Skip to main content
Log in

New evidence relating to the structure of the zone of hydrothermal discharges in the East Pauzhetka thermal field, Kamchatka

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

This paper is concerned with a discussion of a fundamental problem in geothermal research, that of reaching an understanding of the structure and physical nature of zones of thermal discharges, taking the Pauzhetka hydrothermal system as an example along with the eponymous geothermal field situated at the southern tip of Kamchatka. We combined geological and geophysical results from magnetic surveying, electrical surveying, gravity surveying, soil thermometry, pitting and well drilling in hydrothermal clay, to carry out a detailed study of a large zone of hydrothermal discharges in the structure of this hydrothermal system, that is, the East Pauzhetka thermal field. We identified a system of blocks that control aquifers, mineralization zones at the base of the sequence of hydrothermal clay, steam-charged and water-saturated volumes, and volumes where ascending hydrothermal brines circulate via fissures and pores. We hypothesize the existence of a shallow (a few tens of meters) top of a subintrusive body of an intermediate or basic composition. The intrusion of that body may have given rise to the formation of a tectono-magmatic uplift in the East Pauzhetka thermal field. The resulting geological and geophysical data stimulate multidisciplinary surveys of other areas in the Pauzhetka geothermal field and make their contribution to the solution of a major scientific and applied problem, which is to determine the source of heat for the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aver’ev, V.V., The hydrothermal process in volcanic areas and its relationship to magmatic activity, in Sovremennyi vulkanizm (Present-Day Volcanism), Moscow: Nauka, 1966, pp. 118–128.

    Google Scholar 

  • Belousov, V.I., Geologiya geotermal’nykh polei (The Geology of Geothermal Fields), Moscow: Nauka, 1978.

    Google Scholar 

  • Belousov, V.I., Sugrobov, V.M., and Sugrobova, N.G., The geological structure and hydrogeological features of the Pauzhetka hydrothermal system, in Gidrotermal’nye sistemy i termal’nye polya Kamchatki (The Geothermal Systems and Thermal Fields of Kamchatka), Vladivostok: DVNTs AN SSSR, 1976, pp. 23–57.

    Google Scholar 

  • Bertani, R., Bertini, G., Cappetti, G., et al., An update of the Larderello-Travale/Radiocondoli deep geothermal system, Proceedings World Geothermal Congress, 2005, Antalya, Turkey, 2005. 7 p.

    Google Scholar 

  • Feofilaktov, S.O., Bukatov, Yu.Yu., Nuzhdaev, I.A., et al., The structure of the east Pauzhetka thermal field based on multidisciplinary geophysical surveys, in Materialy ezhegodnoi konferentsii, posvyashchennoi Dnyu vulhanologa “Vulkanizm i svyazannye s nim protsessy” (Proc. conf. devoted to Volcanologist’s Day “Volcanism and Related Processes”), Petropavlovsk-Kamchatskii: IViS DVO RAN, 2016, pp. 299–310. http://www.kscnet. ru/ivs/publication/volc_day/2016/art35

    Google Scholar 

  • Gazogidrotermy aktivnykh vulkanov Kamchatki i Kuril’skikh ostrovov: sostav, stroenie, genezis (The Gas and Hydrothermal Fluids of Kamchatka and the Kuril Islands: Composition, Structure, Genesis), Gas’kova, O.L. and Manshtein, A.K., Editors-in-Chief, Novosibirsk: INGG SO RAN, 2013.

  • Gershanok, L.A., Magnitorazvedka (Magnetic Prospecting), Perm’: Perm University, 2006.

    Google Scholar 

  • Gianelli, G., Manzella, A., and Puxeddu, M., Crustal models of the geothermal areas of southern Tuscany (Italy), Tectonophysics, 1997, vol. 281, pp. 221–239.

    Article  Google Scholar 

  • Gidrotermal’nye sistemy i termal’nye polya Kamchatki (The Hydrothermal Systems and Thermal Fields of Kamchatka), Sugrobov, V.M., Editor-in-Chief, Vladivostok: DVNTs AN SSSR, 1976.

  • Gonsovskaya, G.A., The condition of Koshelev Volcano in the summer of 1954, Byull. Vulkanol. Stantsii, 1954, no. 21, pp. 14–18.

    Google Scholar 

  • Gravirazvedka. Spravochnik geofizika (Gravity Surveying. A Handbook of the Geophysicist), Mudretsova, E.A. and Veselov, K.E., Eds., Moscow: Nedra, 1990.

  • Dolgozhivushchii tsentr endogennoi aktivnosti vulkanov yuzhnoi Kamchatki (The Long-Lived Center of Endogenous Activity of Southern Kamchatka Volcanoes), Masurenkov, Yu.P., Editor-in-Chief, Moscow: Nauka, 1980.

  • Khristoforova, N.N., Khristoforov, A.V., and Muslimov, R.Kh., Zones of lower density in the crystalline basement, Georesursy, 1999, no. 1 (1), pp. 4–15.

    Google Scholar 

  • Kiryukhin, A.V., Kiryukhin, V.A., and Manukhin, Yu.F., Gidrogeologiya vulkanogenov (Hydrogeology of Volcanic Rocks), St. Petersburg: Nauka, 2010.

