Skip to main content
Log in

Evidence of a new geothermal prospect in the Northern-Central trans-Mexican volcanic belt: Rancho Nuevo, Guanajuato, Mexico

  • Review Article
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

Thermal manifestations are commonly found in central Mexico as result of the volcanic activity originating from the formation of the Trans-Mexican Volcanic Belt during the Quaternary. The Rancho Nuevo hot spring is one of them that has not been described before with a discharge temperature near 92 °C. The goal of the present study is to provide geothermal characteristics of thermal manifestations at Rancho Nuevo location based on geochemical and mineralogical results to explain deep-subsurface processes that occurred in the geothermal system. The presence of kaolinite, montmorillonite, opal, zeolite, barite, pyrite, and stibnite in altered soil sediments or around the hot springs identified by the techniques used in the present study, confirms the presence of hydrothermal activity. In addition, based on the X-ray diffraction, calcite precipitates at the surface of the thermal springs. This mineral association reflects deep geothermal processes and is eventually deposited in shallow zones. Fluid mixing processes and variations in redox conditions are suggested by mineral association and isotopic sulfur data. Finally, based on the physicochemical data provided by the water samples and the discharge conditions of the springs, stability diagrams were constructed for pyrite, barite, and zeolites using the Geochemist’s Work Bench program to corroborate these data with the mineralogical results. The mineralogical results and distribution, as well as the N-S trend of mineral associations suggest interaction processes between geothermal fluid and rocks of the stratigraphic sequence, and active major faults, enabling the upward flow of deep geothermal fluids. The approach to the conceptual model of the Rancho Nuevo geothermal prospect reveals an attractive potential for the exploration of a viable geothermal resource in central Mexico.

Resumen

En el centro de México es común encontrar manifestaciones termales como resultado de la actividad volcánica que originó la formación del Cinturón Volcánico Trans-Mexicano durante el Cuaternario. El manantial caliente de Rancho Nuevo es una de ellas el cual no ha sido descrita antes cuya temperatura de descarga es de aproximadamente 92 °C. El objetivo del presente estudio es proporcionar las características geotérmicas de las manifestaciones termales localizadas en el poblado de Rancho Nuevo, considerando los resultados geoquímicos y mineralógicos, para explicar los procesos ocurridos a profundidad en el sistema geotérmico. La presencia de caolinita, montmorillonita, ópalo, zeolita, barita, pirita y estibinita identificadas por las técnicas utilizadas, tanto en sedimentos del suelo como alrededor de las fuentes termales, confirma la presencia de actividad hidrotermal. Además, de acuerdo a los resultados de difracción de rayos X, la calcita precipita en la superficie de las fuentes termales. Esta asociación mineral refleja procesos geotérmicos profundos y finalmente es depositada en zonas poco profundas. Los procesos de mezcla de fluidos y las variaciones en las condiciones redox son sugeridas por la asociación mineral y los datos de azufre isotópico. Finalmente, con base a los datos fisicoquímicos proporcionados por las muestras de agua y las condiciones de descarga de los manantiales, se construyeron diagramas de estabilidad para pirita, barita y zeolita para corroborar estos datos con los resultados mineralógicos. Los resultados mineralógicos y su distribución, así como la tendencia N-S de las asociaciones minerales, sugieren procesos de interacción entre el fluido geotérmico y las rocas de la secuencia estratigráfica, y fallas mayores activas, que permiten el flujo ascendente de fluidos profundos. El enfoque del modelo conceptual del prospecto geotérmico Rancho Nuevo revela un potencial atractivo para la exploración de un recurso geotérmico viable en el centro de México.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

taken from Rye, 2005)

Fig. 9
Fig. 10

Similar content being viewed by others

References

  • 4500-S2-SULFIDE. (2017). Standard methods for the examination of water and wastewater. https://doi.org/10.2105/SMWW.2882.096

  • 4500-SiO2 SILICA. (2017). Standard methods for the examination of water and wastewater. https://doi.org/10.2105/SMWW.2882.095

  • Aguirre-Díaz, G. J., & López-Martínez, M. (2001). The Amazcala caldera, Queretaro, Mexico: Geology and geochronology. Journal of Volcanology and Geothermal Research, 111, 203–218.

    Article  Google Scholar 

  • Aguirre-Díaz, G. J., & López-Martínez, M. (2003). La caldera de Apaseo, Guanajuato, Geología y geocronología de una nueva caldera en el sector central del Cinturón Volcánico Mexicano. GEOS, p. 308.

  • Aguirre-Díaz, G. J., Nieto-Obregón, J., & Zúñiga, F. R. (2005). Seismogenic basin and range intra-arc normal faulting in the central Mexican Volcanic Belt, Querétaro, México. Geological Journal, 40, 215–243.

