Skip to main content
Log in

Gyrokinetic theory of toroidal Alfvén eigenmode saturation via nonlinear wave–wave coupling

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

Nonlinear wave–wave coupling constitutes an important route for the turbulence spectrum evolution in both space and laboratory plasmas. For example, in a reactor relevant fusion plasma, a rich spectrum of symmetry-breaking shear Alfvén wave (SAW) instabilities is expected to be excited by energetic fusion alpha particles, and self-consistently determines the anomalous alpha particle transport rate by the saturated electromagnetic perturbations. In this work, we will show that the nonlinear gyrokinetic theory is a necessary and powerful tool in qualitatively and quantitatively investigating the nonlinear wave–wave coupling processes. More specifically, one needs to employ the gyrokinetic approach to account for the breaking of the “pure Alfvénic state” in the short-wavelength kinetic regime, due to the short-wavelength structures associated with nonuniformity intrinsic to magnetically confined plasmas. Using well-known toroidal Alfvén eigenmode (TAE) as a paradigm case, three nonlinear wave–wave coupling channels expected to significantly influence the TAE nonlinear dynamics are investigated to demonstrate the strength and necessity of nonlinear gyrokinetic theory in predicting crucial processes in a future reactor burning plasma. These are: 1. the nonlinear excitation of meso-scale zonal field structures via modulational instability and TAE scattering into short-wavelength stable domain; 2. the TAE frequency cascading due to nonlinear ion-induced scattering and the resulting saturated TAE spectrum; and 3. the cross-scale coupling of TAE with micro-scale ambient drift wave turbulence and its effect on TAE regulation and anomalous electron heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Notes

  1. For more information and activities of CNPS, one may refer to the CNPS homepage at https://www.afs.enea.it/zonca/CNPS/.

  2. Interested readers may refer to Ref. Chen and Zonca (2012) for the detailed analysis of the threshold condition on ZFS excitation. The analysis is presented following Eq. (24) therein.

References

  • H. Alfvén, Existence of electromagnetic-hydrodynamic waves. Nature 150(3805), 405–406 (1942)

    ADS  Google Scholar 

  • H.L. Berk, B.N. Breizman, Saturation of a single mode driven by an energetic injected beam. I. Plasma wave problem. Phys. Fluids B 2(9), 2226 (1990a)

    ADS  Google Scholar 

  • H.L. Berk, B.N. Breizman, Saturation of a single mode driven by an energetic injected beam. II. Electrostatic universal destabilization mechanism. Phys. Fluids B 2(9), 2235 (1990b)

    ADS  Google Scholar 

  • H.L. Berk, B.N. Breizman, Saturation of a single mode driven by an energetic injected beam. III. alfvén wave problem. Phys. Fluids B 2(9), 2246 (1990c)

    ADS  Google Scholar 

  • A. Biancalani, A. Bottino, A.D. Siena, O. Gurcan, T. Hayward-Schneider, F. Jenko, P. Lauber, A. Mishchenko, P. Morel, I. Novikau, F. Vannini, L. Villard, A. Zocco, Gyrokinetic investigation of alfvén instabilities in the presence of turbulence. Plasma Phys. Controlled Fusion 63(6), 065009 (2021)

    ADS  Google Scholar 

  • C. Bourdelle, G. Hoang, X. Litaudon, C. Roach, T. Tala, Impact of the α parameter on the microstability of internal transport barriers. Nucl. Fusion 45(2), 110 (2005)

    ADS  Google Scholar 

  • A.J. Brizard, Nonlinear gyrokinetic vlasov equation for toroidally rotating axisymmetric tokamaks. Phys. Plasmas 2(2), 459–471 (1995)

    ADS  MathSciNet  Google Scholar 

  • A.J. Brizard, T.S. Hahm, Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  • L. Chen, On resonant excitation of high-n magnetohydrodynamic modes by energetic/alpha particles in tokamaks. In SIF (ed.) Theory of Fusion Plasmas, p. 327. Association EUROATOM, Bologna, Italy (1988)

  • L. Chen, Theory of magnetohydrodynamic instabilities excited by energetic particles in tokamaks. Phys. Plasmas 1(5), 1519 (1994)

