Skip to main content

Advertisement

Log in

A probabilistic seismic hazard analysis in SE Iran; case study: Kerman province

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

Kerman province in SE Iran has always experienced devastating earthquakes. Therefore, it is necessary to carry out an up-to-date probabilistic seismic hazard analysis (PSHA) in order to the risk reduce and increase the resilience of the infrastructures. This study provides PSHA with emphasis on uncertainties in different steps of analysis. To create an integrated seismic catalog with moment magnitude, a magnitude conversion algorithm was proposed which can be applied with the reference to IRSC main catalog. To achieve the best results, active seismic zones of Kerman province and its around areas, have been carefully identified. Seismic source zones were modeled by four criteria: seismicity, faults, geological conditions, and focal mechanisms. Seismicity parameters (Gutenberg-Richter recurrence law coefficients, Mmax and Mmin, as well as activity rate) were determined for all the seismic source zones. Ground-motion models have been applied in accordance with the region and the existing uncertainties have been identified and reduced as much as possible. The results of this study are presented in form of bedrock seismic hazard maps for PGA and spectral acceleration in 0.2 s and 1.0 s periods with a probability of 2% and 10% in 50 years, to meet all structural design needs in the region. Our results indicate the maximum and minimum PGA with the 475-year return period (0.58 g and 0.05g) are related to the Faryab city, and the Lut plain, respectively. Also, our results of the 2475- return period show Faryab city and Lut plain have highest and lowest PGA (0.92 g and 0.1 g), respectively.

Resumen

Históricamente, la provincia de Kerman, SE Irán, ha experimentado muchos terremotos devastadores. Es por tanto necesario hacer una puesta al día mediante un análisis probabilístico de peligros sísmicos (PSHA) con la idea de reducir los riesgos y aumentar la resiliencia de las infraestructuras. El estudio de PSHA presentado está desarrollado en diferentes etapas. Para crear un catálogo integrado de seísmos con momento de magnitud, se ha propuesto un algoritmo de conversión de magnitudes que puede ser aplicado con un catálogo base de IRSC. Para obtener los mejores resultados se han identificado las zonas sísmicas de la provincia de Kerman y de zonas próximas. Las zonas de origen sísmico fueron diferenciadas bajo cuatro criterios: sismicidad, fallas, condiciones geológicas y mecanismos focales. Los parámetros sísmicos (Ley de recurrencia Gutemberg-Richter, Mmax y Mmin, y el grado de actividad) fueron determinados para todas las zonas de origen de los seísmos. Los modelos de movimientos profundos han sido aplicados de acuerdo con cada región. Pudiéndose detectar incertidumbres y reducirlas todo lo posible. Los resultados de este estudio son presentados en forma de mapas de peligros sísmicos para PGA, y aceleración espectral de periodos de 0,2 a 1.0 s con una probabilidad del 2% al 10% en 50 años, para encontrar el diseño estructural necesario en la región. Nuestros resultados abarcan el máximo y mínimo PGA con un periodo de retorno de 475 años (0,58 g y 0,1 g) para la ciudad de Faryad y la llanura Lt respectivamente. Por otro lado, nuestros resultados con periodo de retorno de 2.475 muestra que la ciudad de Faruad y la llanura de Lut tienen los valores más altos y más bajos de PGA (0,92 g y 0,1 g) respectivamente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data and resources

Data for seismic catalog compilation were mainly obtained from the Iranian Seismological Center (IRSC), http://irsc.ut.ac.ir/bulletin.php (last accessed January 2020), the International Seismological Centre (ISC), http://www.isc.ac.uk/iscbulletin/search/bulletin/ (last accessed January 2020), the National Earthquake Information Center (NEIC), https://earthquake.usgs.gov/earthquakes/search/ (last accessed January 2020), and the Global Centroid Moment Tensor (GCMT), https://www.globalcmt.org/CMTsearch.html (last accessed January 2020), databases. Data on the focal mechanism were taken from the GCMT catalog, https://www.globalcmt.org/CMTsearch.html (last accessed January 2020). Data on earthquake accelerometers were obtained from Building and Housing Research Center (BHRC), https://smd.bhrc.ac.ir/Portal/en/Search/Waveforms (last accessed March 2020).

References

  • Abrahamson, N. A. (2006). Seismic hazard assessment: problems with current practice and future developments. In: First European Conference on Earthquake Engineering and Seismology, pp. 3–8.