    Article  Google Scholar 

  • Alaniz-Álvarez, S. A., & Nieto-Samaniego, A. F. (2005). El sistema de fallas Taxco-San Miguel de Allende y la Faja Volcánica Transmexicana, dos fronteras tectónicas del centro de México activas durante el Cenozoico. Boletín de la Sociedad Geológica Mexicana, Volumen Conmemorativo del Centenario Grandes Frontertas Tectónicas de México, LVII(I), 65–82.

    Article  Google Scholar 

  • Alaniz-Álvarez, S. A., & Nieto-Samaniego, A. F. (2007). The Taxco-San Miguel de Allende fault system and the Trans-Mexican Volcanic Belt: Two tectonic boundaries in central Mexico active during the Cenozoic. Geology of Mexico: Celebrating the Centenary of the Geological Society of Mexico, USA (pp. 301–316). The Geological Society of America.

    Chapter  Google Scholar 

  • Alaniz-Álvarez, S. A., Nieto-Samaniego, A. F., Reyes-Zaragoza, M. A., Orozco-Esquivel, M. T., Ojeda-García, A. C., & Vasallo-Morales, L. F. (2001). Estratigrafía y deformación de la región de San Miguel de Allende-Querétaro. Revista Mexicana de Ciencias Geológicas, 18, 129–148.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd ed.). Rotterdam.

  • Arce, J. L., Macías, J. L., Rangel, E., & Layer, P. (2012). Late Pleistocene rhyolitic explosive volcanism at Los Azufres Volcanic Field, central Mexico. In J. Aranda-Gómez, & G. Tolson (Eds.), Field Guide 25, GSA Cordilleran Section Meeting.

  • Arellano-Ramírez, Y., Kretzschmar, T. G., & Hernández-Martínez, R. (2017). Water-rock microbial interactions in the hydrothermal spring of Puertecitos, Baja California, Mexico. Procedia Earth and Planetary Science, 17, 865–868.

    Article  Google Scholar 

  • Ármansson, H. (2009). Application of geochemical methods in geothermal exploration. Short Course IV on exploration for geothermal resources, organized by UNU-GTP, KenGen and GDC, at Lake Naivasha, Kenya.

  • Arredondo, B. (2012). Los antiguos baños de San Bartolomé Aguas Calientes. Apaseo el Alto, Guanajuato. Retrieved November 6, 2019, from http://vamonosalbable.blogspot.com/2012/03/los-antiguos-banos-de-sanbartolome.html.

  • Ballantyne, J. M., & Moore, J. N. (1988). Arsenic geochemistry in geothermal systems. Geochimica et Cosmochimica Acta, 52, 475–483.

    Article  Google Scholar 

  • Blount, C. W. (1977). Barite solubilities and thermodynamic quantities up to 300 °C and 1400 bars. American Mineralogist, 62, 942–957.

    Google Scholar 

  • Bodek, I., Lyman, W. J., Reehl, W. F., & Rosenblatt, D. H. (Eds.). (1988). Environmental inorganic chemistry: Properties, processes, and estimation methods. Pergamon Press.

    Google Scholar 

  • Bolós, X., Cifuentes, G., Macías, J. L., Sosa-Ceballos, G., García-Tenorio, F., & Albor, M. (2019). Geophysical imaging of fluid circulation and its relation with the structural system of Cerritos Colorados geothermal field, La Primavera caldera (Mexico). Journal of Volcanology and Geothermal Research, 369, 238–249.

    Article  Google Scholar 

  • Botero-Santa, P. A., Alaniz-Álvarez, S. A., Nieto-Samaniego, A. F., López-Martínez, M., Levresse, G., Xu, S., & Ortega-Obregón, C. (2015). Origen y desarrollo de la cuenca El Bajío en el sector central de la Faja Volcánica Transmexicana. Revista Mexicana de Ciencias Geológicas, 32(1), 84–98.

    Google Scholar 

  • Browne, P. R. L. (1970). Hydrothermal alteration as an aid in investigating geothermal fields. Geothermics, 2, 564–570.

    Article  Google Scholar 

  • Browne, P. R. L. (1978). Hydrothermal alteration in active geothermal fields. Annual Reviews of Earth and Planetary Science, 6, 229–250.

    Article  Google Scholar 

  • Bundschuh, J., & Maity, J. P. (2015). Geothermal arsenic: Occurrence, mobility and environmental implications. Renewable Sustainable Energy Reviews, 42, 1214–1222.

