Skip to main content
Log in

Shocks in collisionless plasmas

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

The Earth’s bow shock is the best-known collisionless shock in space. Although much is known about the bow shock, the mechanisms of heating and thermalization processes still remain poorly understood. Collisionless shocks are different from ordinary fluid shocks, because a fraction of the incident solar wind is reflected from the bow shock and the transmitted particles are not immediately thermalized. The reflected particles interact with the incident solar wind producing waves and instabilities that can heat and accelerate particles to high energies. Some of the waves can grow to large amplitudes such as Short Large Amplitude Magnetic Structures. Other upstream nonlinear structures include hot flow anomalies and density holes. The upstream nonlinear structures subsequently convect Earthward with the SW and could impact the structure and dynamics of the bow shock. These observations have clearly indicated that the upstream dynamics are an integral part of the bow shock system. Although much has been learned about the behavior of Earth’s bow shock dynamics from the existing data, many fundamental questions remain not answered. This article will review observations of ion dynamics of Earth’s bow shock system, what we have learned from recent and past observations. We provide new perspectives from multi-spacecraft Cluster observations about the spatial and temporal variations including the fundamental shock heating, acceleration, and entropy generation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • K.A. Anderson et al., Thin sheets of energetic electrons upstream from the Earth’s bow shock. Geophys. Res. Lett. 6, 401 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  • S.D. Bale et al., Bipolar electrostatic structures in the shock transition region: evidence of electron phase space holes. Geophys. Res. Lett. 25, 2929 (1998)

    Article  ADS  Google Scholar 

  • S.D. Bale et al., Quasi-perpendicular shock structures and processes. Space Sci. Rev. 118, 161 (2005)

    Article  ADS  Google Scholar 

  • A. Balogh, R. Treumann, Physics of Collicionless Shocks, Space Plasma Shock Waves (Springer, New York, 2013)

    Google Scholar 

  • R. Behlke et al., Solitary structures associated with short large-amplitude magnetic structures (SLAMS) upstream of the Earth’s quasi-parallel bow shock. Geophys. Res. Lett. 31, L16805 (2004)

    Article  ADS  Google Scholar 

  • X. Blanco-Cano, N. Omidi, C.T. Russell, Macrostructure of collisionless bow shocks: 2. ULF waves in the foreshock and magnetosheath. J. Geophys. Res. 111, A10205 (2006)

    Article  ADS  Google Scholar 

  • L. Burlaga, K. Ogilvie, Heating of the solar wind. Astrophys. J. 159, 659 (1970)

    Article  ADS  Google Scholar 

  • D. Burgess, S. Schwartz, Colliding plasma structures: current sheet and perpendicular shock. J. Geophys. Res. 93, 11327 (1988)

    Article  ADS  Google Scholar 

  • D. Burgess, On the effect of a tangential discontinuity on ions specularly reflected at an oblique shock. J. Geophys. Res. 94, 472 (1989)

    Article  ADS  Google Scholar 

  • D. Burgess, E. Möbius, M. Scholer, Ion acceleration at the Earth’s bow shock. Space Sci. Rev. 173, 5 (2012)

    Article  ADS  Google Scholar 

  • D. Burgess, M. Scholer, Collisionless Shocks in Space Plasmas: Structure and Accelerated Particles (Cambridge University Press, Cambridge, 2015)

    Book  Google Scholar 

  • J.B. Cao et al., Direct evidence of solar wind deceleration in the foreshock of the Earth. J. Geophys. Res. 114, A02207 (2009)

    ADS  Google Scholar 

  • G.A. Collinson et al., Hot flow anomalies at Venus. J. Geophys. Res. 117, A04204 (2012)

    ADS  Google Scholar 

  • N. Cornillieau-Wehrlin et al., The Cluster spatio-temporan analysis of field fluxtuations (staff) experiment. Space Sci. Rev. 79, 107 (1997)

    Article  ADS  Google Scholar 

  • P.M.E. Décréau et al., WHISPER, a resonance sounder and wave analyzer: performances and perspectives for the Cluster mission. Space Sci. Rev. 79, 157 (1997)

    Article  ADS  Google Scholar 

  • N. Dubouloz, M. Scholer, On the origin of short large-amplitude magnetic structures upstream of quasi-parallel collisionless shocks. Geophys. Res. Lett. 20, 547 (1993)

    Article  ADS  Google Scholar 

  • J.P. Eastwood et al., The foreshock. Space Sci. Rev. 118, 41 (2005)

