Skip to main content

Advertisement

Log in

Trace element fractionation in water-bearing silicic magmas

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

Crystallization of a hydrous andesite within a thermal boundary layer at 500 MPa pressure is simulated experimentally using the intrinsic thermal gradient of 10 mm length capsules in a horizontally arranged piston-cylinder apparatus. Magma solidification is programmed at two distinct cooling rates, slow (0.6 °C/h) and rapid (9.6 °C/h). Bulk laser ablation (LA-ICP-MS) analyses across the thermal gradient shed light about fractionation efficiency for trace elements at conditions of slow cooling in which, water-rich fluids favours element mobility. Compositional and textural features of our experiments provide new insights on the kinetics of trace element fractionation in water-bearing intermediate magmas. These features, together with the unrealistic diffusion values measured in the capsules (close to 10–6 cm2 s−1), indicate that incompatible elements co-migrate with a water-rich fluid phase, expelled from a crystal-rich network or mush, by gas-driven filter pressing. In the studied system, diffusive transport proceeded in the same direction of chemical elements migration by advection. It is proposed that liquid segregation is particularly effective at the thermal boundary layers created at the margins of ascent conduits and the walls of magma chambers. Fluxing of a trace element-rich fluid into the hotter, crystal-poor areas, at central and/or upper zones of magma chambers, gives rise to compositional zoning and, eventually, to the formation of silicic cupolas, which are preferential places for ore deposit generation.

Resumen

La cristalización de una andesita hidratada dentro de una capa límite térmica a 500 MPa de presión se simula experimentalmente usando el gradiente térmico intrínseco en las cápsulas de 10 mm de longitud dentro de un piston-cylinder en posición horizontal. La solidificación del magma se programó con dos tasas de enfriamiento distintas, lenta (0.6 °C/hora) y rápida (9.6 °C/hora). Los análisis con ablación láser (LA-ICP-MS) a lo largo del gradiente térmico nos dan información acerca de la eficiencia de la fraccionación en elementos traza, para un enfriamiento lento, en el que los fluidos ricos en agua favorecen la movilidad de ciertos elementos. Las características composicionales y texturales de nuestros experimentos proporcionan nuevos avances sobre la cinética de la fraccionación de los elementos traza en magmas intermedios con agua. Estas características, junto con los irreales valores de difusión medidos en las cápsulas (cercanos a 10–6 cm2s−1), indican que los elementos incompatibles migran conjuntamente con una fase fluida rica en agua, expulsada desde un entramado rico en cristales o mush, a través del efecto filtro prensa asistido por gas. En el caso aquí estudiado, el transporte difusivo impuesto por el gradiente de concentración de los elementos químicos tiene lugar en el mismo sentido que el de tipo advectivo. Se propone que la segregación del líquido es particularmente efectiva en capas límite térmicas originadas en los márgenes de los conductos de ascenso o en las paredes de las cámaras magmáticas. El flujo de un fluido rico en elementos traza hacia áreas pobres en cristales y más calientes, en las zonas centrales o superiores de las cámaras magmáticas, dan como resultado una zonación composicional y, eventualmente, a la formación de cúpulas fraccionadas, lugares preferenciales para la generación de depósitos de menas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bachmann, O., & Huber, C. (2016). Silicic magma reservoirs in the Earth’s crust. American Mineralogist, 101(11), 2377–2404.

    Article  Google Scholar 

  • Barnes, C. G., Allen, C. M., & Saleeby, J. B. (1986). Open- and closed-system characteristics of a tilted plutonic system, Klamath Mountains, California. Journal of Geophysical Research: Solid Earth, 91(B6), 6073–6090.

    Article  Google Scholar 

  • Bateman, P. C., & Chappell, B. W. (1979). Crystallization, fractionation, and solidification of the tuolumne intrusive series, Yosemite National Park, California. Geological Society of America Bulletin, 90, 465–482.

    Article  Google Scholar 

  • Bea, F., Pereira, M. D., & Stroh, A. (1994). Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemical Geology, 117(1–4), 291–312.

    Article  Google Scholar 

  • Bindeman, I. N., & Davis, A. M. (2000). Trace element partitioning between plagioclase and melt: Investigation of dopant influence on partition behavior. Geochimica et Cosmochimica Acta, 64(16), 2863–2878.