    Article  Google Scholar 

  • Campos-Enríquez, J., & Sánchez-Zamora, O. (2000). Crustal structure across southern Mexico inferred from gravity data. Journal of South American Earth Sciences, 13(6), 479–489.

    Article  Google Scholar 

  • Canet, C., Hernández-Cruz, B., Jiménez-Franco, A., Pi, T., Peláez, B., Villanueva-Estrada, R. E., Alfonso, P., González-Partida, E., & Salinas, S. (2015). Combining ammonium mapping and short-wave infrared (SWIR) reflectance spectroscopy to constrain a model of hydrothermal alteration for the Acoculco geothermal zone, Eastern Mexico. Geothermics, 53, 154–165.

    Article  Google Scholar 

  • Canet, C., Rodríguez-Díaz, A., Bernal, I. D., Pi, T., Sánchez-Córdova, M. M., Núñez-Useche, F., Villanueva-Estrada, R., Molina, G., Reich, M., Peláez, B., Jiménez-Salgado, E., González-Partida, E., Sandoval-Medina, F., & Carrillo-Sánchez, C. B. (2019). Consideraciones sobre el sistema geotérmico de San Bartolomé de los Baños, Guanajuato (México), desde un análisis de la alteración hidrotermal y las inclusiones fluidas. Geofísica Internacional, 58(3), 229–246.

    Article  Google Scholar 

  • Canic, T., Baur, S., Bergfeldt, T., & Kuhn, D. (2015). Influences on the Barite Precipitation from Geothermal Brines. World Geothermal Congress, Melbourne, Australia, 19–25 April.

  • Cappetti, G., D’Olimpio, P., Sabatelli, F., & Tarquini, B. (1995). Inhibition of antimony sulphide scale by chemical additives: laboratory and field test results. In Proceedings of the 1995 World Geothermal Congress, Florence, Italy (pp. 2503–2507). May 18–31, 1995.

  • Carrasco-Núñez, G., López-Martínez, M., Hernández, J., & Vargas, V. (2017). Subsurface stratigraphy and its correlation with the surficial geology at Los Humeros geothermal field, eastern Trans-Mexican Volcanic Belt. Geothermics, 67, 1–17.

    Article  Google Scholar 

  • CEAG. (2000). Actualización del balance subterráneo de los acuíferos de Guanajuato. Comisión Estatal del Agua de Guanajuato, Guanajuato, Gto. Reporte Interno (p. 87).

  • Cerca-Martínez, L. M., Aguirre-Díaz, G. J., & López-Martínez, M. (2000). The geologic evolution of the southern Sierra de Guanajuato, Mexico: A documented example of the transition from the Sierra Madre Occidental to the Mexican Volcanic Belt. International Geology Review, 42, 131–151.

    Article  Google Scholar 

  • Clark, R. N., Swayze, G. A., Wise, R. A., Livo, K. E., Hoefen, T. M., Kokaly, R. F., & Sutley, S. J. (2007). USGS Digital Spectral Library splib06a, USGS Digital Data Series, 231. Retrieved May 17, 2020, from http://speclab.cr.usgs.gov.

  • Corbella, M., Cardellach, E., & Ayora, C. (2007). Disolución y precipitación de carbonatos en sistemas hidrotermales. Implicaciones en la génesis de depósito tipo MVT. Boletín de la Sociedad Geológica Mexicana, LIX(1), 83–99.

    Article  Google Scholar 

  • Corbett, G. J., & Leach, T. M. (1998). Southwest Pacific rim gold–copper systems; structure, alteration and mineralization. Society of Economic Geologists, Special Publications Series, 6, 238.

    Google Scholar 

  • Demant, A. (1978). Características del eje neovolcánico transmexicano y sus problemas de interpretación. Universidad Nacional Autónoma de México, Instituto de Geología, Revista, 2, 172–187.

    Google Scholar 

  • Dubé, T. E. (1988). Tectonic significance of Upper Devonian igneous rocks and bedded barite, Roberts Mountains allochthon, Nevada, U.S.A. In Devonian of the world; Proceedings of the Second International Symposium on the Devonian System, Volume II, Sedimentation: Canadian Society of Petroleum and Geologists Memoir (Vol. 14, pp. 235–249).

  • Elders, W. A., Izquierdo-Montalvo, G., Aragón-Aguilar, A., Tovar-Aguado, R., & Flores-Armenta, M. (2014). Significance of deep zones of intense bleaching and silicification in the Los Humeros high-temperature geothermal field, México: Evidence of the effects of acid alteration. Geothermal Resources Council Transact, 38, 497–502.

    Google Scholar 

  • Ellis, A. J., & Mahon, W. A. J. (1964). Natural hydrothermal system and experimental hot-water/rock interactions. Geochimica et Cosmochimica Acta, 28, 1323–1357.