  • Akkar, S., & Bommer, J. J. (2010). Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the mediterranean region, and the Middle East. Seismological Research Letters, 81, 195–206. https://doi.org/10.1785/gssrl.81.2.195

    Article  Google Scholar 

  • Ambraseys, N. N., & Melville, C. P. (1982). A history of Persian earthquakes (p. 100). Cambridge University Press.

    Google Scholar 

  • Ambraseys, N. N., & Melville, C. P. (2005). A history of Persian earthquakes. Cambridge University Press.

    Google Scholar 

  • Amiri, G. G., Mahdavian, A., & Dana, F. M. (2007). Attenuation relationships for Iran. Journal of Earthquake Engineering, 11, 469–492. https://doi.org/10.1080/13632460601034049

    Article  Google Scholar 

  • Baker, J. W. (2008). An introduction to probabilistic seismic hazard analysis (PSHA). Citeseer.

    Google Scholar 

  • Berberian, M., 1994. Natural Hazards and the first earthquake catalog of Iran. Geol. Surv. Iran.

  • Berberian, M. (2014). Earthquakes and Coseismic Surface Faulting on the Iranian Plateau. Available Online:https://www.worldcat.org/isbn/9780444632920/ [20 June 2014]

  • Berberian, F., & Berberian, M. (1981). Tectono-plutonic episodes in Iran. In H. K. Gupta & F. M. Delany (Eds.), Zagros-Hindu Kush-Himalaya geodynamic evolution (Vol. 3, pp. 5–32). Am. Geophys. Union, Geodynamics Series.

    Chapter  Google Scholar 

  • Berberian, F., Muir, I. D., Pankhurst, R. J., & Berberian, M. (1982). Late cretaceous and early miocene andean-type plutonic activity in northern makran and Central Iran. Journal of the Geological Society, 139, 605–614.

    Article  Google Scholar 

  • Berberian, M., Jackson, J. A., Qorashi, M., & Kadjar, M. H. (1984). Field and teleseimic observations of the 1981 Golbaf-Sirch earhquakes in SE Iran. Geophysical Journal International Astronomy Society, 77, 809–838.

    Article  Google Scholar 

  • Berberian, M., & Qorashi, M. (1994). Coseismic fault- related folding during South Golbaf earthquake of November 20, 1989, in southeast Iran. Journal of Geology, 22, 531–534.

    Article  Google Scholar 

  • Berberian, M., Qorashi, M., Jackson, J. A., Fielding, E., Parsons, B. E., Priestley, K., Talebian, M., Walker, R., Wright, T. J., & Baker, E. (2001). The 1998 March 14 Fandoqa earthquake M = 6.6 in Kerman, southeast Iran: Re-rupture of the 1981 Sirch earthquake fault, triggering of slip on adjacent thrusts, and the active tectonics of the Gowk fault zone. Geophysical Journal of International, 146(2), 371–398.

    Article  Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24, 139–171. https://doi.org/10.1193/1.2857546

    Article  Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, 30, 1087–1114. https://doi.org/10.1193/062913EQS175M

    Article  Google Scholar 

  • Cornell, B. Y. C. A. (1968). Owing to the uncertainty in the number , sizes , and locations of future earthquakes it is appropriate that engineers express seismic risk , as design winds or floods are , in terms of return periods (Blume , 1965 ; Newmark , 1967; Blume , Newmark and C. Bulletin of the Seismological Society of America, 1583–1606.

  • Das, R., Gonzalez, G., de la Llera, J. C., Saez, E., Salazar, P., Gonzalez, J., & Meneses, C. (2020). A probabilistic seismic hazard assessment of southern Peru and Northern Chile. Engineering Geology, 271, 105585. https://doi.org/10.1016/j.enggeo.2020.105585

    Article  Google Scholar 

  • Dehghan-Manshadi, S. H., Mirzaei, N., Eskandari-Ghadi, M., Shabani, E., & Mousavi-Bafrouei, S. H. (2020). Time-dependent probabilistic seismic hazard assessment in Kerman and adjacent areas in the west of Lut block, Central-East Iran. Bulletin of Engineering Geology and the Environment, 79, 5079–5094. https://doi.org/10.1007/s10064-020-01897-6

    Article  Google Scholar 

  • Dziewonski, A. M., Chou, T. A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86, 2825–2852. https://doi.org/10.1029/JB086iB04p02825