    Article  ADS  Google Scholar 

  • J.P. Edmiston, C.F. Kennel, A parametric survey of the first critical Mach number for a fast MHD shock. J. Plasma Phys. 32, 429 (1984)

    Article  ADS  Google Scholar 

  • W. Feldman et al., Plasma and magnetic fields from the sun, in The Solar Output and Its Variation, ed. O.R. White, vol 351 (Colorado Association University Press, Boulder, 1977)

  • V. Formisano, F. Palmiotto, G. Moreno, \(\alpha \)-Particle observations in the solar wind. Solar Phys. 15, 479 (1970)

    Article  ADS  Google Scholar 

  • S.A. Fuselier, Ion distributions in the Earth’s foreshock upstream from the bow shock. Adv. Space Res. 15, 43 (1995)

    Article  ADS  Google Scholar 

  • J. Giacalone, D. Burgess, Interaction between inclined current sheets and the heliospheric termination shock. Geophys. Res. Lett. 37, L19104 (2010)

    Article  ADS  Google Scholar 

  • T. Gold, Gas Dynamics of Cosmic Clouds, vol. 103 (North Holland Publishing Co., Amsterdam, 1955)

    Google Scholar 

  • D. Gurnett, Plasma waves and instabilities, in Collisionless Shocks in the Heliosphere: Reviews of Current Research, Geophysical Monograph, vol. 35, eds. R.G. Stone, B.T. Tsurutani (American Geophysical Union, Washington, DC, 1985), p. 207

  • M. Hoppe et al., Upstream hydromagnetic waves and their association with back streaming ion population: ISEE 1 and ISEE 2 observations. J. Geophys. Res. 86, 4471 (1981)

    Article  ADS  Google Scholar 

  • A.J. Hull et al., Multiscale whistler waves within Earth’s perpendicular bow shock. J. Geophys. Res. 117, A12014 (2012)

    Article  Google Scholar 

  • F.M. Ipavich et al., A statistical survey of ions observed upstream of the Earth’s bow shock: energy spectra, composition, and spatial variation. J. Geophys. Res. 86, 4337 (1981)

    Article  ADS  Google Scholar 

  • F.M. Ipavich, J.T. Gosling, M. Scholer, Correlation between the He/H ratios in upstream particle events and in the solar wind. J. Geophys. Res. 89, 1501 (1984)

    Article  ADS  Google Scholar 

  • H. Karimabadi et al., The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas. Phys. Plasmas 21, 062308 (2014)

    Article  ADS  Google Scholar 

  • J.C. Kasper et al., Solar wind temperature anisotropies, in Proceedings of the Tenth International Solar Wind Conference, vol. 538, eds. M. Velli, R. Bruno, F. Malara (American Institute of Physics, Melville, 2003)

  • Y. Kempf et al., Ion distributions in the Earth’s foreshock: Hybrid-Vlasov simulation and THEMIS observations. J. Geophys. Res. 120, 3684 (2015)

    Article  Google Scholar 

  • C.F. Kennel, J.P. Edmiston, T. Hada, A quarter century of collisionless shock research, in Collisionless Shocks in the Heliosphere: A Tutorial Review, Geophysical Monograph, vol. 34, eds. R.G. Stone, B.T. Tsurutani (American Geophysical Union, Washington, DC, 1985)

  • C.F. Kennel, Critical Mach numbers in classical magnetohydrodynamics. J. Geophys. Res. 92, 13427 (1987)

    Article  ADS  Google Scholar 

  • A. Kis et al., Gyrosurfing acceleration of ions in front of Earth’s quasi-parallel bow shock. Astrophys. J. 771, 4 (2013)

    Article  ADS  Google Scholar 

  • V. Krasnosselskikh et al., Nonstationarity of strong collisionless quasiperpendicular shocks: theory and full particle numerical simulations. Phys. Plasmas 9, 1192 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • V. Krasnosselskikh et al., The dynamic quasiperpendicular shock: Cluster discoveries. Space Sci. Rev. 178, 535 (2013)

    Article  ADS  Google Scholar 

  • N.A. Krall, What do we really know about collisionless shocks? Adv. Space Res. 20, 715 (1997)

    Article  ADS  Google Scholar 

  • S.M. Krimigis et al., Simultaneous measurements of energetic protons and electrons in the distant magnetosheath, magnetotail, and upstream in the solar wind. Geophys. Res. Lett. 5, 961 (1978)

    Article  ADS  Google Scholar 

  • E.A. Kronberg et al., On the origin of the energetic ion events measured upstream of the Earth’s bow shock by STEREO, Cluster, and Geotail. J. Geophys. Res. 116, A02210 (2011)