    Article  Google Scholar 

  • Ewers, G. R., & Keays, R. R. (1977). Volatile and precious metal zoning in the Broadlands geothermal field, New Zealand. Economic Geology, 72, 1337–1354.

    Article  Google Scholar 

  • Ferrari, L., Orozco-Esquivel, T., Manea, V., & Manea, M. (2012). The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522, 122–149.

    Article  Google Scholar 

  • García-Valles, M., Pi, T., Alfonso, P., Canet, C., Martínez, S., Jiménez-Franco, A., Tarrago, M., & Hernández-Cruz, B. (2015). Kaolin from Acoculco (Puebla, Mexico), as raw material: Mineralogical and thermal characterization. Clay Minerals, 50, 405–416.

    Article  Google Scholar 

  • Garduño-Monroy, V. H., Spinnler, J., & Ceragioli, E. (1993). Geological and structural study of the Chapala Rift, state of Jalisco, Mexico. Geofísica Internacional, 32(3), 486–499.

    Article  Google Scholar 

  • Giesemann, A., Jäger, H. J., Norman, A. L., Krouse, H. R., & Brand, W. A. (1994). Online sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometer. Analytical Chemistry, 66(18), 2816–2819.

    Article  Google Scholar 

  • Giggenbach, W. F. (1988). Geothermal solute equilibria. Derivation of Na-K-Ca-Mg geoindicators. Geochimica et Cosmochimica Acta, 52, 2749–2765.

    Article  Google Scholar 

  • Gómez-Tuena, A., Orozco-Esquivel, M. T., & Ferrari, L. (2005). Petrogénesis ígnea de la Faja Volcánica Trans-Mexicana. Boletín de la Sociedad Geológica Mexicana. Volumen Conmemorativo Del Centenario LVII, 3, 227–283.

    Google Scholar 

  • Gómez-Tuena, A., Orozco-Esquivel, M. T., & Ferrari, L. (2007). Igneous petrogenesis of the Trans-Mexican Volcanic Belt. Geology of Mexico: Celebrating the Centenary of the Geological Society of Mexico (pp. 129–181). The Geological Society of America.

    Google Scholar 

  • Gutiérrez-Negrín, L. C. (2015). Mexican geothermal plays. In Proceedings of the World Geothermal Congress (p. 9).

  • Hein, J. R., Zierenberg, R. A., Maynard, J. B., & Hannington, M. D. (2007). Barite-forming environments along rifted continental margin, Southern California Borderland. Dee-Sea Research II, 54, 1327–1349.

    Google Scholar 

  • Henley, R. W., Ellis, A. J. (1983). Geothermal systems ancient and modern: A geochemical review. Earth-science reviews (Vol. 19, pp. 3–15). Elsevier.

  • Hillier, S. (2000). Accurate quantitative analysis of clay and other minerals in sandstones by XRD: Comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Minerals, 35(1), 291–302.

    Article  Google Scholar 

  • Holland, H. D., & Malinin, S. D. (1979). Oxygen and hydrogen isotope relationship in hydrothermal mineral deposits. In H. L. Barnes (Ed.), Geochemistry of hydrothermal ore deposits (2nd ed., pp. 461–508). Wiley.

    Google Scholar 

  • Juárez-Arriaga, E., Böhnel, H., Carrasco-Nuñez, G., & Nasser Mahgoub, A. (2018). Paleomagnetism of Holocene lava flows from Los Humeros caldera, eastern Mexico: Discrimination of volcanic eruptions and their age dating. Journal of South American Earth Sciences, 88, 736–748.

    Article  Google Scholar 

  • Kristmannsdóttir, H. (1989). Types of scaling occurring by geothermal utilization in Iceland. Geothermics, 18, 183–190.

    Article  Google Scholar 

  • Landa-Arreguín, J. F. A., Villanueva-Estrada, R. E., Ortega-Gutiérrez, J. E., Morales-Arredondo, J. I., Amézaga-Campos, B. S., & Armienta-Hernández, M. A. (2021). Presence of geogenic arsenic caused by thermal activity in the Celaya Valley Aquifer: Environmental implications. In The 8th International Congress and Exhibition on Arsenic in the Environment, Wageningen, Netherlands, 7th to 9th June.

  • Landa-Arreguín, J. F. A., Villanueva-Estrada, R. E., Rocha-Miller, R. G., Rodríguez-Salazar, M. T. J., Rodríguez-Díaz, A. A., & Hernández-Mendiola, E. (2017). Resultados preliminares del estudio geoquímico de la zona geotérmica de Rancho Nuevo, Guanajuato. Memorias del XXIV Congreso Anual de la Asociación Geotérmica Mexicana, Morelia, Mich., 29–31 marzo.

