Skip to main content

Advertisement

Log in

Lithological, structural, and alteration mapping of uraniferous granitoid using Landsat 8, in the oriental part of the Reguibat shield, northern Mauritania

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The efficacy of remote sensing techniques for mineral exploration has been proven through several geological investigations. Therefore, this study used remote sensing techniques to delineate uranium prospective zones in the oriental part of Reguibat shield. This region is desert, flat and uncovered by vegetation and presents suitable characteristics for use of satellite images. Radiometric calibration, atmospheric correction, colour composite, principal component analysis (PCA), lineament extraction and band ratios were the main methods performed for the pre-processing and the processing of Landsat 8 OLI images. The findings of the current study revealed lithological units dominated by felsic rocks in association with metasediment, highlighted using band composite (bands 7, 5 and 3, then 7, 2, and 1, in RGB), PCs (PC1, PC2, and PC3) and band ratio (7/5, 5/4, and 6/7 in RGB). The lineament extraction and analysis indicated major deformation trending NNE-SSW affecting geological units of the area. The prospective uraniferous zone delineated showed a spatial distribution in relation with an identified shear zone which suggests a reasonable structural control of the mineralization. The results from this study were validated with existing data from previous map and ground truthing from fieldwork, and they showed high level of agreement. The result of this study further demonstrated the applicability of Landsat 8 OLI as suitable lithological mapping tool in the desert areas. The methodology employed in this research has wide-ranging applications in the identification and delineation of potential uranium-rich regions using remote sensing techniques. For uranium exploration purpose, this approach can be effectively utilized in various other regions to delineate new uraniferous area within the Reguibat shield, as well as in arid and semi-arid areas across the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdelkareem M, Zakaria H, Mohammed E, Hossam K, Samar A (2021) Integration of remote-sensing data for mapping lithological and structural features in the Esh El-Mallaha Area, West Gulf of Suez, Egypt. Arab J Geosci 14:497. https://doi.org/10.1007/s12517-021-06791-3

    Article  CAS  Google Scholar 

  • Adiri Z, Abderrazak E, Amine J, Lhou M, El Mostafa B (2016) Lithological mapping using Landsat 8 OLI and Terra ASTER multispectral data in the Bas Drâa Inlier, Moroccan Anti Atlas. J Appl Remote Sens 10(1):016005. https://doi.org/10.1117/1.JRS.10.016005

    Article  Google Scholar 

  • Aiazzi B, Alparone L, Baronti S, Selva M (2006) MS þ Pan image fusion by an enhanced Gram–Schmidt spectral sharpening. In 26th Earsel Symp. New Dev. Challenges Remote Sens, Warsaw, Poland, 29 May–2 June 2006; pp. 113–120

  • Ajab Singh, Ros F, Nur I, Deepak K, Ashok K (2021) Surface texture, mineralogy and stable isotope studies of nodular calcretes preserved in the YTT ash of Padang Terap River Basin and Lenggong Valley, Peninsular Malaysia: implications in its origin and paleoclimatic reconstruction. Rhizosphere 19(April):100380. https://doi.org/10.1016/j.rhisph.2021.100380

    Article  Google Scholar 

  • Al-Arifi N, Gamal K, Mohamed A, Fathy A (2021) Integration of remote-sensing, structural, and geochemical data for characterizing granitoid rocks in Um Naggat Pluton, Central Eastern Desert, Egypt. Arab J Geosci 14:50. https://doi.org/10.1007/s12517-020-06274-x

    Article  CAS  Google Scholar 

  • Ali A, Amin P (2014) Lithological mapping and hydrothermal alteration using Landsat 8 Data: a case study in Ariab Mining District, Red Sea Hills, Sudan. Int J Basic Appl Sci 3:199–208. https://doi.org/10.14419/ijbas.v3i3.2821

    Article  Google Scholar 

  • Alonso-Zarza A, and Wright V (2010) Calcretes. in Developments in Sedimentology, 61:225–67. Elsevier B.V. https://doi.org/10.1016/S0070-4571(09)06105-6.