    Article  Google Scholar 

  • Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002

    Article  Google Scholar 

  • Ezati, M., Gholami, E., Mousavi, S. M., Rashidi, A., & Derakhshani, R. (2022a). Active Deformation Patterns in the Northern Birjand Mountains of the Sistan Suture Zone, Iran. Applied Sciences, 12, 6625. https://doi.org/10.3390/app12136625

    Article  Google Scholar 

  • Ezati, M., Rashidi, A., Gholami, E., Mousavi, S. M., Nemati, M., Shafieibafti, S., et al. (2022b). Paleostress analysis in the Northern Birjand, East of Iran: Insights from inversion of fault-slip data. Minerals, 12, 1606. https://doi.org/10.3390/min12121606

    Article  Google Scholar 

  • Fielding, E. J., Talebian, M., Rosen, P. A., Nazari, H., Jackson, J. A., Ghorashi, M., & Walker, R. (2005). Surface ruptures and building damage of the 2003 Bam, Iran, earthquake mapped by satellite synthetic aperture radar interferometric correlation. Journal of Geophysical Research, 110, B03302. https://doi.org/10.1029/2004JB003299

    Article  Google Scholar 

  • Foroutan, M., et al. (2014). Late Pleistocene-Holocene right slip rate and paleo-seismology of the Nayband fault, western margin of the Lut block, Iran. Journal of Geophysical Research: Solid Earth, 119(4), 3517–3560.

    Article  Google Scholar 

  • Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64, 1363–1367.

    Article  Google Scholar 

  • Gaspar-Escribano, J. M., Rivas-Medina, A., Parra, H., Cabañas, L., Benitoa, B., Ruiz Barajas, S., & Martínez Solares, J. M. (2015). Uncertainty assessment for the seismic hazard map of Spain. Engineering Geology, 199, 62–73. https://doi.org/10.1016/j.enggeo.2015.10.001

    Article  Google Scholar 

  • Ghasemi, H., Zare, M., & Fukushima, Y. (2008). Ranking of several ground-motion models for seismic hazard analysis in Iran. Journal of Geophysics and Engineering, 5, 301–310. https://doi.org/10.1088/1742-2132/5/3/006

    Article  Google Scholar 

  • Ghasemi, H., Zare, M., Fukushima, Y., & Koketsu, K. (2009). An empirical spectral ground-motion model for Iran. Journal of Seismology, 13, 499–515. https://doi.org/10.1007/s10950-008-9143-x

    Article  Google Scholar 

  • Gülerce, Z., & Vakilinezhad, M. (2015). Effect of seismic source model parameters on the probabilistic seismic-hazard assessment results: A case study for the North Anatolian Fault zone. Bulletin of the Seismological Society of America, 105, 2808–2822. https://doi.org/10.1785/0120150101

    Article  Google Scholar 

  • Hainzl, S., Scherbaum, F., & Beauval, C. (2006). Estimating background activity based on interevent-time distribution. Bulletin of the Seismological Society of America, 96, 313–320. https://doi.org/10.1785/0120050053

    Article  Google Scholar 

  • Hamzehloo, H., & Mahood, M. (2012). Ground-motion attenuation relationship for East Central Iran. Bulletin of the Seismological Society of America, 102, 2677–2684. https://doi.org/10.1785/0120110249

    Article  Google Scholar 

  • Hessami, K., & Jamali, F. (2006). Explanatory notes to the map of major active faults of Iran. JSEE (iran), 8, 1–11.

    Google Scholar 

  • Idriss, I. M. (1985). Vol. 4. Technical papers: Session 6, Evaluating seismic risk in engineering practice; Session 7, *Stability of natural deposits during earthquakes; Session 8, *Comparison of prediction and performance of earth structures; Session 9, *Geological aspects. A.A.Balkema, Rotterdam; Boston.

  • Jackson, J. A., & Mckenzie, D. (1984). Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan. Geophysical Journal of the Royal Astronomical Society, 77, 185–264.

