Skip to main content
Log in

Geostatistical approach to the study of the magnetic susceptibility variation: Lamas de Olo Pluton case study

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

The Lamas de Olo Pluton, in northern Portugal, is a post-tectonic pluton located in the northern part of the Central Iberian Zone of the Iberian Variscan belt. It is a composite massif comprising different granites: Lamas de Olo, Alto dos Cabeços and Barragem. Magnetic susceptibility was measured in 349 oriented cores from 48 sampling sites across the pluton. The measured magnetic susceptibility (Km) values range between 21 µSI (or 21 × 10− 6 SI) and 2769 µSI for all studied granites. The application of the geostatistical methodologies leads to a more detailed mapping of the magnetic susceptibility data and provided a quantification of its spatial dispersion. Kriging interpolation allows the visualization of two different areas in the Lamas de Olo Pluton: (1) areas with higher magnetic susceptibility values, typical of magnetite-bearing granites (Km ≥ 1200 µSI) and (2) areas with lower values, which correspond to ilmenite-type behavior granites (21 µSI < Km < 1200 µSI), showing the heterogeneity of their granites, with a predominance of ilmenite-type granites. Alto dos Cabeços and Barragem are classified as ilmenite-type granites and Lamas de Olo granite presents both behaviors. The mineralogical and geochemical study of the Lamas de Olo granite with different behaviors does not show significant differences between the two types, allowing us to conclude that the Lamas de Olo granite was originated by the same magma and its mineralogical composition varied during the rise and emplacement of the magma implying the alteration of magnetite into hematite.

Resumen

El plutón de Lamas de Olo, en el norte de Portugal, es un plutón postectónico ubicado en la parte septentrional de la Zona Centro Ibérica del macizo Varisco Ibérico. Es un macizo compuesto que engloba diferentes granitos: Lamas de Olo, Alto dos Cabeços y Barragem. La susceptibilidad magnética se midió en un total de 349 muestras orientadas provenientes de 48 estaciones distribuidas por todo el plutón. Los valores de susceptibilidad magnética (Km) oscilan entre 21 μSI (ó 21 × 10-6 SI) y 2769 μSI en los granitos estudiados. La aplicación de herramientas geoestadísticas permite una cartografía más detallada de la susceptibilidad magnética y proporciona una cuantificación de su dispersión espacial. La interpolación por Kriging permite la visualización de dos áreas diferentes en el plutón de Lamas de Olo: (1) áreas con valores de susceptibilidad magnética más altas, típicos de granitos que contienen magnetita (Km ≥ 1200 μSI) y (2) áreas con valores más bajos, que corresponden a granitos de comportamiento tipo ilmenita (21 μSI < Km < 1200 μSI). Por otra parte los granitos de Alto dos Cabeços y Barragem se clasifican como tipo ilmenita. Esta variabilidad muestra la heterogeneidad de los granitos en los que predominan los de tipo ilmenita. Los estudios mineralógicos y geoquímicos del granito de Lamas de Olo no muestran diferencias significativas entre los dos tipos, lo que nos permite concluir que el granito de Lamas de Olo se originó del mismo magma y su composición mineralógica varió durante el ascenso y emplazamiento del magma conllevando la alteración de la magnetita a hematita.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(geological map made in ArcGIS 10.7 based on Pereira et al. 1987 and Helal 1992)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Actlabs. (2020). Geochemistry: Lithogeochemistry and whole rock analysis. Retrieved January 9, 2020 from https://actlabs.com/.

  • Almeida, A., Leterrier, J., Noronha, F., & Bertrand, J. M. (1998). U–Pb zircon and monazite geochronology of the Hercynian two mica granite composite pluton of Cabeceiras de Basto (Northern Portugal). Comptes Rendus de l'Académie des Sciences, 326, 779–785.

    Google Scholar 

  • Aranguren, A., Tubia, J., Bouchez, J. L., & Vigneresse, J. L. (1996). The Guitiriz granite, Variscan belt of northern Spain: Extension-controlled emplacement of magma during tectonic escape. Earth and Planetary Science Letters, 139(1–2), 165–176.

    Article  Google Scholar 

  • Aydin, A., Ferré, E. C., & Aslan, Z. (2007). The magnetic susceptibility of granitic rocks as a proxy for geochemical composition: Example from the Saruhan granitoids, NE Turkey. Tectonophysics, 441, 85–95.

    Article  Google Scholar 

  • Ballouard, C., Poujol, M., Boulvais, P., Branquet, Y., Tartèse, R., & Vigneresse, J. L. (2016). Nb–Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geological Society of America, 4, 89.

    Google Scholar 

  • Benndorf, J., & Menz, J. (2014). Improving the assessment of uncertainty and risk in the spatial prediction of environmental impacts: A new approach for fitting geostatistical model parameters based on dual kriging in the presence of a trend. Stochastic Environmental Research and Risk Assessment, 28(3), 627–637.