    Article  ADS  Google Scholar 

  • E. Lee et al., Nonlinear development of shocklike structure in the solar wind. Phys. Rev. Lett. 103, 031101 (2009)

    Article  ADS  Google Scholar 

  • B. Lembège et al., Demagnetization of transmitted electrons through a quasi-perpendicular collisionless shock. J. Geophys. Res. 108, 1256 (2003)

    Article  Google Scholar 

  • B. Lembège et al., Selected problems in collisionless-shock physics. Space Sci. Rev. 110, 161 (2004)

    Article  ADS  Google Scholar 

  • M.M. Leroy et al., The structure of perpendicular bow shocks. J. Geophys. Res. 87, 5081 (1982)

    Article  ADS  Google Scholar 

  • N. Lin et al., Nonlinear low-frequency wave aspect of foreshock density holes. Ann. Geophys. 26, 3707 (2008)

    Article  ADS  Google Scholar 

  • Y. Lin, Global hybrid simulation of hot flow anomalies near the bow shock and in the magnetosheath. Planet. Space Sci. 50, 577 (2002)

    Article  ADS  Google Scholar 

  • Y. Liu et al., Thermodynamic structure of collision-dominated expanding plasma: heating of interplanetary coronal mass ejections. J. Geophys. Res. 111, A01102 (2006)

    Article  ADS  Google Scholar 

  • E. Lobzin et al., Nonstationarity and reformation of high-Mach-number quasiperpendicular shocks: Cluster observations. Geophys. Res. Lett. 34, L05107 (2007)

    Article  ADS  Google Scholar 

  • E.A. Lucek et al., Cluster observations of structures at quasi-parallel bow shocks. Ann. Geophys. 22, 2309 (2004)

    Article  ADS  Google Scholar 

  • E.A. Lucek et al., Cluster observations of the Earth’s quasi-parallel bow shock. J. Geophys. Res. 113, A07S02 (2008)

    Article  Google Scholar 

  • M.F. Marcucci et al., Energetic magnetospheric oxygen in the magnetosheath and its response to IMF orientation: Cluster observations. J. Geophys. Res. 109, A07203 (2004)

    Article  ADS  Google Scholar 

  • A. Masters et al., Hot flow anomalies at Saturn’s bow shock. J. Geophys. Res. 114, A08217 (2009)

    Article  ADS  Google Scholar 

  • K. Meziane et al., Anomalous foreshock field-aligned beams observed by Cluster. Ann. Geophys. 29, 1967 (2011)

    Article  ADS  Google Scholar 

  • M.D. Montgomery, J.R. Asbridge, S.J. Bame, Vela 4 plasma observations near the Earth’s bow shock. J. Geophys. Res. 75, 1217 (1970)

    Article  ADS  Google Scholar 

  • J.A. Newbury, C.T. Russell, M. Gedalin, The ramp widths of high-Mach-number, quasi-perpendicular collisionless shocks. J. Geophys. Res. 103, 29581 (1998)

    Article  ADS  Google Scholar 

  • N. Omidi, D.G. Sibeck, Formation of hot flow anomalies and solitary shocks. J. Geophys. Res. 112, A01203 (2007)

    Article  ADS  Google Scholar 

  • N. Omidi et al., Dynamics of the foreshock compressional boundary and its connection to foreshock cavities. J. Geophys. Res. 118, 823 (2013)

    Article  Google Scholar 

  • T.G. Onsager, M.F. Thomsen, D. Winske, Hot flow anomaly formation by magnetic deflection. Geophys. Res. Lett. 17, 1621 (1990)

    Article  ADS  Google Scholar 

  • D.S. Orlowski et al., Damping and spectral formation of upstream whistlers. J. Geophys. Res. 100, 17117 (1995)

    Article  ADS  Google Scholar 

  • G.K. Parks et al., Larmor radius size density holes discovered in the solar wind upstream of Earth’s bow shock. Phys. Plasmas 13, 050701 (2006)

    Article  ADS  Google Scholar 

  • G.K. Parks et al., Entropy generation across Earth’s Collisionless bow shock. Phys. Rev. Lett. 108, 061102 (2012)

    Article  ADS  Google Scholar 

  • G.K. Parks et al., Reinterpretation of slowdown of solar wind mean velocity in nonlinear structures observed upstream of Earth’s bow shock. Astrophys. J. Lett. 77, L39 (2013)

    Article  ADS  Google Scholar 

  • G.K. Parks et al., Transport of solar wind H\(^+\) and He\(^{++}\) ions across Earth’s bow shock. Astrophys. J. Lett. 825, L27 (2016)