  • Kol’skaya sverkhglubokaya (The Kola Superdeep Well), Moscow: Nedra, 1984.

  • Kompleksnye geofizicheskie issledovaniya geologicheskogo stroeniya mestorozhdenii termal’nykh vod Kamchatki (Multidisciplinary Geophysical Studies in the Geological Structure of Thermal Water Fields in Kamchatka), Sugrobov, V.M., Editor-in-Chief, Moscow: Nauka, 1985.

  • Kononov, V.I., Geokhimiya termal’nykh vod oblastei sovremennogo vulkanizma (riftovykh zon i ostrovnykh dug) (The Geochemistry of Thermal Waters in Areas of Present-Day Volcanism: Rift Zones and Island Arcs), Trudy GIN, no. 379, Moscow: Nauka, 1983.

    Google Scholar 

  • Krasnyi, L.I., Global’naya sistema geoblokov (The Global System of Geologic Blocks), Moscow: Nedra, 1984.

    Google Scholar 

  • Ladygin, V.M. and Rychagov, S.N., The Baranskii hydrothermal system on Iturup Island: Block structure and intensity of hydrothermal metasomatic transformation of rocks from petrophysical data, Vulkanol. Seismol., 1995, no. 5, pp. 28–44.

    Google Scholar 

  • Leonov, V.L., Strukturnye usloviya lokalizatsii vysokotemperaturnykh gidroterm (The Structural Conditions for Localization of Hot Hydrotherms), Moscow: Nauka, 1989.

    Google Scholar 

  • Lonshakov, E.A., Rows of volcanotectonic features and structural–material parageneses in southern Kamchatka, Byul. Vulkanol. St., 1979, no. 57, pp. 79–91.

    Google Scholar 

  • Moroz, Yu.F., Karpov, G.A., Moroz, T.A., et al., The structure of the Uzon caldera in Kamchatka inferred from geophysical data, in Materialy konferentsii, posvyashchennoi Dnyu vulkanologa “Vulkanizm i svyazannye s nim protsessy” (Proc. conf. devoted to Volcanologist’s Day “Volcanism and related processes”), Petropavlovsk-Kamchatskii: IViS DVO RAN, 2013, pp. 233–240.

    Google Scholar 

  • Naboko, S.I., The hydrosolfataras of Dikii Greben’, Byull. Vulkanol. Stantsii, 1954, no. 22, pp. 59–64.

    Google Scholar 

  • Naboko, S.I., Metallonosnost’ sovremennykh gidroterm v oblastyakh tektono-magmaticheskoi aktivnosti (The Mineralization Potential of Present-Day Hydrothermal Discharges in Areas of Tectono-Magmatic Activity), Moscow: Nauka, 1980.

    Google Scholar 

  • Nuzhdaev, I.A. and Feofilaktov, S.O., Wintertime magnetometric surveys in the Pauzhetka hydrothermal field: Methodology, brief results, in XII regional’naya molodezhnaya nauchnaya konferentsiya “Issledovaniya v oblasti nauk o Zemle” (XII Regional Young Scientists Conference “Research in Earth Sciences”), November 25, 2014, Petropavlovsk-Kamchatskii: IViS DVO RAN, 2014, pp. 75–84.

    Google Scholar 

  • Nuzhdaev, I.A. and Feofilaktov, S.O., The present knowledge of the structure of the central Nizhne-Koshelevskii geothermal field and results of magnetic surveys, Vestnik KRAUNTs. Nauki o Zemle, 2013, no. 2, issue 22, pp. 231–241.

    Google Scholar 

  • Pampura, V.D. and Sandimirova, G.P., Geokhimiya i izotopnyi sostav strontsiya v gidrotermal’nykh sistemakh (Geochemistry and Isotope Composition of Strontium in Hydrothermal Systems), Novosibirsk: Nauka, 1991.

    Google Scholar 

  • Pauzhetskie goryachie vody na Kamchatke (The Pauzhetka Hot Waters in Kamchatka), Moscow: Nauka, 1965.

  • Pek, A.A., Hydrodynamic models of hydrothermal mineralizing systems, in Rudoobrazuyushchie protsessy i sistemy (Mineralizing Processes and Systems), Moscow: Nauka, 1989, pp. 68–78.

    Google Scholar 

  • Polyak, B.G., Teplomassopotok iz mantii v glavnykh strukturakh zemnoi kory (Heat and Mass Transfer from the Mantle in Major Crustal Structures), Moscow: Nauka, 1988.

    Google Scholar 

  • Polyak, B.G., Tolstikhin, I.N., and Yakutseni, V.P., Isotopic composition of helium and the heat flow: Geochemical and geophysical aspects of tectogenesis, Geotektonika, 1979, no. 5, pp. 3–23.

    Google Scholar 

  • Prognoznaya otsenka rudonosnosti vulkanogennykh formatsii (Predicting the Mineralization Potential of Volcanogenic Formations), Moscow: Nedra, 1977.

  • Rychagov, S.N., The hydrothermal system of Baranskii Volcano, Iturup I.: A model of Geological Structure, Vulkanol. Seismol., 1993, no. 2, pp. 59–74.