    Article  Google Scholar 

  • Kamali, Z., Nazari, H., Rashidi, A., Heyhat, M. R., Khatib, M. M., & Derakhshani, R. (2023). Seismotectonics, geomorphology and paleoseismology of the Doroud Fault, a source of seismic hazard in Zagros. Applied Sciences, 13, 3747. https://doi.org/10.3390/app1306374

    Article  Google Scholar 

  • Karimiparidari, S., Zaré, M., Memarian, H., & Kijko, A. (2013). Iranian earthquakes, a uniform catalog with moment magnitudes. Journal of Seismology, 17, 897–911. https://doi.org/10.1007/s10950-013-9360-9

    Article  Google Scholar 

  • Kijko, A., Smit, A., & Sellevoll, M. A. (2016). Estimation of earthquake hazard parameters from incomplete data files. Part III. incorporation of uncertainty of earthquake-occurrence model. Bulletin of the Seismological Society of America, 106, 1210–1222. https://doi.org/10.1785/0120150252

    Article  Google Scholar 

  • Maggi, A., Priestley, K., Jackson, J. A. (2002). Focal depths of moderate and large size earthquakes in Iran. J Seismol Earthq Eng, 4, 1–10

  • Mahsuli, M., Rahimi, H., & Bakhshi, A. (2019). Probabilistic seismic hazard analysis of Iran using reliability methods. Bulletin of Earthquake Engineering, 17, 1117–1143. https://doi.org/10.1007/s10518-018-0498-2

    Article  Google Scholar 

  • Maiti, S. K., & Kamai, R. (2020). Interaction between fault and off-fault seismic sources in hazard analysis—A case study from Israel. Engineering Geology, 274, 105723. https://doi.org/10.1016/j.enggeo.2020.105723

    Article  Google Scholar 

  • McCall, G. J. H. (1997). The geotectonic history of the Makran and adjacent areas of southernIran. Journal of Asian Earth Sciences, 15(6), 517–531.

    Article  Google Scholar 

  • McCall, G. J. H. (1997b). The geotectonic history of the Makran and adjacent areas of southern Iran. Journal of Asian Earth Sciences, 15(6), 517–531.

  • McCall, G. J. H., & Kidd, R. G. W. (1982). The Makran, southeastern Iran: the anatomy of a convergent plate margin active from Cretaceous to present. In J. K. Leggett (Ed.), Trench-forearc geology: Sedimentation and tectonics on modern and ancient active plate margins (Vol. 10, pp. 387–397). Geological Society of London Special Publication. Blackwell Scientific.

    Google Scholar 

  • Mehrabi, A., Pirasteh, S., Rashidi, A., Pourkhosravani, M., Derakhshani, R., Liu, G., et al. (2021). Incorporating persistent scatterer interferometry and radon anomaly to understand the anar fault mechanism and observing new evidence of intensified activity. Remote Sensing (basel), 13, 2072. https://doi.org/10.3390/rs13112072

    Article  Google Scholar 

  • Merz, H. A., & Cornell, C. A. (1974). Seismic risk analysis based on a quadratic magnitude-frequency law. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 11, 127. https://doi.org/10.1016/0148-9062(74)90731-1

    Article  Google Scholar 

  • Mirzaei, N., Gao, M. T., Chen, Y. T., & Wang, J. (1997). A uniform catalog of earthquakes for seismic hazard assessment in Iran. Acta Seismologica Sinica Edition, 10, 713–726. https://doi.org/10.1007/s11589-997-0003-5

    Article  Google Scholar 

  • Mohammadi, H., & Bayrak, Y. (2016). An evaluation of earthquake hazard parameters in the Iranian Plateau based on the Gumbel III distribution. Journal of Seismology, 20, 615–628. https://doi.org/10.1007/s10950-015-9547-3

    Article  Google Scholar 

  • Moinfar, A. A., Naderzadeh, A., Nabavi, M. H. (2012). New Iranian seismic hazard zoning map for new edition of seismic code and its comparison with neighbor countries. In: 15 WCEE, Lisboa 2012, p. 10.

  • Mousavi-Bafrouei, S. H., Mirzaei, N., & Shabani, E. (2014). A declustered earthquake catalog for the iranian plateau. Annales Geophysicae, 57, 653. https://doi.org/10.4401/ag-6395

    Article  Google Scholar 

  • Nemati, M., & Derakhshani, R. (2021). Short-term seismicity patterns along the most active faults in Iran. Journal of Iberian Geology, 47, 441–459. https://doi.org/10.1007/s41513-020-00133-0

    Article  Google Scholar 

  • Nemati, M., & Gheitanchi, M. (2011). Analysis of 2005 Dahuieh (Zarand) aftershocks sequence in Kerman province. Journal of Earth and Space Physics (institute of Geophysics the University of Tehran), 37(1), 1–9.