  • Aura Energy (2021) Resource Upgrade of 10 % - Tiris Uranium Project. Melbourne, Australia, Aura Energy Ltd., Australian Securities Exchange (ASX) announcement, August 27, 2021, 21p. https://www.auraenergy.com.au/

  • Ba, M, Hassan I, Khalidou L, Nassrddine Y, Mohammed J, Richard E, Abdoul J (2020) Spatial and temporal distribution patterns of precambrian mafic dyke swarms in northern Mauritania (West African Craton): analysis and results from Remote-Sensing Interpretation, Geographical Information Systems (GIS), Google Earth TM Images, and Regional . Arab J Geosci 13 (5). https://doi.org/10.1007/s12517-020-5194-2.

  • Beeson B, Clifford N, Goodall  W (2014) Reguibat surface uranium project, mauritania beneficiation upgrades and rapid leaching a new paradigm for ‘ Calcrete ’ uranium projects ? In International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues, Vienna: IAEA, 27

  • Bronner G, (1992). Structure et evolution d'un craton archéen: la dorsale Reguibat occidentale (Mauritanie): tectonique et métallogenie des formations ferrifères. Doc. B.R.G.M. No 201. 448pp.

  • Chavez P, Graydon L, Lynda B (1982) Statistical method for selecting landsat Mss Ratios. J Appl Photogr Eng 8 (1): 23–30

  • Deschamps M, Rocci G (1975) Un nouveau temoin du Proterozoique inferieur dans la Dorsale Reguibat: la Serie de Tsalabia el Khadra (Mauritanie). CR Acad Sci Paris 943

  • Drury S (1993) Image interpretation in geology, 2nd edn. Chapman & Hall, London, UK

    Google Scholar 

  • El-desoky M, Andongma W, Ahmed M, Antoaneta E, Hamdy A, Wael F, Hamada E, Hesham M (2022) Hydrothermal alteration mapping using Landsat 8 and ASTER data and geochemical characteristics of precambrian rocks in the Egyptian shield: a case study from Abu Ghalaga, Southeastern Desert, Egypt. Remote Sens 14(14):3456. https://doi.org/10.3390/rs14143456

    Article  Google Scholar 

  • Eldosouky A, Haytham S, Sayed O, Amin B (2020) Integrating aeromagnetic data and Landsat-8 Imagery for detection of post-accretionary shear zones controlling hydrothermal alterations: the Allaqi-Heiani Suture Zone, South Eastern Desert, Egypt. Adv Space Res 65(3):1008–24. https://doi.org/10.1016/j.asr.2019.10.030

    Article  CAS  Google Scholar 

  • Elsayed K, Abdel H, and Insaf S (2020) Prospecting for gold mineralization with the use of remote sensing and GIS technology in North Kordofan State , Central Sudan. Elsevier B.V. https://doi.org/10.1016/j.sciaf.2020.e00627.

  • Elsayed Z, Khalid A., Eiman A, and Abdalla E (2021) Applications of remote sensing and GIS in geological mapping, mineral prospecting and groundwater investigations in the Arabian-Nubian shield: cases from the Red Sea Hills of NE Sudan.” The Geology of the Arabian-Nubian Shield. Regional Geology Reviews. Springer, Cham. 659–86. https://doi.org/10.1007/978-3-030-72995-0_25.

  • Ennih N, Jean-Paul L (2008) The boundaries of the West African Craton, with special reference to the basement of the Moroccan Metacratonic Anti-Atlas Belt. Geol Soc, London, Special Publ 297(1):1–17. https://doi.org/10.1144/SP297.1

    Article  Google Scholar 

  • Es-sabbar B, Mourad E, Abdelhafid E, Hicham S (2020) Lithological and structural lineament mapping from Landsat 8 OLI Images in Ras Kammouna Arid Area (Eastern Anti-Atlas, Morocco). Econ Environ Geol 53(4):425–440. https://doi.org/10.9719/EEG.2020.53.4.425

    Article  Google Scholar 

  • Fernette GL (2015) Uranium in the Islamic Republic of Mauritania (Phase V, Deliverable 81), Chap. N of Taylor, CD (ed) Second Projet de Renforcement Institutionnel Du Secteur Minier de La République Islamique de Mauritanie (PRISM-II). Virginia. https://doi.org/10.3133/ofr20131280