  • Lattanzi, P. (1999). Epithermal precious metal deposits of Italy—An overview. Mineralium Deposita, 34, 630–638.

    Article  Google Scholar 

  • Lesser y Asosiados, S. A. de C.V. (2000). Seguimiento del estudio hidrogeológico y modelo matemático del acuífero del Valle de Celaya, Gto. Seguimiento.

  • Litter, M. I., Armienta, M. A., Villanueva-Estrada, R. E., Villaamil Lepori, E., & Olmos, V. (2019). Arsenic in Latin America. Science Reviews—From the End of the World, 1, 54–73.

    Article  Google Scholar 

  • López, D. L., Bundschuh, J., Birkle, P., Armienta, M. A., Cumbal, L., Sracek, O., Cornejo, L., & Ormachea, M. (2012). Arsenic in volcanic geothermal fluids of Latin America. Science of Total Environment, 429, 57–75.

    Article  Google Scholar 

  • Lynne, B. Y., & Campbell, K. A. (2004). Morphologic and minerlogic transitions from opal-A to opal-CT in low-temperature siliceous sinter diagenesis, Taupo Volcanic Zone, New Zealand. Journal of Sedimentary Research, 74, 561–579.

    Article  Google Scholar 

  • Maity, J. P., Liu, C. C., Nath, B., Bundschuh, J., Kar, S., Jean, J. S., Bhattacharya, P., Liu, J. H., Atla, S. B., & Chen, C. Y. (2011). Biogeochemical characteristics of Kuan-Tzu-Ling, Chung-Lun and Bao-Lai hot springs in southern Taiwan. Journal Environmental Science and Health, Part A, 46, 1207–1217.

    Article  Google Scholar 

  • McIver, D. A. (1997). Epithermal precious metal deposits: Physicochemical constraints, classification characteristics, and exploration guidelines. Retrieved May 28, 2020, from https://core.ac.uk/download/pdf/11985289.pdf.

  • Mergner, H., Eggeling, L., Kölbel, T., Münch, W., & Genter, A. (2012). Geothermische Stromerzeugung: Bruchsal und Soultz-sous-Forêts, Mining Geology (pp. 666–673).

  • Moeck, I. S. (2014). Catalog of geothermal play types based on geologic controls. Renewable Sustainable Energy Review, 37, 867–882.

    Article  Google Scholar 

  • Molina-Martínez, A. (2013). Case history of los Azufres—Conceptual modelling in a Mexican geothermal field. Presented at Short course V on Conceptual Modelling of Geothermal Systems, Santa Tecla, El Salvador, February 24–March 2.

  • Moore, D. M., & Reynolds, R. C., Jr. (1997). X-ray diffraction and the identification and analysis of clay minerals (p. 378). Oxford University Press.

    Google Scholar 

  • Morales-Arredondo, I., Armienta Hernández, M. A., Ortega-Gutiérrez, J. E., Flores-Ocampo, I. Z., & Flores-Vargas, R. (2020). Evaluation of the carbon dioxide behavior in a thermal aquifer located at Central Mexico and its relation to silicate weathering. International Journal Earth Science and Technology

  • Morales-Arredondo, I., Rodríguez, R., Armienta, M. A., & Villanueva-Estrada, R. E. (2016). The origin of groundwater arsenic and fluorine in a volcanic sedimentary basin in central Mexico: A hydrochemistry hypothesis. Hydrogeology Journal, 25(1), 1–16.

    Google Scholar 

  • Morales-Arredondo, I., Villanueva-Estrada, R. E., Rodríguez, R., & Armienta, M. A. (2015). Geological, hydrogeological and geothermal factors associated to the origin of arsenic, fluoride, and groundwater temperature in a volcanic environment “El Bajío Guanajuatense” Mexico. Environmental Earth Sciences, 74, 5403–5415.

    Article  Google Scholar 

  • Morales-Arredondo, J. I., Armienta-Hernández, M. A., Hernández-Mendiola, E., Estrada-Hernández, R. E., & Morton-Bermea, O. (2018). Hydrogeochemical behavior of uranium and thorium in rock and groundwater samples from southeastern of El Bajío Guanajuatese, Guanajuato. Mexico. Environmental Earth Sciences., 77, 567.

    Article  Google Scholar 

  • Naimy, G. (2008). Aquatic geochemistry of barium in basaltic terrain. Iceland, Sigillum Universitatis Islandiae, Thesis.

  • Nicholson, K. (1993). Geothermal fluids (p. 263). Springer Nature.