    Article  ADS  Google Scholar 

  • G. Paschmann et al., Observations of gyrating ions in the foot of the nearly perpendicular bow shock. Geophys. Res. Lett. 9, 881 (1982)

    Article  ADS  Google Scholar 

  • G. Paschmann et al., Three-dimensional plasma structures with anomalous flow directions near the Earth’s bow shock. J. Geophys. Res. 93, 11279 (1988)

    Article  ADS  Google Scholar 

  • K.B. Quest, Simulations of high Mach-number collisionless perpendicular shocks in astrophysical plasmas. Phys. Rev. Lett. 54, 1872 (1985)

    Article  ADS  Google Scholar 

  • H. Rème et al., First multi-spacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys. 19, 1303 (2001)

    Article  ADS  Google Scholar 

  • C.T. Russell, M.M. Hoppe, W.A. Livesey, Overshoots in planetary bow shocks. Nature 296, 45 (1982)

    Article  ADS  Google Scholar 

  • E.T. Sarris, G.C. Anagnostopoulos, S.M. Krimigis, Simultaneous measurements of energetic ion (\(\ge \)50 keV) and electron (\(\ge \)220 keV) activity upstream of Earth’s bow shock and inside the plasma sheet: Magnetospheric source for the November 3 and December 3, 1977 upstream events. J. Geophys. Res. 92, 12083 (1987)

    Article  ADS  Google Scholar 

  • M. Scholer, I. Shinohara, S. Matsukiyo, Quasi-perpendicular shocks: length scale of the cross potential, shock reformation and implications for shock surfing. J. Geophys. Res. 108, 1014 (2003)

    Article  Google Scholar 

  • M. Scholer, S. Matsukiyo, Nonstationarity of quasi-perpendicular shocks: a comparison of full particle simulations with different ion to electron mass ratio. Ann. Geophys. 22, 2345 (2004)

    Article  ADS  Google Scholar 

  • S.J. Schwartz et al., An active current sheet in the solar wind. Nature 318, 269 (1985)

    Article  ADS  Google Scholar 

  • S.J. Schwartz, Magnetic field structures and related phenomena at quasi-parallel shocks. Adv. Space Res. 11, 231 (1991)

    Article  ADS  Google Scholar 

  • S.J. Schwartz et al., Observations of short large-amplitude magnetic structures at a quasi-parallel shock. J. Geophys. Res. 97, 4209 (1992)

    Article  ADS  Google Scholar 

  • S.J. Schwartz et al., Conditions for the formation of hot flow anomalies at Earth’s bow shock. J. Geophys. Res. 105, 12639 (2000)

    Article  ADS  Google Scholar 

  • N. Sckopke, Ion heating at the Earth’s quasi-perpendicular bow shock. Adv. Space Sci. 15, 261 (1995)

    Article  ADS  Google Scholar 

  • D.D. Sentman et al., The oblique whistler instability in the Earth’s foreshock. J. Geophys. Res. 88, 2048 (1983)

    Article  ADS  Google Scholar 

  • A.Y. Shestakov, O.L. Vaisberg, Study and comparison of the parameters of five hot flow anomalies at a bow shock front. Cosm. Res. 54, 77 (2016)

    Article  ADS  Google Scholar 

  • D.G. Sibeck et al., Wind observations of foreshock cavities: a case study. J. Geophys. Res. 107, 1271 (2002)

    Article  Google Scholar 

  • V.A. Thomas, S.H. Brecht, Evolution of diamagnetic cavities in the solar wind. J. Geophys. Res. 93, 11341 (1988)

    Article  ADS  Google Scholar 

  • V.A. Thomas et al., Hybrid simulation of the formation of a hot flow anomaly. J. Geophys. Res. 96, 11625 (1991)

    Article  ADS  Google Scholar 

  • M.F. Thomsen et al., Field-aligned ion beams upstream of the Earth’s bow shock: evidence for a magnetosheath source. Geophys. Res. Lett. 10, 1207 (1983)

    Article  ADS  Google Scholar 

  • M.F. Thomsen, Upstream suprathermal ions, in Collisionless Shocks in heliosphere: Reviews of Current Research, Geophysical Monograph, vol. 35, eds. B.T. Tsurutani, R.G. Stone (American Geophysical Union, Washington, DC, 1985), p. 253

  • M.F. Thomsen et al., Hot, diamagnetic cavities upstream from the Earth’s bow shock. J. Geophys. Res. 91, 2961 (1986)

    Article  ADS  Google Scholar 

  • M.F. Thomsen, Multi-spacecrat observations of collisionless shocks. Adv. Space Res. 8, 157 (1988)