  • Figliomeni F, Guastaferro F, Parente C, Vallario A (2023) A proposal for automatic coastline extraction from Landsat 8 OLI Images combining Modified Optimum Index Factor (MOIF) and K-Means. Remote Sens 15(12):3181. https://doi.org/10.3390/rs15123181

    Article  Google Scholar 

  • Forte, Energy (2009) Australian Securities Exchange (ASX) Geophysical survey results at Bir En Nar and Bir Moghrein uranium projects in Mauritania, West Africa. West Perth, Australia

    Google Scholar 

  • Gad S, Timothy K (2006) Lithological mapping in the eastern desert of Egypt, the Barramiya Area, using Landsat Thematic Mapper (TM). J Afr Earth Sci 44(2):196–202. https://doi.org/10.1016/j.jafrearsci.2005.10.014

    Article  Google Scholar 

  • Gao B, Davis C, Goetz A (2006) A review of atmospheric correction techniques for hyperspectral remote sensing of land surfaces and ocean color. Int Geosci Remote Se :1979–1981p. IGARSS 2006, July 31 - August 4, 2006, Denver, Colorado, USA, Proceedings https://doi.org/10.1109/IGARSS.2006.512

  • Ghrefat H, Ali Y, Kamal A, Hussain JA, Saleh Q (2021) Utilization of multispectral Landsat-8 remote sensing data for lithological mapping of Southwestern Saudi Arabia. J King Saud Univ Sci 33(4):101414. https://doi.org/10.1016/j.jksus.2021.101414

    Article  Google Scholar 

  • Grenholm M (2019) The global tectonic context of the ca. 2.27–1.96 Ga Birimian Orogen – Insights from comparative studies, with implications for supercontinent cycles. Earth-Sci Rev 193(April):260–98. https://doi.org/10.1016/j.earscirev.2019.04.017

    Article  Google Scholar 

  • Gupta R (2017) Remote sensing geology. Springer

    Google Scholar 

  • Gupta R (2003) Remote Sensing Geology Springer, Berlin Heidelberg https://doi.org/10.1007/978-3-662-05283-9

  • Hamdani N, and Abdennasser B (2019) Fracture network mapping using Landsat 8 OLI data and linkage with the karst system: a case study of the Moroccan Central Middle Atlas. Remote Sensing in Earth Systems Sciences 2 (1). https://doi.org/10.1007/s41976-019-0011-y.

  • Ishagh M, Amin B, Hanafi B, Abdallahi M, Sid’Ahmed S, Aidy M, Mohammad S (2021) Lithological and alteration mapping using Landsat 8 and ASTER satellite data in the Reguibat Shield (West African Craton), North of Mauritania: Implications for Uranium Exploration. Arab J Geosci 14(23):2576. https://doi.org/10.1007/s12517-021-08846-x

    Article  Google Scholar 

  • Kaufmann H (1988) Mineral Exploration along the Aqaba-Levant Structure by Use of Tm- Data Concepts, Processing and Results. Int J Remote Sens 9(10–11):1639–1658. https://doi.org/10.1080/01431168808954966

    Article  Google Scholar 

  • Key R, Loughlin S, Gillespie M, Del Rio M, Horstwood S, Crowley Q, Darbyshire D, Pitfield P, Henney P (2008) Two Mesoarchaean Terranes in the Reguibat Shield of NW Mauritania. Geol Soc SP 297(1):33–52. https://doi.org/10.1144/SP297.3

    Article  Google Scholar 

  • Kusky M, Talaat M (2002) Structural controls on Neoproterozoic mineralization in the South Eastern Desert, Egypt: an integrated field, Landsat TM, and SIR-C/X SAR approach. J Afr Earth Sci 35(1):107–121. https://doi.org/10.1016/S0899-5362(02)00029-5

    Article  CAS  Google Scholar 

  • Laben C, Bernard V (2000) Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. U.S. Patent No. 6,011,875. 4