    Article  Google Scholar 

  • Bindeman, I. N., Lundstrom, C. C., Bopp, C., & Huang, F. (2013). Stable isotope fractionation by thermal diffusion through partially molten wet and dry silicate rocks. Earth and Planetary Science Letters, 365, 51–62.

    Article  Google Scholar 

  • Bohlen, S. R., Boettcher, A. L., & Wall, V. J. (1982). The system albite-H2O-CO2: A model for melting and activities of water at high pressure. American Mineralogist, 67, 451–462.

    Google Scholar 

  • Bonechi, B., Perinelli, C., & Gaeta, M. (2019). Clinopyroxene growth rates at high pressure: Constraints on magma recharge of the deep reservoir of the Campi Flegrei Volcanic District (south Italy). Bulletin of Volcanology, 82(1), 5.

    Article  Google Scholar 

  • Boudreau, A. (2016). Bubble migration in a compacting crystal-liquid mush. Contributions to Mineralogy and Petrology, 171(4), 32.

    Article  Google Scholar 

  • Brenan, J. M., Shaw, H. F., Ryerson, F. J., & Phinney, D. L. (1995). Experimental determination of trace-element partitioning between pargasite and a synthetic hydrous andesitic melt. Earth and Planetary Science Letters, 135(1–4), 1–11.

    Article  Google Scholar 

  • Burnham, C. W. (1979). The importance of volatile constituents. In H. S. J. Yoder (Ed.), The evolution of the igneous rocks (pp. 439–482). Princeton: Princeton University Press.

    Google Scholar 

  • Candela, P. A. (1997). A review of shallow, ore-related granites: Textures, volatiles, and ore metals. Journal of Petrology, 38(12), 1619–1633.

    Article  Google Scholar 

  • Cloos, M. (2001). Bubbling magma chambers, cupolas, and porphyry copper deposits. International Geology Review, 43(4), 285–311.

    Article  Google Scholar 

  • Coleman, D. S., Gray, W., & Glazner, A. (2004). Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite California. Geology, 32(5), 433–436.

    Article  Google Scholar 

  • Coleman, D. S., Bartley, J. M., Glazner, A. F., & Pardue, M. J. (2012). Is chemical zonation in plutonic rocks driven by changes in source magma composition or shallow-crustal differentiation? Geosphere, 8(6), 1568–1587.

    Article  Google Scholar 

  • Conte, A. M., Perinelli, C., & Trigila, R. (2006). Cooling kinetics experiments on different Stromboli lavas: Effects on crystal morphologies and phases composition. Journal of Volcanology and Geothermal Research, 155(3), 179–200.

    Article  Google Scholar 

  • Courrioux, G. (1987). Oblique diapirism: The Criffel granodiorite/granite zoned pluton (southwest Scotland). Journal of Structural Geology, 9(3), 313–330.

    Article  Google Scholar 

  • Deering, C. D., & Bachmann, O. (2010). Trace element indicators of crystal accumulation in silicic igneous rocks. Earth and Planetary Science Letters, 297(1–2), 324–331.

    Article  Google Scholar 

  • Flanagan, F. J. (1967). US geological survey silicate rock standards. Geochimica et Cosmochimica Acta, 31, 289–308.

    Article  Google Scholar 

  • Ghiorso, M. S., & Gualda, G. A. R. (2015). An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contributions to Mineralogy and Petrology, 169(6), 1–30.

    Article  Google Scholar 

  • Glazner, A. F., Coleman, D. S., & Bartley, J. M. (2008). The tenuous connection between high-silica rhyolites and granodiorite plutons. Geology, 36(2), 183–186.

    Article  Google Scholar 

  • Hartung, E., Caricchi, L., Floess, D., Wallis, S., Harayama, S., Kouzmanov, K., & Chiaradia, M. (2017). Evidence for residual melt extraction in the Takidani Pluton, Central Japan. Journal of Petrology, 58(4), 763–788.

    Article  Google Scholar 

  • Hartung, E., Weber, G., & Caricchi, L. (2019). The role of H2O on the extraction of melt from crystallising magmas. Earth and Planetary Science Letters, 508, 85–96.