    Article  ADS  Google Scholar 

  • M.F. Thomsen et al., Magnetic pulsations at the quasi-parallel shock. J. Geophys. Res. 95, 957 (1990)

    Article  ADS  Google Scholar 

  • M.F. Thomsen et al., Observational test of hot flow anomaly formation by the interaction of a magnetic discontinuity with the bow shock. J. Geophys. Res. 98, 15139 (1993)

    ADS  Google Scholar 

  • D.A. Tidman, N.A. Krall, Shock Waves in Cllisionless Plasmas (Wiley, New York, 1971)

    Google Scholar 

  • D.A. Tidman, T.G. Northrop, Emission of plasma waves by the Earth’s bow shock. J. Geophys. Res. 73, 1543 (1968)

    Article  ADS  Google Scholar 

  • R. Treumann, Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks. Astron. Astrophys. Rev. 17, 409 (2009)

    Article  ADS  Google Scholar 

  • K. Tsubouchi, B. Lembège, Full particle simulations of short large-amplitude magnetic structures (SLAMS) in quasi-parallel shocks. J. Geophys. Res. 109, A02114 (2004)

    Article  ADS  Google Scholar 

  • S. Wang, Q.G. Zong, H. Zhang, Cluster observations of hot flow anomalies with large flow deflections: 1. Velocity deflections. J. Geophys. Res. 118, 732 (2013)

    Article  Google Scholar 

  • M. Wilber et al., Foreshock density holes in the context of known upstream plasma structures. Ann. Geophys. 26, 37411 (2008)

    Article  Google Scholar 

  • L.B. Wilson III et al., Low-frequency whistler waves and shocklets observed at quasi-perpendicular interplanetary shocks. J. Geophys. Res. 114, A10106 (2009)

    Article  ADS  Google Scholar 

  • L.B. Wilson III et al., Observations of electromagnetic whistler precursors at supercritical interplanetary shocks. Geophys. Res. Lett. 39, L08109 (2012)

    Article  ADS  Google Scholar 

  • L.B. Wilson III et al., Electromagnetic waves and electron anisotropies downstream of supercritical interplanetary shocks. J. Geophys. Res. 118, 5 (2013a)

    Article  Google Scholar 

  • L.B. Wilson III et al., Shocklets, SLAMS, and field-aligned ion beams in the terrestrial foreshock. J. Geophys. Res. 118, 957 (2013b)

    Article  Google Scholar 

  • L.B. Wilson et al., Quantified energy dissipation rates in the terrestrial bow shock: 1. Analysis techniques and methodology. J. Geophys. Res. 119, 6455 (2014a)

    Article  Google Scholar 

  • L.B. Wilson III et al., Quantified energy dissipation rates in the terrestrial bow shock: 2. Waves and dissipation. J. Geophys. Res. 119, 6475 (2014b)

    Article  Google Scholar 

  • L.B. Wilson III, Low frequency waves at and upstream of collisionless shocks, in Low-Frequency Waves in Space Plasmas, Geophysical Monograph, vol. 216, eds. A. Keiling, D.-H. Lee, V. Nakariakov (American Geophysical Union, Washington, DC 2016), p. 269

  • T. Xiao et al., Propagation characteristics of young hot flow anomalies near the bow shock: Cluster observations. J. Geophys. Res. 120, 4142 (2015)

    Article  Google Scholar 

  • Z.W. Yang et al., Full particle electromagnetic simulations of entropy generation across a collisionless shock. Astrophys. J. Lett. 793, L11 (2014)

    Article  ADS  Google Scholar 

  • Z. Yang et al., Global explicit particle-in-cell simulations of the nonstationary bow shock and magnetosphere. Astrophys. J. Suppl. 225, 13 (2016)

    Article  ADS  Google Scholar 

  • H. Zhang et al., Time history of events and macroscale interactions during substorms observations of a series of hot flow anomaly events. J. Geophys. Res. 115, A12235 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for correcting errors and making suggestions that improved the quality of this article. We thank the Cluster CIS, FGM, and EFW teams and the Cluster Active Archive for providing the data. The work by E. Lee was in part supported by the BK21 Plus Program and Basic Science Research Program (NRF-2013R1A1A2010711) through the National Research Foundation funded by the Ministry of Education of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Parks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parks, G.K., Lee, E., Fu, S.Y. et al. Shocks in collisionless plasmas. Rev. Mod. Plasma Phys. 1, 1 (2017). https://doi.org/10.1007/s41614-017-0003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-017-0003-4

Keywords

Navigation