  • Lahondere D, Thieblemont D, Goujou J-C, Roger J, Moussine-Pouchkine A, Le Metour J, Cocherie A, Guerrot C (2003) Notice explicative des cartes géologiques et gîtologiques à 1/200 000 et 1/500 000 du Nord de la Mauritanie. DMG, Ministère des Mines et de l’Industrie, Nouakchott 1:286

  • Majid Nazeer, Christopher O, Muhammad B, Janet E, Weicheng W, Zhongfeng Q, Bijoy K (2021) Evaluation of atmospheric correction methods for low to high resolutions satellite remote sensing data. Atmos Res 249:105308. https://doi.org/10.1016/j.atmosres.2020.105308

    Article  CAS  Google Scholar 

  • Marot A, Stein G, Artignan D, Milesi JP (2003) Notice Explicative Des Cartes Géologiques et Gîtologiques à 1/200 000 et 1/500 000 Du Nord de Lla Mauritanie. Volume 2 – Potentiel Minier. Nouakchott

  • Marsh, E, Anderson, E (2015) Database of mineral deposits in the Islamic Republic of Mauritania (phase V, deliverables 90 and 91), chap. S of Taylor CD (ed) Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II): U.S. Geological Survey Open-File Report 2013‒1280-S, Access database, p 9. https://doi.org/10.3133/ofr20131280

  • Merabet N, Yamina M, Bernard H, Abdeslam A, Said M, Mohamed K, Atmane L, Mohamed A (2016) Paleoproterozoic structural frame of the Yetti Domain (Eglab Shield, Algeria): emplacement conditions of the Tinguicht Late Pluton from magnetic fabric study”. J Afr Earth Sci 114:158–73. https://doi.org/10.1016/j.jafrearsci.2015.11.018

    Article  Google Scholar 

  • Mohamed M, Latifa S, Tochukwu I, Chidiebere C (2021) Geological mapping and mineral prospectivity using remote sensing and GIS in parts of Hamissana, Northeast Sudan”. J Pet Explor Prod Technol 11(3):1123–1138. https://doi.org/10.1007/s13202-021-01115-3

    Article  CAS  Google Scholar 

  • Mohammed T, Cottin J, Bowden P, Renac C (2020) Petrogenesis of the post-collisional Bled M’Dena volcanic ring complex in Reguibat Rise (Western Eglab Shield, Algeria). J Afr Earth Sci 166(June):102250. https://doi.org/10.1016/j.jafrearsci.2015.04.003

    Article  CAS  Google Scholar 

  • Nait A, Djamal E, Saïd M, Massinissa B, Djamel M, and Nabila G (2019) Hydrothermal alteration mapping and structural features in the Guelma Basin (Northeastern Algeria): contribution of Landsat-8 data. Arab J Geosci 12(3):94. http://link.springer.com/10.1007/s12517-019-4224-4

  • Nisha Rani, Venkata R, Tejpal S (2017) Evaluation of atmospheric corrections on hyperspectral data with special reference to mineral mapping. Geosci Front 8(4):797–808. https://doi.org/10.1016/j.gsf.2016.06.004

    Article  Google Scholar 

  • Noori L, Pour AB, Askari G, Taghipour N, Pradhan B, Lee C-W, Honarmand M (2019) Comparison of different algorithms to map hydrothermal alteration zones using ASTER remote sensing data for polymetallic vein-type ore exploration: Toroud-Chahshirin Magmatic Belt (TCMB), North Iran. Remote Sens 11(5):495. https://doi.org/10.3390/rs11050495

    Article  Google Scholar 

  • Norris Robert (1969) Dune reddening and time. J Sediment Res 39. https://doi.org/10.1306/74D71BCC-2B21-11D7-8648000102C1865D

  • Olakunle O, Ahmed G, and Moussa I (2021) Mapping hydrothermal alteration mineral deposits from Landsat 8 Satellite data in Pala , Mayo Kebbi Region , Southwestern Chad. Sci Afr 11. Elsevier B.V. https://doi.org/10.1016/j.sciaf.2020.e00687.