    Book  Google Scholar 

  • Nieto-Samaniego, A. F., Alaniz-Alvarez, S. A., Cerca-Martínez, M. (1999). Carta Geológico-Minera San Miguel de Allende, F14C54, San Miguel de Allende, escala 1:50000. Aguascalientes, Ags., México, Consejo de Recursos Minerales, un mapa, secciones y texto explicativo.

  • NOM-014-SSA1-1993. Procedimientos sanitarios para el muestreo de agua para uso y consumo humano en sistemas de abastecimiento de agua públicos y privados. Estados Unidos Mexicanos-Secretaria de Salud. Noviembre, 1993 NOM 127

  • NOM-127-SSA1-1994. Norma Oficial Mexicana Salud ambiental, agua para uso y consumo humano-límites permisibles de calidad y tratamientos a que debe someterse el aguapara su potabilizacion (MODIFICADA 2000).

  • Ohmoto, H., & Lasaga, A. C. (1982). Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochimica Et Cosmochimica Acta, 46, 1727–1745.

    Article  Google Scholar 

  • Ortega-Gutiérrez, J. E., (2019). Caracterización hidrogeoquímica del agua subterránea en el municipio de Villagrán, Gto: procesos relacionados con la presencia de arsénico y fluoruro en el acuífero. Escuela Superior de Ingeniería y Arquitectura, Instituto Politécnico Nacional (IPN). Thesis.

  • Pérez-López, R., Legrand, D., Garduño-Monroy, V. H., Rodríguez-Pascua, M. A., & Giner-Robles, J. L. (2011). Scaling laws of the size-distribution of monogenetic volcanoes within the Michoacán-Guanajuato Volcanic Field (Mexico). Journal of Volcanology Geothermal Research, 201(1–4), 65–72.

    Article  Google Scholar 

  • Pérez-Martínez, I., Villanueva-Estrada, R. E., Cardona-Benavides, A., Rodríguez-Díaz, A. A., Rodríguez-Salazar, M. T., & Guadalupe, J. (2020). Hydrogeochemical reconnaissance of the Atotonilco el Alto-Santa Rita geothermal system in the northeastern Chapala graben in Mexico. Geothermics, 83, 101733.

    Article  Google Scholar 

  • Pita-de la Paz, C., Sánchez-Galindo, A., Garfias-Quezada, J. A., García-García, E., Villanueva-Estrada, R. E., Rocha-Miller, R., Bernard-Romero, R., Rodríguez-Díaz, A. A., Rubio-Ramos, M. A., & Salazar-Medina, E. (2016). Integración de metodologías geofísicas, geoquímicas y geológicas para la evaluación geotérmica de la localidad Rancho Nuevo, Celaya, Guanajuato, México. Reunión Anual de la UGM, v36, 1 noviembre, p. 173.

  • Poole, F. G. (1988). Stratiform barite in Paleozoic rocks of the Western United States. In Stuttgart, E. (Ed.) Proceedings of the Seventh Quadrennial IAGOD Symposium (pp. 309–319). Schweizerbartsche Verlangsbuchhandlung.

  • Prol-Ledesma, R. M., Carrillo-de la Cruz, J. L., Torres-Vera, M. A., Membrillo-Abad, A. S., & Espinoza-Ojeda, O. M. (2018). Heat flow map and geothermal resources in Mexico. Terra Digitalis, 2(2), 1–38.

    Article  Google Scholar 

  • Prol-Ledesma, R. M., & Zenteno-Morán, D. (2019). Heat flow and geothermal provinces in Mexico. Geothermics, 78, 183–200.

    Article  Google Scholar 

  • Raymond, J., Williams-Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. J. Volcanol. Geothermal Res., 145, 81–96.

    Article  Google Scholar 

  • Reyes, A. G. (1990). Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. Journal of Volcanology and Geothermal Research, 43, 279–309.

    Article  Google Scholar 

  • Reyes, A. G. (1992). Petrology and fluid chemistry of magmatic-hydrothermal systems in the Philippines. In Y. K. Kharaka, and A. Maest (Eds.), Proceedings of the International Symposium on Water-Rock Interaction (Vol.7, pp. 1341–1344). A.A. Balkema.

  • Rodríguez, R., Armienta, M. A., Morales, P., Silva, T., & Hernández, H. (2006). Evaluación de Vulnerabilidad Acuífera del valle de Irapuato, Gto. Technical Report inedit. JAPAMI, CONACyTEG, IGF UNAM, México D.F.