    Google Scholar 

  • Rychagov, S.N., Mineralizing hydrothermal magmatic systems at the Kuril–Kamchatka island arc and their analogues, in Plenarnoe soveshchanie po proektu MPGK-408 “Sravnenie sostava, struktury i fizicheskikh svoistv porod i mineralov po razrezu Kol’skoi sverkhglubokoi skvazhiny (SG-3) i ikh gomologov na zemnoi poverkhnosti” (Plenary conf. on the MPGK-408 project “Comparison of Composition, Structure, and Physical Properties of Rocks and Minerals in the Section of the Kola Superdeep Well (SG-3) and Their Homologues on the Earth’s Surface), Petropavlovsk-Kamchatskii: IViS DVO RAN, 2002, p. 44.

    Google Scholar 

  • Rychagov, S.N., The Evolution of Hydrothermal Magmatic Systems at Island Arcs, Extended Abstract of D-r Sci. (Geol.–Mineral.) Dissertation, IGEM RAN, Moscow, 2003, p. 50.

    Google Scholar 

  • Rychagov, S.N., Giant gas-rich hydrothermal systems and their role in the generation of vapor-dominated geothermal fields and ore mineralization, J. Volcanol. Seismol., 2014, vol. 8, no. 2, pp. 69–92.

    Article  Google Scholar 

  • Rychagov, S.N., Nuzhdaev, A.A., and Stepanov, I.I., The behavior of mercury in the hypergenesis zones of hydrothermal systems, southern Kamchatka, Geokhimiya, 2009, no. 5, pp. 533–542.

    Google Scholar 

  • Rychagov, S.N., Davletbaev, R.G., and Kovina, O.V., Cation migration in hydrothermal clays: The problem of mineralization criteria in gas-hydrothermal fluids of hydrothermal fields in southern Kamchatka, J. Volcanol. Seismol., 2012, vol. 6, no. 4, pp. 230–242.

    Article  Google Scholar 

  • Rychagov, S.N., Sergeeva, A.V., Chernov, M.S., and Filosofova, T.M., Globules of different compositions in a sequence of hydrothermal clays in the East Pauzhetka thermal field, southern Kamchatka: On the question of sources of phosphorus and transport of metals, in Materialy ezhegodnoi konferentsii, posvyashchennoi Dnyu vulhanologa “Vulkanizm i svyazannye s nim protsessy” (Proc. conf. devoted to Volcanologist’s Day “Volcanism and Related Processes”), Petropavlovsk-Kamchatskii: IViS DVO RAN, 2015, pp. 270–276.

    Google Scholar 

  • Sadovskii, M.A., Golubeva, T.V., Pisarenko, V.F., and Shnirman, M.G., Characteristic rock sizes and the hierarchical properties of seismicity, Izv. AN SSSR, Fizika Zemli, 1984, no. 2, pp. 3–15.

    Google Scholar 

  • Stimac, J.A., Goff, F., and Wohletz, K., Thermal modeling of the Clear Lake magmatic-hydrothermal system, California, USA, Geothermics, 2001, vol. 30, pp. 349–390.

    Article  Google Scholar 

  • Struktura gidrotermal’noi sistemy (The Structure of Hydrothermal Systems), Moscow: Nauka, 1993.

  • Syvorotkin, V.L., The present-day volcanism in southern Kamchatka and the hydrothermal process, in Struktura gidrotermal’noi sistemy (The Structure of Hydrothermal Systems), Moscow: Nauka, 1993, pp. 19–38.

    Google Scholar 

  • Tauson, V.L., Rychagov, S.N., Akimov, V.V., et al., The role of surface phenomena in concentration of incoherent elements: Gold in pyrites of hydrothermal clays in thermal fields of southern Kamchatka, Geokhimiya, 2015, no. 11, pp. 1000–1014.

    Google Scholar 

  • Tuezov, I.K., Litosfera Aziatsko-Tikhookeanskoi zony perekhoda (The Lithosphere of the Asia–Pacific Transition Zone), Novosibirsk: Nauka, 1975.

    Google Scholar 

  • Walters, M. and Combs, J., Heat flow regime in the Geysers-Clear Lake region of northern California, USA, Transactions Geothermal Resources Council, 1989, vol. 13, pp. 491–502.

    Google Scholar 

  • Yakovlev, G.F., Volcanic structures of ore fields, Geologiya Rudnykh Mestorozhdenii, 1979, no. 3, pp. 3–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Feofilaktov.

Additional information

Original Russian Text © S.O. Feofilaktov, S.N. Rychagov, Yu.Yu. Bukatov, I.A. Nuzhdaev, A.A. Nuzhdaev, 2017, published in Vulkanologiya i Seismologiya, 2017, No. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feofilaktov, S.O., Rychagov, S.N., Bukatov, Y.Y. et al. New evidence relating to the structure of the zone of hydrothermal discharges in the East Pauzhetka thermal field, Kamchatka. J. Volcanolog. Seismol. 11, 353–366 (2017). https://doi.org/10.1134/S0742046317050025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046317050025

Navigation