  • Ourhzif Z, Algouti A, Hadach F (2019) Lithological mapping using landsat 8 oli and aster multispectral data in imini-ounilla district south high atlas of marrakech. ISPRS 42: 1255–1262. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1255-2019

  • Patel N, Kaushal B (2011) Classification of features selected through Optimum Index Factor (OIF) for improving classification accuracy. J Forestry Res 22:99–105. https://doi.org/10.1007/s11676-011-0133-4

    Article  Google Scholar 

  • Pitfield P, Key R, Waters C, Hawkins M, Schofield D, Loughlin S, Barnes R (2004) Notice Explicative Des Cartes Géologiques et Gîtologiques à 1/200 000 et 1/500 000 Du Sud de La Mauritanie. British Geological Survey 1:580

  • Potrel A, Jean P, Fanning C, Bernard A, Jean B, Christiane C (1996) 3.5 Ga Old Terranes in the West African Craton. Mauritania. J Geol Soc London 153(4):507–10. https://doi.org/10.1144/gsjgs.153.4.0507

    Article  CAS  Google Scholar 

  • Potrel A, Jean P, Fanning C (1998) Archean crustal evolution of the West African Craton: example of the Amsaga Area (Reguibat Rise). U/Pb and Sm/Nd Evidence for Crustal Growth and Recycling. Precambrian Res 90(3–4):107–17. https://doi.org/10.1016/S0301-9268(98)00044-8

    Article  CAS  Google Scholar 

  • Pour B, Mazlan H (2015) Hydrothermal alteration mapping from Landsat-8 Data, Sar Cheshmeh Copper Mining District, South-Eastern Islamic Republic of Iran. Taibah Univ Sci 9(2):155–166. https://doi.org/10.1016/j.jtusci.2014.11.008

    Article  Google Scholar 

  • Rezaei A, Hossein H, Parviz M, Abbas G (2020) Lithological mapping in Sangan Region in Northeast Iran using ASTER satellite data and image processing methods. Geol Ecol Landsc 4(1):59–70. https://doi.org/10.1080/24749508.2019.1585657

    Article  Google Scholar 

  • Richards J (1999) Remote sensing digital image analysis: an introduction, Springer-Verlag, Berlin, Germany: 240. https://doi.org/10.1007/978-3-662-03978-6

  • Rocci G, Bronner G, and Deschamps M (1991) Crystalline basement of the West African Craton. In The West African Orogens and Circum-Atlantic Correlatives, 31–61. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-84153-8_3.

  • Sabins F (1997) Remote sensing—principles and interpretation. 3rd Edtion, W.H. Freeman, New York, p 494

    Google Scholar 

  • Sabins F (1999) Remote sensing for mineral exploration. Ore Geol Rev 14(3–4):157–183. https://doi.org/10.1016/S0169-1368(99)00007-4

    Article  Google Scholar 

  • Salui C (2018) Methodological validation for automated lineament extraction by LINE method in PCI Geomatica and MATLAB based hough transformation. J Geol Soc India 92(3):321–328. https://doi.org/10.1007/s12594-018-1015-6

    Article  Google Scholar 

  • Schofield D, Horstwood M, Pitfield P, Crowley Q, Wilkinson A, Sidaty H (2006) Timing and kinematics of eburnean tectonics in the central Reguibat Shield, Mauritania. J Geol Soc London 163(3):549–560. https://doi.org/10.1144/0016-764905-097

    Article  CAS  Google Scholar 

  • Schofield D, Horstwood M, Pitfield P, Gillespie M, Darbyshire O’Connor E, Abdouloye T (2012) U-Pb dating and Sm–Nd isotopic analysis of granitic rocks from the Tiris Complex: new constaints on key events in the evolution of the Reguibat Shield, Mauritania. Precambrian Res 204–205(May):1–11. https://doi.org/10.1016/j.precamres.2011.12.008

    Article  CAS  Google Scholar 

  • Sekandari M, Masoumi I, Beiranvand Pour A, M Muslim A, Rahmani O, Hashim M, Zoheir B, Pradhan B, Misra A, Aminpour SM (2020) Application of Landsat-8, Sentinel-2, ASTER and WorldView-3 spectral imagery for exploration of Carbonate-Hosted Pb-Zn Deposits in the Central Iranian Terrane (CIT). Remote Sensing 12(8):1239. https://doi.org/10.3390/rs12081239