    ADS  Google Scholar 

  • L. Chen, Theory of plasma transport induced by low-frequency hydromagnetic waves. J. Geophys. Res. Space Phys. 104(A2), 2421 (1999)

    ADS  Google Scholar 

  • L. Chen, A. Hasegawa, Plasma heating by spatial resonance of alfven wave. Phys. Fluids 17(7), 1399–1403 (1974)

    ADS  Google Scholar 

  • L. Chen, A. Hasegawa, Kinetic theory of geomagnetic pulsations: 1. Internal excitations by energetic particles. J. Geophys. Res. Space Phys. 96(A2), 1503 (1991)

    ADS  Google Scholar 

  • L. Chen, F. Zonca, Gyrokinetic theory of parametric decays of kinetic alfvén waves. Europhys. Lett. 96(3), 35001 (2011)

    ADS  Google Scholar 

  • L. Chen, F. Zonca, Nonlinear excitations of zonal structures by toroidal alfvén eigenmodes. Phys. Rev. Lett. 109, 145002 (2012)

    ADS  Google Scholar 

  • L. Chen, F. Zonca, On nonlinear physics of shear alfvén waves. Phys. Plasmas 20(5), 055402 (2013)

    ADS  Google Scholar 

  • L. Chen, F. Zonca, Alfvén waves and energetic particles. Rev. Modern Phys. 88(1), 015008 (2016)

    ADS  Google Scholar 

  • L. Chen, Z. Lin, R. White, Excitation of zonal flow by drift waves in toroidal plasmas. Phys. Plasmas 7(8), 3129–3132 (2000)

    ADS  Google Scholar 

  • L. Chen, Z. Lin, R.B. White, F. Zonca, Nonlinear zonal dynamics of drift and drift-alfvén turbulence in tokamak plasmas. Nucl. Fusion 41(6), 747 (2001)

    ADS  Google Scholar 

  • L. Chen, F. Zonca, Y. Lin, Physics of kinetic alfvén waves: a gyrokinetic theory approach. Rev. Modern Plasma Phys. 5(1), 1–37 (2021)

    ADS  Google Scholar 

  • L. Chen, Z. Qiu, F. Zonca, Parity-breaking parametric decay instability of kinetic alfvén waves in a nonuniform plasma. Phys. Plasmas 29(5), 050701 (2022a)

    Google Scholar 

  • L. Chen, Z. Qiu, F. Zonca, On scattering and damping of toroidal alfvén eigenmode by drift wave turbulence. Nucl. Fusion 62(9), 094001 (2022b)

    ADS  Google Scholar 

  • L. Chen, Z. Qiu, F. Zonca, On nonlinear scattering of drift wave by toroidal alfvén eigenmode in tokamak plasmas. Nucl. Fusion 63(10), 10016 (2023)

    Google Scholar 

  • C.Z. Cheng, L. Chen, M.S. Chance, High-n ideal and resistive shear alfvén waves in tokamaks. Ann. Phys. 161, 21 (1985)

    ADS  Google Scholar 

  • Z. Cheng, K. Shen, L. Chen, F. Zonca, Z. Qiu, Effects of plasma non-uniformity on toroidal Alfvén eigenmode nonlinear saturation via ion induced scattering (2023)

  • J. Citrin, P. Mantica, Overview of tokamak turbulence stabilization by fast ions. Plasma Phys. Controlled Fusion 65(3), 033001 (2023)

    ADS  Google Scholar 

  • J. Citrin, F. Jenko, P. Mantica, D. Told, C. Bourdelle, J. Garcia, J. Haverkort, G. Hogeweij, T. Johnson, M. Pueschel, Nonlinear stabilization of tokamak microturbulence by fast ions. Phys. Rev. Lett. 111(15), 155001 (2013)

    ADS  Google Scholar 

  • A. Di Siena, T. Görler, E. Poli, A.B. Navarro, A. Biancalani, F. Jenko, Electromagnetic turbulence suppression by energetic particle driven modes. Nucl. Fusion 59(12), 124001 (2019)