    Article  Google Scholar 

  • Henderson, P. (1986). Inorganic geochemistry (p. 353). Oxford: Pergamon Press.

    Google Scholar 

  • Hildreth, W. (1979). The bishop tuff: Evidence for the origin of compositional zoning in silicic magma chambers. Geological Society of America, Special Paper, 180, 43–75.

    Article  Google Scholar 

  • Hildreth, W. (1981). Gradients in silicic magma chambers: Implication for lithospheric magmatism. Journal of Geophysical Research, 86(B11), 10153–10192.

    Article  Google Scholar 

  • Hill, E., Wood, B. J., & Blundy, J. D. (2000). The effect of Ca-Tschermaks component on trace element partitioning between clinopyroxene and silicate melt. Lithos, 53(3–4), 203–215.

    Article  Google Scholar 

  • Huang, F., Lundstrom, C. C., Glessner, J., Ianno, A., Boudreau, A., Li, J., et al. (2009). Chemical and isotopic fractionation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation. Geochimica et Cosmochimica Acta, 73(3), 729–749.

    Article  Google Scholar 

  • Huber, C., Bachmann, O., Vigneresse, J. L., Dufek, J., & Parmigiani, A. (2012). A physical model for metal extraction and transport in shallow magmatic systems. Geochemistry, Geophysics, Geosystems, 13(8), 2.

    Article  Google Scholar 

  • Jochum, K. P., & Nohl, U. (2008). Reference materials in geochemistry and environmental research and the GeoReM database. Chemical Geology, 253(1–2), 50–53.

    Article  Google Scholar 

  • Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., et al. (2011). Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research, 35(4), 397–429.

    Article  Google Scholar 

  • Koepke, J., & Behrens, H. (2001). Trace element diffusion in andesitic melts: An application of synchrotron X-ray fluorescence analysis. Geochimica et Cosmochimica Acta, 65(9), 1481–1498.

    Article  Google Scholar 

  • Langmuir, C. H. (1989). Geochemical consequences of In situ crystallization. Nature, 340, 199–205.

    Article  Google Scholar 

  • Lipman, P. W. (2007). Incremental assembly and prolonged consolidation of Cordilleran magma chambers: Evidence from the Southern Rocky Mountain volcanic field. Geosphere, 3, 42–70.

    Article  Google Scholar 

  • Lipman, P. W., & Bachmann, O. (2015). Ignimbrites to batholiths: Integrating perspectives from geological, geophysical, and geochronological data. Geosphere, 11(3), 705–743.

    Article  Google Scholar 

  • Mahood, G., & Hildreth, W. (1983). Large partition coefficients for elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, 47, 11–30.

    Article  Google Scholar 

  • Miller, J. S., Matzel, J. E. P., Miller, C. F., Burgess, S. D., & Miller, R. B. (2007). Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research, 167(1–4), 282–299.

    Article  Google Scholar 

  • Moore, G., Roggensack, K., & Klonowski, S. (2008). A low-pressure–high-temperature technique for the piston-cylinder. American Mineralogist, 93, 48–52.

    Article  Google Scholar 

  • Mustard, R. (2004). Textural, mineralogical and geochemical variation in the zoned Timbarra Tablelands pluton, New South Wales*. Australian Journal of Earth Sciences, 51(3), 385–405.

    Article  Google Scholar 

  • Mustard, R., Ulrich, T., Kamenetsky, V. S., & Mernagh, T. (2006). Gold and metal enrichment in natural granitic melts during fractional crystallization. Geology, 34(2), 85–88.

    Article  Google Scholar 

  • Nishimura, K., & Yanagi, T. (2000). In situ crystallization observed in the Osumi granodiorite batholith. Earth and Planetary Science Letters, 180(1–2), 185–199.

    Article  Google Scholar 

  • Parmigiani, A., Faroughi, S., Huber, C., Bachmann, O., & Su, Y. (2016). Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust. Nature, 532, 492–495.

    Article  Google Scholar 

  • Parmigiani, A., Degruyter, W., Leclaire, S., Huber, C., & Bachmann, O. (2017). The mechanics of shallow magma reservoir outgassing. Geochemistry, Geophysics, Geosystems, 18(8), 2887–2905.

