Skip to main content
Log in

Cosmic-ray helium nuclei measurement with the calorimeter of the Alpha Magnetic Spectrometer

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

The distributions of energy responses of helium measured by the electromagnetic calorimeter (ECAL) of Alpha Magnetic Spectrometer (AMS-02) in Monte-Carlo do not agree with those in real data, thus using energy response matrix obtained from Monte-Carlo to measure the cosmic ray helium spectrum is not correct. Therefore, the spectrum measured with ECAL based on raw Monte-Carlo would be different from the real one. The purpose is to correct the response matrix to measure helium spectrum with ECAL.

Methods

The energy measured by ECAL of AMS-02 provides in-flight correction for the energy response matrix in Monte-Carlo.

Results

The spectrum based on corrected response matrix is consistent with the AMS collaboration published result.

Conclusions

It is feasible to measure helium spectrum with ECAL with corrected energy response matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Blasi, Recent results in cosmic ray physics and their interpretation. Braz. J. Phys. 44, 426–440 (2014)

    Article  ADS  Google Scholar 

  2. I.A. Grenier, J.H. Black, A.W. Strong, The nine lives of cosmic rays in galaxies. Annu. Rev. Astron. Astrophys. 53, 199 (2015)

    Article  ADS  Google Scholar 

  3. P. Blasi, The origin of galactic cosmic rays. Astron. Astrophys. Rev. 21, 70 (2013)

    Article  ADS  Google Scholar 

  4. A.W. Strong, I.V. Moskalenko, V.S. Ptuskin, Cosmic-ray propagation and interactions in the galaxy. Annu. Rev. Nucl. Part. Sci. 57, 285 (2007)

    Article  ADS  Google Scholar 

  5. A.D. Panov et al., (ATIC Collaboration), energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: final results. Bull. Russ. Acad. Sci. Phys. 73, 564 (2009)

    Article  Google Scholar 

  6. H.S. Ahn et al., (CREAM Collaboration), Discrepant hardening observed in cosmic-ray elemental spectra. Astrophys. J. Lett. 714, L89 (2010)

    Article  ADS  Google Scholar 

  7. Y.S. Yoon et al., (CREAM Collaboration), Proton and Helium Spectra from the CREAM-III Flight. Astrophys. J. Lett 839, 1 (2017)

    Article  Google Scholar 

  8. E. Atkin et al., (NUCLEON Collaboration), first results of the cosmic ray NUCLEON experiment. Cosmol. Astropart. Phys. 07, 020 (2017)

    Article  ADS  Google Scholar 

  9. F. Alemanno et al., (DAMPE Collaboration), measurement of the cosmic ray helium energy spectrum from 70 GeV to 80 TeV with the DAMPE space mission. Phys. Rev. Lett. 126, 201102 (2021)

    Article  ADS  Google Scholar 

  10. G.D. Lafferty, T.R. Wyatt, Where to stick your data points: the treatment of measurements within wide bins. Nucl. Instrum. Methods Phys. Res. Sect. A 355, 541 (1995)

    Article  ADS  Google Scholar 

  11. M. Aguilar et al., Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 114, 171103 (2015)

    Article  ADS  Google Scholar 

  12. J. Berdugo, V. Choutko, C. Delgado, Q. Yan, Determination of the rigidity scale of the Alpha Magnetic Spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A 869, 10 (2017)

    Article  ADS  Google Scholar 

  13. O. Adriani et al., (CALET Collaboration), Direct measurement of the cosmic-ray proton spectrum from 50 GeV to 10 TeV with the calorimetric electron telescope on the international space station. Phys. Rev. Lett. 122, 181102 (2019)

    Article  ADS  Google Scholar 

  14. I.P. Ivanenko et al., Energy spectra of cosmic rays above 2 TeV as measured by the 'SOKOL' Apparatus. 23rd International Cosmic Ray Conference (ICRC23), vol. 2 (1993), p. 17

  15. A. Obermeier, M. Ave, P. Boyle, Ch. Höppner, J. Hörandel, D. Müller, Energy spectra of primary and secondary cosmic-ray nuclei measured with TRACER. Astrophys. J. 742, 14 (2011)

    Article  ADS  Google Scholar 

  16. A. Kounine, The alpha magnetic spectrometer on the international space station. Int. J. Mod. Phys. E 21, 1230005 (2012)

    Article  ADS  Google Scholar 

  17. C. Adloff et al., The AMS-02 lead-scintillating fibres electromagnetic calorimeter. Nucl. Instrum. Methods Phys. Res. Sect. A 714, 147 (2013)

    Article  ADS  Google Scholar 

  18. J. Allison et al., Recent developments in GEANT4. Nucl. Instrum. Methods Phys. Res. A 835, 186–225 (2016)

    Article  ADS  Google Scholar 

  19. M. Aguilar et al., Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV to 3 TV with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett. 115, 211101 (2015)

    Article  ADS  Google Scholar 

  20. G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods Phys. Res. Sect. A 362, 487 (1995)

    Article  ADS  Google Scholar 

Download references

Funding

The funding was provided by China Sponsorship Council (Grant Number: 202004910534).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zu-Hao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Fz., Tang, ZC., Li, ZH. et al. Cosmic-ray helium nuclei measurement with the calorimeter of the Alpha Magnetic Spectrometer. Radiat Detect Technol Methods 6, 427–432 (2022). https://doi.org/10.1007/s41605-022-00336-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-022-00336-2

Keywords

Navigation