    ADS  Google Scholar 

  • A. Di Siena, T. Gorler, E. Poli, A. Banon Navarro, A. Biancalani, R. Bilato, N. Bonanomi, I. Novikau, F. Vannini, F. Jenko, Nonlinear electromagnetic interplay between fast ions and ion-temperature-gradient plasma turbulence. J. Plasma Phys. 87(2), 555870201 (2021)

    Google Scholar 

  • P.H. Diamond, S.-I. Itoh, K. Itoh, T.S. Hahm, Zonal flows in plasma: a review. Plasma Phys. Controlled Fusion 47(5), 35 (2005)

    Google Scholar 

  • M.V. Falessi, F. Zonca, Transport theory of phase space zonal structures. Phys. Plasmas 26(2), 022305 (2019)

    ADS  Google Scholar 

  • M. Falessi, L. Chen, Z. Qiu, F. Zonca, Nonlinear equilibria and transport processes in burning plasmas (2023). https://doi.org/10.48550/arXiv.2306.08642

  • A. Fasoli, C. Gormenzano, H.L. Berk, B. Breizman, S. Briguglio, D.S. Darrow, N. Gorelenkov, W.W. Heidbrink, A. Jaun, S.V. Konovalov, R. Nazikian, J.-M. Noterdaeme, S. Sharapov, K. Shinohara, D. Testa, K. Tobita, Y. Todo, G. Vlad, F. Zonca, Chapter 5: Physics of energetic ions. Nucl. Fusion 47(6), 264 (2007)

    Google Scholar 

  • Z. Feng, Z. Qiu, Z. Sheng, The mechanism of particles transport induced by electrostatic perturbation in tokamak. Phys. Plasmas 20(12), (2013)

  • N.J. Fisch, M.C. Herrmann, Utility of extracting alpha particle energy by waves. Nucl. Fusion 34(12), 1541 (1994)

    ADS  Google Scholar 

  • N.J. Fisch, J.-M. Rax, Interaction of energetic alpha particles with intense lower hybrid waves. Phys. Rev. Lett. 69, 612–615 (1992)

    ADS  Google Scholar 

  • E.A. Frieman, L. Chen, Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria. Phys. Fluids 25(3), 502–508 (1982)

    ADS  MATH  Google Scholar 

  • G. Fu, C. Cheng, Excitation of high-n toroidicity-induced shear alfvén eigenmodes by energetic particles and fusion allpha-particles in tokamaks. Phys. Fluids B Plasma Phys. 4(11), 3722 (1992)

    Google Scholar 

  • G.Y. Fu, J.W. Van Dam, Excitation of the toroidicity induced shear alfvén eigenmode by fusion alpha particles in an ignited tokamak. Phys. Fluids B 1(10), 1949–1952 (1989)

    ADS  Google Scholar 

  • H. Grad, Plasmas. Phys. Today 22(12), 34 (1969)

    ADS  Google Scholar 

  • S. Günter, G. Conway, H.-U. Fahrbach, C. Forest, M.G. Muñoz, T. Hauff, J. Hobirk, V. Igochine, F. Jenko, K. Lackner et al., Interaction of energetic particles with large and small scale instabilities. Nucl. Fusion 47(8), 025 (2007)

    Google Scholar 

  • T.S. Hahm, Ion heating from nonlinear landau damping of high mode number toroidal alfvén eigenmodes. Plasma Sci. Technol 17(7), 534 (2015)

    ADS  Google Scholar 

  • T.S. Hahm, L. Chen, Nonlinear saturation of toroidal alfvén eigenmodes via ion compton scattering. Phys. Rev. Lett. 74, 266 (1995)

    ADS  Google Scholar 

  • A. Hasegawa, L. Chen, Kinetic processes in plasma heating by resonant mode conversion of alfvén wave. Phys. Fluids 19(12), 1924–1934 (1976)

    ADS  Google Scholar 

  • W.W. Heidbrink, N.N. Gorelenkov, Y. Luo, M.A. Van Zeeland, R.B. White, M.E. Austin, K.H. Burrell, G.J. Kramer, M.A. Makowski, G.R. McKee, R. Nazikian, Anomalous flattening of the fast-ion profile during alfvén-eigenmode activity. Phys. Rev. Lett. 99, 245002 (2007)