  • Rodríguez-Díaz, A. A., Canet, C., Villanueva-Estrada, R. E., Chacón, E., Gervilla, F., Velasco-Tapia, F., Cruz-Gámez, E. M., González-Partida, E., Casas-García, R., Linares-López, C., & Pérez-Zárate, D. (2019). Recent Mn-Ag deposits in coastal hydrothermal springs in the Baja California Peninsula, Mexico. Mineralium Deposita, 54, 849–866.

    Article  Google Scholar 

  • Ronoh, I. (2015). Appraising a geothermal field using hydrothermal alteration mineralogy: A case study of the East of Olkaria Domes Geothermal Field; Olkaria, Kenya. World Geothermal Congress, Melbourne, Australia, 19–25 April.

  • Rosas-Elguera, J., & Urrutia-Fucugauchi, J. (1998). Tectonic control of the volcano-sedimentary sequence of the Chapala Graben, western Mexico. International Geology Review, 40, 350–362.

    Article  Google Scholar 

  • Rouwet, D. (2006). Estudio geoquímico comparativo de los sistemas hidrotermales de los volcanes activos en Chiapas: El Chichón y Tacaná. Ph.D. Dissertation, IGF–UNAM, p. 218.

  • Rye, R. O. (2005). A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chemical Geology, 215, 5–36.

    Article  Google Scholar 

  • Sánchez-Córdova, M. M., Canet, C., Rodríguez-Díaz, A., González-Partida, E., & Linares-López, C. (2020). Water-rock interactions in the Acoculco geothermal system, eastern Mexico: Insights from paragenesis and elemental mass-balance. Geochemistry, 80, 125527.

    Article  Google Scholar 

  • Scheiber, J., Nitschke, F., Seibt, A., & Genter, A. (2012). Geochemical and mineralogical monitoring of the geothermal power plant in Soultz-sous-Forêts (France) (pp. 1033–1044). Stanford University.

    Google Scholar 

  • Seal, R. R., II. (2006). Sulfur isotope geochemistry of sulfide minerals. Review in Mineralogy and Geochemistry, 61(1), 633–677.

    Article  Google Scholar 

  • Seal II, R.R., Alpers, C.N., Rye, R.O., (2000). Stable isotopes systematics of sulfate minerals. In: In: Alpers, C.N., Jambor, J.L., Nordstrom, D.K. (Eds.) Sulfate Minerals-Crystallography, Geochemistry, and Environmental Significance. Rev. Mineral, pp. 179–226

  • Sosa-Ceballos, G., Macías, J. L., Avellán, D. R., Salazar-Hermenegildo, N., Boijseauneau-López, M. E., & Pérez-Orozco, J. D. (2018). The Acoculco Caldera Complex magmas: Genesis, evolution and relation with the Acoculco geothermal system. Journal of Volcanology and Geothermal Research, 358, 288–306.

    Article  Google Scholar 

  • Spectral International Inc. (1994). SWIR spectral mineral identification system and spectral database SPECMINT (Vol. II). Integrated Spectronics.

  • Spycher, N. F., & Reed, M. H. (1989). As(III) and Sb(III) sulfide complexes—An evaluation of stoichiometry and stability from existing experimental data. Geochimica et Cosmochimica Acta, 53, 2185–2194.

    Article  Google Scholar 

  • Standard Methods for the Examination of Water and Wastewater. (2017). Baird, R. B., Eaton, A. D., Rice, E. W. (Eds.), American Public Health Association, American Water Works Association and the Water Environmental Association (23rd Ed.).

  • Strübel, G. (1967). Zur Kenntnis und genetischen Bedeutung des Systems BaSO4-NaCl-H2O. Neues Jb Miner Monat 223–234.

  • Taran, Y., Fischer, T. P., Pokrovsky, B., Sano, Y., Armienta, M. A., & Macias, J. L. (1998). Geochemistry of the volcano–hydrothermal system of El Chichón Volcano, Chiapas, Mexico. Bulletin of Volcanology, 59, 436–449.

    Article  Google Scholar 

  • Thompson, A.J.B., Thompson, F.J.H., (1996). Atlas of Alteration: A Field and Petrographic Guide to Hydrothermal Alteration Minerals. Geological Association of Canada, Mineral Deposits Division, 120 pp.

  • Torres-Alvarado, I. S. (2000). Mineral chemistry of hydrothermal silicates in Los Azufres geothermal field, Mexico. In World Geothermal Congress, Kyushu-Tohoku, Japan, Proceedings: International Geothermal Association (pp. 1861–1866).

  • Torres-Alvarado, I. S., Pandarinath, K., Verma, S. P., & Dulski, P. (2007). Mineralogical and geochemical effects due to hydrothermal alteration in the Los Azufres geothermal field, Mexico. Revista Mexicana De Ciencias Geológicas, 24, 15–24.

