.ecolind.2015.11.048

    Article  CAS  Google Scholar 

  • Myers et al (2000) Biodiversity hotspots for conservation priorities. Nature 468:895. https://doi.org/10.1038/468895a

    Article  CAS  Google Scholar 

  • Neves MP, Da Silva JC, Baumgartner D et al (2018) Is resource partitioning the key? The role of intra-interspecific variation in coexistence among five small endemic fish species (Characidae) in subtropical rivers. J Fish Biol 93:238–249. https://doi.org/10.1111/jfb.13662

    Article  CAS  Google Scholar 

  • Noulas C, Tziouvalekas M, Karyotis T (2018) Zinc in soils, water and food crops. J Trace Elem Med Biol 49:252–260. https://doi.org/10.1016/j.jtemb.2018.02.009

    Article  CAS  Google Scholar 

  • Olivero-Verbel J, Caballero-Gallardo K, Turizo-Tapia A (2015) Mercury in the gold mining district of San Martin de Loba, South of Bolivar (Colombia). Environ Sci Pollut Res 22:5895–5907. https://doi.org/10.1007/s11356-014-3724-8

    Article  CAS  Google Scholar 

  • Ondarza PM, Haddad SP, Avigliano E, Miglioranza Karina S.B., Brooks BW (2019) Pharmaceuticals, illicit drugs and their metabolites in fish from Argentina: implications for protected areas influenced by urbanization. Sci Total Environ 649:1029–1037

    Article  CAS  Google Scholar 

  • Ottoni FP, Katz AM (2017) Feeding ecology of the genus Australoheros (Teleostei: Cichlidae: Cichlinae) based on examined specimens and literature information. Bol Do Laboratório Hidrobiol 27:13–18

  • Pezo D, Paredes AH, Bedayán AN (1992) Determinacion de metales pesados bioacumulables en especies icticas de consumo humano en la Amazonia Peruana. Folia Amaz 4:171. https://doi.org/10.24841/fa.v4i2.295

    Article  Google Scholar 

  • Ribeiro MC, Martensen AC, Metzger JP et al (2011) The Brazilian Atlantic Forest: A Shrinking Biodiversity Hotspot. Biodiversity Hotspots 405–434. https://doi.org/10.1007/978-3-642-20992-5_21

  • Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021

    Article  Google Scholar 

  • Rolón E, Avigliano E, Rosso J et al (2021a) Metals and metalloids in a first order stream of the Atlantic rainforest: abiotic matrices, bioaccumulation in fishes and human health risk assessment. J Trace Elem Med Biol 68:126866. https://doi.org/10.1016/J.JTEMB.2021.126866

  • Rolón E, Ondarza PM, Miglioranza KSB et al (2021b) Multi-matrix approach reveals the distribution of pesticides in a multipurpose protected area from the Atlantic Rainforest: potential risk for aquatic biota and human health? Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-12699-y

    Article  Google Scholar 

  • Ruiz Díaz F (2005) Alimentación. In: Casciotta J, Almirón, A, Bechara J (eds) Peces del Iberá. Hábitat y diversidad. Grafikar, La plata, p 244, pp 41–45

  • Sánchez EY (2008) Las lagunas profesan el heavy metal. Metales pesados en ambientes acuáticos Pampeanos. In: Grosman F (ed) Espejos en la llanura. Nuestras lagunas de la región Pampeana, UNICEN. Editorial Universidad Nacional del Centro de la Provincia de Buenos Aires, Buenos Aires., Buenos Aires, pp 91–98

  • Sim SF, Chai HP, Nyanti L (2016) Baseline trace metals in water and sediment of the Baleh River — a tropical river in Sarawak. Environ Monit Assess, Malaysia. https://doi.org/10.1007/s10661-016-5553-3

    Book  Google Scholar 

  • United Nations (2018) Department of Economic and Social Affairs, Population Division (2019). World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). United Nations, New York, p 126

  • USEPA (1991) Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual. Supplemental guidance “standard default exposure factors” interim final. USEPA, Springfield

  • USEPA (1996) United States Environmental Protection Agency, Quantitative Uncertainty Analysis of Super Fund Residential Risk Path Way Models for Soil and Ground Water: White Paper, Office of Health and Environmental Assessment. USEPA, Oak Ridge, TN, pp 1–58

  • USEPA (2014) Integrated risk information system,. In: http://www.epa.gov/iris.

  • USEPA (2021) Regional Screening Levels (RSLs) - Generic Tables. In: Usepa. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149. https://doi.org/10.1016/S1382-6689(02)00126-6

    Article  Google Scholar 

  • Vázquez S, Morales L (2000) Adsorción de fósforo por suelos ácidos de Misiones (Argentina). Ciencias del Suelo 18:89–94

    Google Scholar 

  • Winemiller KO (1989) Development of dermal lip protuberances for aquatic surfacerespiration in South American characid fishes. Copeia 2:382–390

    Article  Google Scholar 

  • Wood S, Sebastian K, Scherr S (2000) Pilot analysis of global ecosystems. International Food Policy Research Institute and World Resources Institute, Whasington, USA, p 87

    Google Scholar 

Download references

Acknowledgements

This research was possible thanks to the support provided by “Bosques Nativos Argentinos para la Biodiversidad” Foundation and its Research Center in Misiones, CIAR (Centro de Investigaciones Antonia Ramos). The authors wish to thank the Ministerio de Ecología y Recursos Naturales Renovables de la Provincia de Misiones for their logistical support. We are also grateful to F Castia, E Benitez, L Rojas, R Villalba, H Lory, G Ibarra, E Taron, F Ramirez, V Soley, Javier Unizony, Gastón Ramos, Fernanda Biolé, and Guy Comte for their invaluable collaboration in the field. The authors also thank the Universidad de Buenos Aires for E Rolón doctoral fellowship.

Funding

This study was supported by Agencia Nacional de Promoción Científica y Tecnológica (Projects PICT 2015–2160, PICT 2021–2023, PICT 2019–0388) and Universidad de Buenos Aires (grant number UBACyT 20020190100069BA).

Author information

Authors and Affiliations

Authors

Contributions

ER: Conceptualization, data curation, formal analysis, methodology, software, validation, writing-original draft, writing-review and editing, and visualization. JJR: Data curation, writing-original draft, and writing-review and editing. EM: Data curation, writing-original draft, and writing-review and editing. PT: Methodology, formal analysis, and writing-original draft. MB: Methodology, formal analysis, and writing-original draft. CB: Methodology, formal analysis, and writing-original draft. VA: Funding acquisition, project administration, resources, investigation, writing-original draft, writing-review and editing, and supervision. EA: Conceptualization, data curation, formal analysis, methodology, funding acquisition, project administration, investigation, resources, writing-original draft, writing-review and editing, and supervision.

Corresponding author

Correspondence to Esteban Avigliano.

Ethics declarations

Ethics approval and consent to participate

Fish handling during sampling was performed following guidelines of the ethical committee of the UFAW Handbook on the Care and Management of Laboratory Animals (http://www.ufaw.org.uk). Collection fish was authorized by the local Wildlife and Fisheries Authority guidelines and policies (Ministerio de Ecología y Recursos Renovables of Misiones Province, Law XVI N° 47, N° 509/07 and 052/18).

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 131 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rolón, E., Rosso, J.J., Mabragaña, . et al. Distribution and accumulation of major and trace elements in water, sediment, and fishes from protected areas of the Atlantic Rainforest. Environ Sci Pollut Res 29, 58843–58868 (2022). https://doi.org/10.1007/s11356-022-19416-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19416-3

Keywords

Navigation