    ADS  Google Scholar 

  • W. Heidbrink, J.M. Park, M. Murakami, C. Petty, C. Holcomb, M. Van Zeeland, Evidence for fast-ion transport by microturbulence. Phys. Rev. Lett. 103(17), 175001 (2009)

    ADS  Google Scholar 

  • W. Horton, Drift waves and transport. Rev. Mod. Phys. 71, 735–778 (1999)

    ADS  Google Scholar 

  • A. Ishizawa, K. Imadera, Y. Nakamura, Y. Kishimoto, Multi-scale interactions between turbulence and magnetohydrodynamic instability driven by energetic particles. Nucl. Fusion 61(11), 114002 (2021)

    ADS  Google Scholar 

  • C. Kieras, J. Tataronis, The shear alfvén continuous spectrum of axisymmetric toroidal equilibria in the large aspect ratio limit. J. Plasma Phys. 28(3), 395 (1982)

    ADS  Google Scholar 

  • Z. Lin, T.S. Hahm, W.W. Lee, W.M. Tang, R.B. White, Turbulent transport reduction by zonal flows: massively parallel simulations. Science 281(5384), 1835–1837 (1998)

    ADS  Google Scholar 

  • S. Mazzi, J. Garcia, D. Zarzoso, Y.O. Kazakov, J. Ongena, M. Dreval, M. Nocente, Ž Štancar, G. Szepesi, J. Eriksson et al., Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions. Nat. Phys. 18(7), 776–782 (2022)

    Google Scholar 

  • T. O’Neil, Collisionless damping of nonlinear plasma oscillations. Phys. Fluids 8(12), 2255–2262 (1965)

    ADS  MathSciNet  Google Scholar 

  • S.D. Pinches, I.T. Chapman, P.W. Lauber, H.J.C. Oliver, S.E. Sharapov, K. Shinohara, K. Tani, Energetic ions in ITER plasmas. Phys. Plasmas 22(2), 021807 (2015)

    ADS  Google Scholar 

  • Z. Qiu, L. Chen, F. Zonca, Spontaneous excitation of geodesic acoustic mode by toroidal alfvén eigenmodes. Europhys. Lett. 101(3), 35001 (2013)

    ADS  Google Scholar 

  • Z. Qiu, L. Chen, F. Zonca, Effects of energetic particles on zonal flow generation by toroidal alfvén eigenmode. Phys. Plasmas (1994-present) 23(9), 090702 (2016a)

    ADS  Google Scholar 

  • Z. Qiu, L. Chen, F. Zonca, Fine radial structure zonal flow excitation by beta-induced alfvén eigenmode. Nucl. Fusion 56(10), 106013 (2016b)

    ADS  Google Scholar 

  • Z. Qiu, L. Chen, F. Zonca, Nonlinear excitation of finite-radial-scale zonal structures by toroidal alfvén eigenmode. Nucl. Fusion 57(05), 056017 (2017)

    ADS  Google Scholar 

  • Z. Qiu, L. Chen, F. Zonca, W. Chen, Nonlinear decay and plasma heating by a toroidal alfvén eigenmode. Phys. Rev. Lett. 120(13), 135001 (2018)

    ADS  Google Scholar 

  • Z. Qiu, L. Chen, F. Zonca, Gyrokinetic theory of the nonlinear saturation of a toroidal alfvén eigenmode. Nucl. Fusion 59(6), 066024 (2019a)

    ADS  Google Scholar 

  • Z. Qiu, L. Chen, F. Zonca, W. Chen, Nonlinear excitation of a geodesic acoustic mode by toroidal alfvén eigenmodes and the impact on plasma performance. Nucl. Fusion 59(6), 066031 (2019b)

    ADS  Google Scholar 

  • Z. Ren, Y. Chen, G. Fu, Z. Wang, Stability of alfvén eigenmodes in the china fusion engineering test reactor. Nucl. Fusion 60(1), 016009 (2020)