    Article  Google Scholar 

  • Bouchez, J. L. (1997). Granite is never isotropic: An introduction to AMS studies of granitic rocks. In J. L. Bouchez, D. H. W. Hutton, & W. E. Stephens (Eds.), Granite: From melt to emplacement fabrics (pp. 95–112). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Boynton, W. V. (1984). Cosmochemistry of the rare earth elements; meteorite studies. In P. Henderson (Ed.), Rare earth element geochemistry (pp. 63–114). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Chilès, J. P., & Delfiner, P. (2012). Geostatistics. Modelling spatial uncertainty (2nd ed., p. 695). New York: Wiley.

    Book  Google Scholar 

  • Chadima, M., & Jelinek, V. (2009). Anisoft 4.2: Anisotropy data browser for windows. Brno: Advanced Geoscience Instruments Company (AGICO).

    Google Scholar 

  • Coleman, D. S., Bartley, J. M., Glazner, A. F., & Pardue, M. J. (2012). Is chemical zonation in plutonic rocks driven by changes in source magma composition or shallow-crustal differentiation? Geosphere, 8, 1568–1587.

    Article  Google Scholar 

  • Cruz, C., & Sant’Ovaia, H. & Noronha, F., (2016). Magnetic susceptibility and δ18O characterization of Variscan granites related to W–(Mo) and Sn–(W) mineralizations: Lamas de Olo Pluton case study. Comunicações Geológicas, 103(1), 143–174.

    Google Scholar 

  • Cruz, C., & Sant’Ovaia, H. & Noronha, F., (2020). Magnetic mineralogy of Variscan granites from northern Portugal: An approach to their petrogenesis and metallogenic potential. Geologica Acta, 18(5), 1–20.

    Google Scholar 

  • Davis, J. C. (2002). Statistics and data analysis in geology (3rd ed.). New York: Wiley.

    Google Scholar 

  • Ellwood, B. B., & Wenner, D. B. (1981). Correlation of magnetic susceptibility with 18O/16O data in late orogenic granites of the southern Appalachian Piedmont. Earth Planetary Science Letters, 54, 200–202.

    Article  Google Scholar 

  • Fabijanczyk, P., & Zawadzki, J. (2019). Using geostatistical Gaussian simulation for designing and interpreting soil surface magnetic susceptibility measurements. International Journal of Environmental Research and Public Health, 16, 3497.

    Article  Google Scholar 

  • Fernandes, S., Gomes, M., Teixeira, R. & Corfu, F. (2013). Geochemistry of biotite granites from the Lamas de Olo Pluton, northern Portugal. Geophysical Research Abstracts, EGU General Assembly, Vol. 15, pp. 1. Retrieved April 22, 2016 from https://meetingorganizer.copernicus.org/EGU2013/EGU2013-11566.pdf.

  • Ferré, E. C., Michelsen, K. J., Ernst, W. G., Boyd, J. D., & Canon-Tapia, E. (2012). Vertical zonation of the Barcroft granodiorite, White Mountains, California: Implications for magmatic processes. American Mineralogist, 97, 1049–1059.

    Article  Google Scholar 

  • Figueiredo, J., Vila, M. C., Góis, J., Biju, B. P., Futuro, A., Martins, D., et al. (2019). Bi-level depth assessment of an abandoned tailings dam aiming its reprocessing for recovery of valuable metals. Minerals Engineering, 133, 1–9.

    Article  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.

    Google Scholar 

  • Hanke, J. R., Fischer, M. P., & Pollya, R. M. (2018). Directional semivariogram analysis to identify and rank controls on the spatial variability of fracture networks. Journal of Structural Geology, 108, 34–51.

    Article  Google Scholar 

  • Helal, B. (1992). Granitoïdes, granites à métaux rares et hydrothermalisme associe: Géologie, minéralogie et géochimie de plusieurs suites tardi-hercyniennes (Nord du Portugal). (p. 508). France: Ecole Nacionale Superieure des Mines de Saint-Etienne. (Thesis submitted for the PhD degree (published thesis)).

    Google Scholar 

  • Hrouda, F. (1982). Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5, 37–82.

    Article  Google Scholar 

  • Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27, 292–305.

    Google Scholar 

  • Ishihara, S., Lee, D. S., & Kim, S. Y. (1981). Comparative study of Mesozoic granitoids and related W–Mo mineralization in Southern Korea and Southwestern Japan. Mining Geology, 31(4), 311–320.

    Google Scholar 

  • Ishihara, S., Hashimoto, M., & Machida, M. (2000). Magnetite/ilmenite series classification and magnetic susceptibility of the Mesozoic–Cenozoic batholiths in Peru. Resource Geology, 50, 123–129.

    Article  Google Scholar 

  • Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. New York: Academic Press.

    Google Scholar 

  • Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa, 188, 119–139.

    Google Scholar 

  • Takahashi, M., Aramaki, S., & Ishihara, S. (1980). Magnetite series/ilmenite series vs I-type/S-type granitoids. In I. Ishihara & S. Takenouchi (Eds.), Granitic magmatism and related mineralization (pp. 13–28). Tokyo: Nihon Shigen Chishitsu Gakkai-Society of Resource Geologists of Japan.