    Google Scholar 

  • Nemati, M., Hajati, F. J., Rashidi, A., & Hassanzadeh, R. (2020). Seismology of the 2017 Hojedk earthquakes (MN 6.0–6.1) Kerman province, SE Iran. Tectonophysics, 780, 228398. https://doi.org/10.1016/j.tecto.2020.228398

    Article  Google Scholar 

  • Nemati, M., & Tatar, M. (2015). Relations between source parameters for large Persian earthquakes. Annals of Geophysics, 58(5), S0543.

    Google Scholar 

  • Nuttli, O. W. (1973). Seismic wave attenuation and magnitude relations for eastern North America. Journal of Geophysical Research, 78, 876–885. https://doi.org/10.1029/jb078i005p00876

    Article  Google Scholar 

  • Ordaz, M., & Arroyo, D. (2016). On uncertainties in probabilistic seismic hazard analysis. Earthquake Spectra, 32, 1405–1418. https://doi.org/10.1193/052015EQS075M

    Article  Google Scholar 

  • Rashidi, A., Abbassi, M.-R., Nilfouroushan, F., Shafiei, S., Derakhshani, R., & Nemati, M. (2020). Morphotectonic and earthquake data analysis of interactional faults in Sabzevaran Area SE Iran. Journal of Structuring and Geology, 139, 104147.

    Article  Google Scholar 

  • Rashidi, A., & Derakhshani, R. (2022). Strain and moment rates from GPS and seismological data in Northern Iran: Implications for an evaluation of stress trajectories and probabilistic fault rupture hazard. Remote Sensing (basel), 14, 2219. https://doi.org/10.3390/rs14092219

    Article  Google Scholar 

  • Rashidi, A., Khatib, M. M., Nilfouroushan, F., Derakhshani, R., Mousavi, S. M., Kiyani, H., & Jamour, Y. (2019). Strain rate and stress fields in the West and South Lut block, Iran: Insights from the inversion of focal mechanism and geodetic data. Tectonophysics, 766, 94–114.

    Article  Google Scholar 

  • Rashidi, A., Kianimehr, H., Shafieibafti, S., Mehrabi, A., & Derakhshani, R. (2021). Active faults in the west of the Lut block (Central Iran). Geophysical Research, 22, 70–84. https://doi.org/10.21455/gr2021.3-5

    Article  Google Scholar 

  • Rashidi, A., Kianimehr, H., Yamini-Fard, F., Tatar, M., & Zafarani, H. (2022). Present stress map and deformation distribution in the NE Lut block, Eastern Iran: Insights from seismic and geodetic strain and moment rates. Pure and Applied Geophysics, 179, 1887–1917. https://doi.org/10.1007/s00024-022-03015-x

    Article  Google Scholar 

  • Rashidi, A., Nemati, M., ShafieibaftI, S. H., Pourbeyranvand, S. H., Derakhshani, R., & Braitenberg, C. (2023ba). Structure and kinematics of active faulting in the Northern Domain of Western and Central Alborz, Iran and interpretation in terms of tectonic evolution of the Region. Journal of Asian Earth Sciences. https://doi.org/10.1016/j.jseaes.2023.105760

    Article  Google Scholar 

  • Rashidi, A., Shafieibafti, S., Nemati, M., Ezati, M., Gholami, E., Mousavi, S. M., & Derakhshani, R. (2023b). Flexural-slip folding in buckling phases of orogenic belts: Insight into the tectonic evolution of fault splays in the East Iran orogen. Frontiers in Earth Science, 11, 1169667. https://doi.org/10.3389/feart.2023.1169667

    Article  Google Scholar 

  • Reasenberg, P. (1985). Second-order moment of central California seismicity, 1969–1982. Journal of Geophysical Research: Solid Earth, 90, 5479–5495. https://doi.org/10.1029/jb090ib07p05479

    Article  Google Scholar 

  • Regard, V., Bellier, O., Braucher, R., Gasse, F., Bourles, D., Mercier, J., Thomas, J.-C., Abbassi, M. R., Shabanian, E., & Soleymani, S. (2006). 10 Be dating of alluvial de-posits from Southeastern Iran (the Hormoz Strait area). Palaeogeography, Palaeoclimatology, Palaeoecology, 242(1), 36–53.