    ADS  Google Scholar 

  • M.N. Rosenbluth, F.L. Hinton, Poloidal flow driven by ion-temperature-gradient turbulence in tokamaks. Phys. Rev. Lett. 80, 724–727 (1998)

    ADS  Google Scholar 

  • R.Z. Sagdeev, A.A. Galeev, Nonlinear Plasma Theory [by] R.Z. Sagdeev and A.A. Galeev: Rev. and Edited by T.M. O’Neil [and] D.L. Book. Frontiers in physics. W.A. Benjamin, New York (1969)

  • D. Spong, B. Carreras, C. Hedrick, Nonlinear evolution of the toroidal alfvén instability using a gyrofluid model. Phys. Plasmas 1(5), 1503 (1994)

    ADS  Google Scholar 

  • H. Sugama, Modern gyrokinetic formulation of collisional and turbulent transport in toroidally rotating plasmas. Rev. Modern Plasma Phys. 1(1), 9 (2017)

    ADS  Google Scholar 

  • T. Suzuki, S. Ide, T. Oikawa, T. Fujita, M. Ishikawa, M. Seki, G. Matsunaga, T. Hatae, O. Naito, K. Hamamatsu et al., Off-axis current drive and real-time control of current profile in jt-60u. Nucl. Fusion 48(4), 045002 (2008)

    ADS  Google Scholar 

  • G. Tardini, J. Hobirk, V. Igochine, C. Maggi, P. Martin, D. McCune, A. Peeters, A. Sips, A. Stäbler, J. Stober et al., Thermal ions dilution and itg suppression in asdex upgrade ion itbs. Nucl. Fusion 47(4), 280 (2007)

    ADS  Google Scholar 

  • Y. Todo, Introduction to the interaction between energetic particles and alfven eigenmodes in toroidal plasmas. Rev. Modern Plasma Phys. 3(1), (2019)

  • Y. Todo, H. Berk, B. Breizman, Nonlinear magnetohydrodynamic effects on alfvén eigenmode evolution and zonal flow generation. Nucl. Fusion 50(8), 084016 (2010)

    ADS  Google Scholar 

  • K. Tomabechi, J.R. Gilleland, Y.A. Sokolov, R. Toschi, I. Team, Iter conceptual design. Nucl. Fusion 1(6), 1135 (1991)

    Google Scholar 

  • G. Vlad, F. Zonca, S. Briguglio, Dynamics of alfvén waves in tokamaks. La Rivista del Nuovo Cimento (1978-1999) 22(7), 1 (1999)

    Google Scholar 

  • Y. Wan, J. Li, Y. Liu, X. Wang, V. Chan, C. Chen, X. Duan, P. Fu, X. Gao, K. Feng et al., Overview of the present progress and activities on the cfetr. Nucl. Fusion 57(10), 102009 (2017)

    ADS  Google Scholar 

  • X. Wang, S. Briguglio, L. Chen, C. Di Troia, G. Fogaccia, G. Vlad, F. Zonca, Nonlinear dynamics of beta-induced alfvén eigenmode driven by energetic particles. Phys. Rev. E 86, 045401 (2012)

    ADS  Google Scholar 

  • T. Wang, Z. Qiu, F. Zonca, S. Briguglio, G. Fogaccia, G. Vlad, X. Wang, Shear alfvén fluctuation spectrum in divertor tokamak test facility plasmas. Phys. Plasmas 25(6), 062509 (2018)

    ADS  Google Scholar 

  • T. Wang, X. Wang, S. Briguglio, Z. Qiu, G. Vlad, F. Zonca, Nonlinear dynamics of shear alfvén fluctuations in divertor tokamak test facility plasmas. Phys. Plasmas 26(1), 012504 (2019)

    ADS  Google Scholar 

  • S. Wei, T. Wang, N. Chen, Z. Qiu, Nonlinear reversed shear alfvén eigenmode saturation due to spontaneous zonal current generation. J. Plasma Phys. 87(5), 905870505 (2021)

    Google Scholar 

  • S. Wei, T. Wang, L. Chen, F. Zonca, Z. Qiu, Core localized alpha-channeling via low frequency alfvén mode generation in reversed shear scenarios. Nucl. Fusion 62(12), 126038 (2022)