    Google Scholar 

  • Tóth, J. (2005). Las aguas subterráneas como agente geológico: causas, procesos y manifestaciones. Boletín Geológico. B. Geol. Minera, 111(4), 9–26.

    Google Scholar 

  • Venegas-Salgado, S., Herrera, J. J., & Maciel, E. R. (1985). Algunas características de la Faja Volcánica Mexicana y de sus recursos geotérmicos, in: S.R Verma (Editor), Special Volume on the Mexican Volcanic Belt-Part 1. Geofísica Interncional, 24(1), 47–81.

  • Verma, S. P., Torres-Sánchez, D., Velasco-Tapia, F., Subramanyam, K. S. V., Manikyamba, C., & Bhutani, R. (2016). Geochemistry and petrogenesis of extensión-realted magmas close to the volcanic front of the central part of the Trans-Mexican Volcanic Belt. Journal of South American Earth Sciences, 72, 126–136.

    Article  Google Scholar 

  • Villanueva-Estrada, R. E., Prol-Ledesma, R. M., Rodríguez-Díaz, A. A., Canet, C., & Armienta, M. A. (2013). Arsenic in hot springs of Bahía Concepción, Baja California Peninsula, México. Chemical Geology, 48, 27–36.

    Article  Google Scholar 

  • Wagner, T., Kirnbauer, T., Boyce, A. J., & Fallick, A. E. (2005). Barite-pyrite mineralization of the Wiesbaden thermal spring system, Germany: A 500-kyr record of geochemical evolution. Geofluids, 5, 124–139.

    Article  Google Scholar 

  • Web1. Retrieved April 13, 2020, from https://www.academia.edu/3987130/Alteraci%C3%B3n_Hidrotermal_1_ALTERACION_HIDROTERMAL.

  • Webster, J. G., & Nordstrom, D. K. (2003). Geothermal arsenic. In A. H. Welch & K. G. Stollenwerk (Eds.), Arsenic in ground water: Geochemistry and occurrence (pp. 101–125). Springer.

    Chapter  Google Scholar 

  • Wilson, N., Webster-Brown, J., & Brown, K. (2007). Controls on stibnite precipitation at two New Zealand geothermal power stations. Geothermics, 36, 330–347.

    Article  Google Scholar 

  • Yavuz, F., Gültekin, A. H., Örgün, Y., Çelik, N., Çelik-Karakaya, M., Karakaya, E., & Sasmaz, A. (2002). Mineral chemistry of barium and titanium bearing biotites in calcalkaline volcanic rocks from the Mezitler area (Balιkesir-Dursunbey), western Turkey. Geochemical Journal, 36, 563–580.

    Article  Google Scholar 

  • Younger, P. (2007). Groundwater in the environment: An introduction (pp. 74–92). Blackwell Publishing.

    Google Scholar 

Download references

Acknowledgements

Funding was provided by the Mexican Center for Innovation in Geothermal Energy (Centro Mexicano de Innovación en Energía Geotérmica [CeMIE-Geo]): CONACyT-SENER-Energetic Sustainability Sectorial Fund (Fondo Sectorial CONACyT-SENER-Sustentabilidad Energética), grant number 207032-2013-04, “Map of geothermal provinces based on fluid geochemistry and aquifer distribution: A tool for the exploration and development of conventional geothermal resources” (Mapa de provincias geotérmicas a partir de la geoquímica de fluidos y la distribución de acuíferos: herramienta para la exploración y desarrollo de los recursos geotérmicos convencionales). The authors express their gratitude to Teresa Pi Puig (Geology Institute, UNAM) for her support in the XRD analyses and Carlos Linares López (Geophysics Institute, UNAM) for his assistance with the use of the EPMA equipment. We also thank Blanca Xóchitl Felipe Martínez for performing the ionic chromatography measurements, Ofelia Morton-Bermea and Elizabet Hernández-Álvarez for carrying out the trace element analysis by ICP-MS. The authors thank Consuelo Macías Romo for conducting the mineral separation experiments (Mineral Separation Laboratory II, Geology Institute, UNAM) and Juan Tomás Vázquez (Geosciences Institute, UNAM-Juriquilla) for making the thin sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. A. Landa-Arreguín.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landa-Arreguín, J.F.A., Villanueva-Estrada, R.E., Rodríguez-Díaz, A.A. et al. Evidence of a new geothermal prospect in the Northern-Central trans-Mexican volcanic belt: Rancho Nuevo, Guanajuato, Mexico. J Iber Geol 47, 713–732 (2021). https://doi.org/10.1007/s41513-021-00173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-021-00173-0

Keywords

Palabras clave

Navigation