    Article  Google Scholar 

  • Saafizaadeh, M., & Bagheripour, M. H. (2019). Evaluation of peak ground acceleration for the city of Kerman through seismic hazard analysis. Scientia Iranica, 26, 257–272. https://doi.org/10.24200/sci.2017.4236

    Article  Google Scholar 

  • Saffari, H., Kuwata, Y., Takada, S., & Mahdavian, A. (2012). Updated PGA, PGV, and spectral acceleration attenuation relations for Iran. Earthquake Spectra, 28, 257–276. https://doi.org/10.1193/1.3673622

    Article  Google Scholar 

  • Salahshoor, H., Lyubushin, A., Shabani, E., & Kazemian, J. (2018). Comparison of Bayesian estimates of peak ground acceleration (Amax) with PSHA in Iran. Journal of Seismology, 22, 1515–1527. https://doi.org/10.1007/s10950-018-9782-5

    Article  Google Scholar 

  • Savidge, E., Nissen, E., Nemati, M., Karasözen, E., Hollingsworth, J., Talebian, M., Bergman, E., Ghods, A., Ghorashi, M., Kosari, E., Rashidi, A., & Rashidi, A. (2019). The December 2017 Hojedk (Iran) earthquake triplet - Sequential rupture of shallow reverse faults in a strike-slip restraining bend. Geophysical Journal International, 217, 909–925. https://doi.org/10.1093/gji/ggz053

    Article  Google Scholar 

  • Scherbaum, F., Bommer, J. J., Bungum, H., Cotton, F., & Abrahamson, N. A. (2005). Composite ground-motion models and logic trees: Methodology, sensitivities, and uncertainties. Bulletin of the Seismological Society of America, 95, 1575–1593. https://doi.org/10.1785/0120040229

    Article  Google Scholar 

  • Scordilis, E. M. (2006). Empirical global relations converting MS and mb to moment magnitude. Journal of Seismology, 10, 225–236. https://doi.org/10.1007/s10950-006-9012-4

    Article  Google Scholar 

  • Sengor, A. M. C., Altlner, D., Cin, A., Ustaomer, T., & Hsu, K. J. (1988). Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana land. In M. G. Audley-Charles & A. E. Hallam (Eds.), Gondwana and Tethys (pp. 119–181). Geological Society of London Special Publication.

    Google Scholar 

  • Shirzad, T., Riahi, M. A., Assumpção, M. S. (2019). Crustal structure of the Collision-subduction Zone in south of Iran Using Virtual seismometers. 9, 10851, https://doi.org/10.1038/s41598-019-47430-y.

  • Stepp, J. C. (1973). Analysis of completeness of the earthquake sample in the Puget Sound area. In: Contributions in seismic zoning, pp. 16–28.

  • Stirling, M., Goded, T., Berryman, K., & Litchfield, N. (2013). Selection of earthquake scaling relationships for seismic-hazard analysis. Bulletin of the Seismological Society of America, 103(6), 2993–3011.

    Article  Google Scholar 

  • Sucuoʇlu, H., Akkar, S. (2013). Basic earthquake engineering: From seismology to analysis and design, basic earthquake engineering: From seismology to analysis and design. https://doi.org/10.1007/978-3-319-01026-7.

  • Taghizadeh-Farahmand, F., Afsari, N., & Sodoud, F. (2015). Crustal thickness of iran inferred from converted waves. Pure and Applied Geophysics, 172, 309–331.

    Article  Google Scholar 

  • Taherian, A. R., & Kalantari, A. (2019). Risk-targeted seismic design maps for Iran. Journal of Seismology, 23, 1299–1311. https://doi.org/10.1007/s10950-019-09867-6

    Article  Google Scholar 

  • Takin, M. (1972). Iranian geology and continental drift in the Middle East. Nature, 235(5334), 147–150.

    Article  Google Scholar 

  • Talebi, M., Zare, M., Peresan, A., & Ansari, A. (2017). Long-term probabilistic forecast for M ≥ 5.0 earthquakes in Iran. Pure and Applied Geophysics, 174, 1561–1580. https://doi.org/10.1007/s00024-017-1516-z

    Article  Google Scholar 

  • Talebian, M., Biggs, J., Bolourchi, M., Copley, A., Gassemi, A., Ghorashi, M., Hollingsworth, J., Jackson, J., Nissen, E., Oveisi, B., Parsons, B., Priestley, K., & Saiidi, A. (2006a). The Dahuiyeh (Zarand) earthquake of 2005 February 22 in central Iran: Reactivation of an intramountain reverse fault. Geophysical Journal International, 164, 137–148.