    ADS  Google Scholar 

  • K.L. Wong, R.J. Fonck, S.F. Paul, D.R. Roberts, E.D. Fredrickson, R. Nazikian, H.K. Park, M. Bell, N.L. Bretz, R. Budny, S. Cohen, G.W. Hammett, F.C. Jobes, D.M. Meade, S.S. Medley, D. Mueller, Y. Nagayama, D.K. Owens, E.J. Synakowski, Excitation of toroidal alfvén eigenmodes in tftr. Phys. Rev. Lett. 66, 1874–1877 (1991)

    ADS  Google Scholar 

  • L. Yu, F. Zonca, Z. Qiu, L. Chen, W. Chen, X. Ding, X. Ji, T. Wang, T. Wang, R. Ma et al., Experimental evidence of nonlinear avalanche dynamics of energetic particle modes. Europhys. Lett. 138(5), 54002 (2022)

    ADS  Google Scholar 

  • H. Zhang, Z. Lin, Nonlinear generation of zonal fields by the beta-induced alfvén eigenmode in tokamak. Plasma Sci. Technol 15(10), 969 (2013)

    ADS  Google Scholar 

  • W. Zhang, Z. Lin, L. Chen, Transport of energetic particles by microturbulence in magnetized plasmas. Phys. Rev. Lett. 101(9), 095001 (2008)

    ADS  Google Scholar 

  • H.S. Zhang, Z. Lin, I. Holod, Nonlinear frequency oscillation of alfvén eigenmodes in fusion plasmas. Phys. Rev. Lett. 109, 025001 (2012)

    ADS  Google Scholar 

  • F. Zonca, L. Chen, Theory on excitations of drift alfvén waves by energetic particles. ii. the general fishbone-like dispersion relation. Phys. Plasmas 21(7), 072121 (2014)

    ADS  Google Scholar 

  • F. Zonca, R.B. White, L. Chen, Nonlinear paradigm for drift wave-zonal flow interplay: coherence, chaos, and turbulence. Phys. Plasmas 11(5), 2488–2496 (2004)

    ADS  MathSciNet  Google Scholar 

  • F. Zonca, L. Chen, S. Briguglio, G. Fogaccia, G. Vlad, X. Wang, Nonlinear dynamics of phase space zonal structures and energetic particle physics in fusion plasmas. New J. Phys. 17(1), 013052 (2015a)

    ADS  Google Scholar 

  • F. Zonca, L. Chen, S. Briguglio, G. Fogaccia, A.V. Milovanov, Z. Qiu, G. Vlad, X. Wang, Energetic particles and multi-scale dynamics in fusion plasmas. Plasma Phys. Controlled Fusion 57(1), 014024 (2015b)

    ADS  Google Scholar 

  • F. Zonca, Y. Lin, L. Chen, Spontaneous excitation of convective cells by kinetic alfvén waves. Europhys. Lett. 112(6), 65001 (2015c)

    ADS  Google Scholar 

  • F. Zonca, L. Chen, M. Falessi, Z. Qiu, Nonlinear radial envelope evolution equations and energetic particle transport in tokamak plasmas. J. Phys: Conf. Ser. 1785(1), 012005 (2021)

    Google Scholar 

  • S. Zweben, R. Budny, D. Darrow, S. Medley, R. Nazikian, B. Stratton, E. Synakowski, G. Taylor, Alpha particle physics experiments in the tokamak fusion test reactor. Nucl. Fusion 40, 91 (2000)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China under Grant Nos. 12275236 and 12261131622, Italian Ministry for Foreign Affairs and International Cooperation Project under Grant No. CN23GR02, and “Users of Excellence program of Hefei Science Center CAS” under Contract No. 2021HSC-UE016. This work was supported by the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No. 101052200 EUROfusion). The views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Qiu.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z., Chen, L. & Zonca, F. Gyrokinetic theory of toroidal Alfvén eigenmode saturation via nonlinear wave–wave coupling. Rev. Mod. Plasma Phys. 7, 28 (2023). https://doi.org/10.1007/s41614-023-00130-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-023-00130-7

Keywords

Navigation