    Google Scholar 

  • Teixeira, R. (2008). Mineralogia, petrologia e geoquímica dos granitos e seus encraves da região de Carrazeda de Ansiães, Thesis submitted for the PhD degree (published thesis) (p. 463). Portugal: EUniversidade de Trás-os-Montes e alto Douro. (Thesis submitted for the PhD degree (published thesis)).

    Google Scholar 

  • Marques, F. O., Mateus, A., & Tassinari, C. (2002). The Late-Variscan fault network in central–northern Portugal (NW Iberia): A re-evaluation. Tectonophysics, 359(3–4), 255–270.

    Article  Google Scholar 

  • Matheron, G. (1960). Traité de géostatistique appliquée. Mémoires Bureau de Recherches Géologiques et Minières (BRGM), 14, 333.

    Google Scholar 

  • Maulana, A., Watanabe, K., Imai, A., & Yonezu, K. (2013). Origin of magnetite- and ilmentite-series granitic rocks in Sulawesi, Indonesia: Magma genesis and regional metallogenic constrains. Earth and Planetary Sciences, 6, 50–57.

    Google Scholar 

  • Olivia-Urcia, B., & Pueyo, E. L. (2012). Gradient of shortening and vertical-axis rotations in the Southern Pyrenees (Spain), insights from a synthesis of paleomagnetic data. Revista de la Sociedad Geológica de España, 20(1–2), 105–118.

    Google Scholar 

  • Peccerillo, A., & Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63–81.

    Article  Google Scholar 

  • Pereira, E. (1989). Carta Geológica de Portugal à escala 1:50 000. Notícia Explicativa da Folha 10-A (Celorico de Basto). Lisboa: Serviços Geológicos de Portugal.

  • Pereira, E., Silva, N., Moreira, A. & Ribeiro, A. (1987). Carta Geológica de Portugal à escala 1:50 000. Folha 10-A (Celorico de Basto). Serviços Geológicos de Portugal.

  • Pizarro, N. (2008). Magnetic Susceptibility Scaling of Rocks using Geostatistical Analysis: An approach to Geologic and Geophysical model integration. Thesis submitted for the MSc (Geological Sciences), University of British Columbia (Vancouver), September, 195.

  • Porquet, M., Pueyo, E. L., Róman-Berdiel, T., Olivier, P., Longares, L. A., Cuevas, J., Geokin3DPyr Working Group, et al. (2017). Anisotropy of magnetic susceptibility of the Pyrenean granites. Journal of Maps, 13(2), 438–448.

    Article  Google Scholar 

  • Román-Berdiel, T., Pueyo-Morer, E. L., & Casas-Sainz, A. M. (1995). Granite emplacement during contemporary shortening and normal faulting: Structural and magnetic study of the Veiga Massif (NW Spain). Journal of Structural Geology, 17(12), 1689–1706.

    Article  Google Scholar 

  • Sant’Ovaia, H., Martins, Lopes, J.C., Machado, J. & Noronha, F., (2012). Correlation of magnetic susceptibility with δ18O data in magnetite- and ilmenite-type granites from Iberian massif. Mineralogical Magazine, 76(6), 23–25.

    Google Scholar 

  • Sichel, H. S. (1952). New methods in the statistical evaluation of mine sampling data (pp. 261–288). London: Bulletin Institute of Mining and Metallurgy.

    Google Scholar 

  • Villaseca, C., Barbero, L., & Herreros, V. (1998). A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Transactions of the Royal Society of Edinburgh: Earth Sciences, 89, 113–119.

    Article  Google Scholar 

  • Villaseca, C., Ruiz-Martínez, V. C., & Pérez-Soba, C. (2017). Magnetic susceptibility of Variscan granite-types of the Spanish Central System and the redox state of magma. Geologica Acta, 15(4), 379–394.

    Google Scholar 

  • Zawadzki, J., Magiera, T., Fabijańczyk, P., & Kusza, G. (2012). Geostatistical 3-dimensional integration of measurements of soil magnetic susceptibility. Environmental Monitoring and Assessment, 184(5), 3267–3278.

    Article  Google Scholar 

  • Zawadzki, J., Fabijańczyk, P., Magiera, T., & Rachwał, M. (2015). Geostatistical microscale study of magnetic susceptibility in soil profile and magnetic indicators of potential soil pollution. Water, Air, and Soil Pollution, 226(5), 142–148.

    Article  Google Scholar 

Download references

Acknowledgements

The first author was financially supported by SFRH/BD/109693/2015 (Fundação para Ciência e a Tecnologia-Portugal). The authors acknowledge funding from FCT (Fundação para a Ciência e a Tecnologia) under project UIDB/04683/2020 and from ESMIMET, an INTERREG Spain-Portugal POCTEP project. We thank Helena Brites Martins for the help in interpreting geochemical results. The authors are grateful to the anonymous referee whose comments greatly helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Cruz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, C., Góis, J., Sant’Ovaia, H. et al. Geostatistical approach to the study of the magnetic susceptibility variation: Lamas de Olo Pluton case study. J Iber Geol 46, 279–289 (2020). https://doi.org/10.1007/s41513-020-00128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-020-00128-x

Keywords

Palabras clave

Navigation