    Article  Google Scholar 

  • Talebian, M., Biggs, J., Bolourchi, M., Copley, A., Ghassemi, A., Ghorashi, M., Hollingsworth, J., Jackson, J., Nissen, E., Oveisi, B., Parsons, B., Priestley, K., & Saiidi, A. (2006b). The Dahuiyeh (Zarand) earthquake of 2005 February 22 in central Iran: Reactivation of an intramountain reverse fault. Geophysical Journal International, 164, 137–148. https://doi.org/10.1111/j.1365-246X.2005.02839.x

    Article  Google Scholar 

  • Tavakoli, B., & Ghafory-Ashtiany, M. (1999). Seismic hazard assessment of Iran. Annales Geophysicae, 42, 1013–1021.

    Google Scholar 

  • Trifonov, V. G., Hessami, K., Popov, S. V., Zelenin, E. A., Trikhunkov, Y. I., Frolov, P. D., Golovina, L. A., Simakova, A. N., Rashidi, A., & Latyshev, A. V. (2022). Development of the Southern coastal area of the caspian sea during the pliocene–quaternary according to biostratigraphic and magnetostratigraphic data. Stratigraphy and Geological Correlation, 30(4), 273–291. https://doi.org/10.1134/S0869593822040074

    Article  Google Scholar 

  • Walker, R. T., Bergman, E. A., Elliott, J. R., Fielding, E. J., Ghods, A. R., Ghoraishi, M., Jackson, J., Nazari, H., Nemati, M., Oveisi, B., Talebian, M., & Walters, R. J. (2013a). The 2010–2011 South Rigan (Baluchestan) earthquake sequence and its implications for distributed deformation and earthquake hazard in southeast Iran. Geophysical Journal International, 193(1), 349–374.

    Article  Google Scholar 

  • Walker, R. T., Talebian, M., Sloan, R. A., Rasheedi, A., Fattahi, M., & Bryant, C. (2010). Holocene slip-rate on the Gowk strike-slip fault and implications for the dis-tribution of tectonic strain in eastern Iran. Geophysical Journal International, 181(1), 221–228.

    Article  Google Scholar 

  • Walker, R., Wright, T. J., & Baker, C. (2001). The 1998 March 14 Fandoqa earthquake (Mw 6.6) in Kerman province, southeast Iran: Re-rupture of the 1981 Sirch earthquake fault, triggering of slip on adjacent thrusts and the active tectonics of the Gowk fault zone. Journal of Geophysical, 146, 371–398.

    Article  Google Scholar 

  • Yazdani, A., & Kowsari, M. (2013a). Bayesian estimation of seismic hazards in Iran. Scientia Iranica, 20, 422–430. https://doi.org/10.1016/j.scient.2012.12.032

    Article  Google Scholar 

  • Yazdani, A., & Kowsari, M. (2013b). Earthquake ground-motion prediction equations for northern Iran. Natural Hazards, 69, 1877–1894. https://doi.org/10.1007/s11069-013-0778-8

    Article  Google Scholar 

  • Yazdani, A., & Kowsari, M. (2017). A probabilistic procedure for scenario-based seismic hazard maps of Greater Tehran. Engineering Geology, 218, 162–172. https://doi.org/10.1016/j.enggeo.2017.01.013

    Article  Google Scholar 

  • Zafarani, H., Luzi, L., Lanzano, G., & Soghrat, M. R. (2018). Empirical equations for the prediction of PGA and pseudo spectral accelerations using Iranian strong-motion data. Journal of Seismology, 22, 263–285. https://doi.org/10.1007/s10950-017-9704-y

    Article  Google Scholar 

  • Zhuang, J., Ogata, Y., & Vere-Jones, D. (2002). Stochastic declustering of space-time earthquake occurrences. Journal of American Statistical Association, 97, 369–380. https://doi.org/10.1198/016214502760046925

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shahid Bahonar University of Kerman in Kerman, Iran. Thanks the editor, and two anonymous reviewers for helpful reviews of this manuscript. Grateful to the Dr. Milad Kowsari for his comments and insightful suggestions and careful reading of the manuscript. We appreciate Maryam Sadeghi's advice and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Nemati.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balouch, M., Nemati, M., Bagheripour, M.H. et al. A probabilistic seismic hazard analysis in SE Iran; case study: Kerman province. J Iber Geol 49, 257–274 (2023). https://doi.org/10.1007/s41513-023-00224-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-023-00224-8

Keywords

Palabras clave

Navigation