    Article  Google Scholar 

  • Patiño Douce, A. E., & Beard, J. S. (1994). H2O loss from hydrous melts during fluid-absent piston cylinder experiments. American Mineralogist, 79, 585–588.

    Google Scholar 

  • Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508–2518.

    Article  Google Scholar 

  • Pistone, M., Arzilli, F., Dobson, K. J., Cordonnier, B., Reusser, E., Ulmer, P., et al. (2015). Gas-driven filter pressing in magmas: Insights into in-situ melt segregation from crystal mushes. Geology, 43(8), 699–702.

    Article  Google Scholar 

  • Rodríguez, C., & Castro, A. (2017). Silicic magma differentiation in ascent conduits. Experimental constraints. Lithos, 272–273, 261–277.

    Article  Google Scholar 

  • Rodríguez, C., Geyer, A., Castro, A., & Villaseñor, A. (2015). Natural equivalents of thermal gradient experiments. Journal of Volcanology and Geothermal Research, 298, 47–58.

    Article  Google Scholar 

  • Seaman, S., Gylling, H., Hogan, J., Karner, F., & Koteas, G. C. (2011). Concentric zoning in the Tunk Lake pluton, coastal Maine. Contributions to Mineralogy and Petrology, 162(6), 1291–1314.

    Article  Google Scholar 

  • Shaw, S. E., & Flood, R. H. (2009). Zircon Hf isotopic evidence for mixing of crustal and silicic mantle-derived magmas in a zoned Granite Pluton, Eastern Australia. Journal of Petrology, 50(1), 147–168.

    Article  Google Scholar 

  • Silver, L., & Stolper, E. (1989). Water in albitic glasses. Journal of Petrology, 30(3), 667–709.

    Article  Google Scholar 

  • Silver, L. A., Ihinger, P. D., & Stolper, E. (1990). The influence of bulk composition on the speciation of water in silicate glasses. Contributions to Mineralogy and Petrology, 101, 142–162.

    Article  Google Scholar 

  • Sisson, T. W., & Bacon, C. R. (1999). Gas-driven filter pressing in magmas. Geology, 27, 613–616.

    Article  Google Scholar 

  • Srogi, L., & Lutz, T. M. (1996). The role of residual melt migration in producing compositional diversity in a suite of granitic rocks. Earth and planetary science letters, 144(3–4), 563–576.

    Article  Google Scholar 

  • Stephens, W. E., & Halliday, A. N. (1980). Discontinuities in the composition surface of a zoned pluton, Criffell, Scotland. Geological Society of America Bulletin, 91, 165–170.

    Article  Google Scholar 

  • Stolper, E. (1982). Water in silicate glasses: An infrared spectroscopic study. Contributions to Mineralogy and Petrology, 81(1), 1–17.

    Article  Google Scholar 

  • Truckenbrodt, J., & Johannes, W. (1999). H2O loss during piston-cylinder experiments. American Mineralogist, 84, 1333–1335.

    Article  Google Scholar 

  • Vance, J. A. (1961). Zoned granitic intrusions—An alternative hypothesis of origin. Geological Society of America Bulletin, 72, 1723–1728.

    Article  Google Scholar 

  • Vigneresse, J. L., & Bouchez, J. L. (1997). Successive granitic magma batches during pluton emplacement: The case of Cabeza de Araya (Spain). Journal of Petrology, 38(12), 1767–1776.

    Article  Google Scholar 

  • Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187.

    Article  Google Scholar 

  • Zhang, Y., Ni, H., & Chen, Y. (2010). Diffusion data in silicate melts. Reviews in Mineralogy and Geochemistry, 72(1), 311–408.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge with thanks Iñaki Gil Ibarguchi and Sonia García de Madinabeitia (Universidad del País Vasco) for the help with trace element determinations. The manuscript has been benefited from a critical reading of Bruno Scaillet. This work is supported by IBERCRUST project PGC2018-096534-B-I00. C. R. is grateful to a Juan de la Cierva-Formación postdoctoral contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Rodríguez.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, C., Castro, A. & Sánchez-Navas, A. Trace element fractionation in water-bearing silicic magmas. J Iber Geol 47, 263–279 (2021). https://doi.org/10.1007/s41513-020-00153-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-020-00153-w

Keywords

Palabras clave

Navigation