  • Shahriari H, Hojjatollah R, Mehdi H (2013) Image segmentation for hydrothermal alteration mapping using PCA and concentration–area fractal model. Nat Resour Res 22(3):191–206. https://doi.org/10.1007/s11053-013-9211-y

    Article  CAS  Google Scholar 

  • Sheikhrahimi A, Amin B, Biswajeet P, Basem Z (2019) Mapping hydrothermal alteration zones and lineaments associated with orogenic gold mineralization using ASTER data: a case study from the Sanandaj-Sirjan Zone, Iran. Adv Space Res 63(10):3315–3332. https://doi.org/10.1016/j.asr.2019.01.035

    Article  CAS  Google Scholar 

  • Shokry M, Mohamed F, Aly F, Baher A (2021) Precambrian basement rocks of Wadi-Khuda-Shut Area, South Eastern Desert of Egypt: geology and remote sensing analysis. Egypt J Remote Sens Space Sci 24(1):59–75. https://doi.org/10.1016/j.ejrs.2019.12.005

    Article  Google Scholar 

  • Srivastava A, Mangla N, Khare N (2021) Calcretes from the Quaternary alluvial deposit of Purna Basin, Central India: lithological and climatic controls. Rhizosphere 18(December 2020):100343. https://doi.org/10.1016/j.rhisph.2021.100343

    Article  Google Scholar 

  • Sultan M, Arvids R, Sturchio N, Guinness E (1987) Lithologic mapping in arid regions with Landsat thematic mapper data: Meatiq Dome, Egypt. Geol Soc Am Bull 99(6):748–762

    Article  Google Scholar 

  • Taleb O (1994) Caractérisation Pétrographique et Géochimique Du Plutonisme Birimien de La Dorsale Reguibat (Mauritanie, Afrique de L’ouest). Université H, Poincaré - Nancy, p 1

    Google Scholar 

  • Thieblemont D, Lahondere D, Goujou J, Roger J, Le Metour J, Marchand J, Gatta B, Hadi M, Diabira F, Thiam B (2003) Cartes géologiques à 1/200 000 du Nord de la Mauritanie, 14 coupures. DMG, Ministère des Mines et de l’Industrie, Nouakchott 1:286

  • Van der Meer FD, Van der Werff HM, Van Ruitenbeek FJ, Hecker CA, Bakker WH, Noomen MF, Van Der Meijde M, Carranza EJ, De Smeth JB, Woldai T (2012) Multi- and hyperspectral geologic remote sensing: a review. Int J Appl Earth Obs 14(1):112–28. https://doi.org/10.1016/j.jag.2011.08.002

    Article  Google Scholar 

  • Vincent R (1997) Fundamentals of geological and environmental remote sensing, vol 366. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Wambo J, Pour A, Ganno S, Asimow P, Zoheir B, dos Reis Salles R, Nzenti J, Pradhan B, Muslim A (2020) Identifying high potential zones of gold mineralization in a sub-tropical region using Landsat-8 and ASTER remote sensing data: a case study of the Ngoura-Colomines goldfield, eastern Cameroon. Ore Geol Rev 122(February):103530. https://doi.org/10.1016/j.oregeorev.2020.103530

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Aura Energy Company representative in Mauritania, for providing helpful data in the preparation of this paper. The first author acknowledges African Union financial support through Pan African University of Life and Earth Sciences Institute Ph.D. scholarship. The authors express also their gratefulness to the Editor-In-Chief. This paper is a part of the first author’s Ph.D. thesis at the Pan African University Life and Earth Science Institute (including Health and Agriculture) (Paulesi) and University of Ibadan, Ibadan Nigeria.

Funding

This work was supported by the African Union through PAULESI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salem-Vall Brahim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahim, SV., Olatunji, A.S., Umaru, A.O. et al. Lithological, structural, and alteration mapping of uraniferous granitoid using Landsat 8, in the oriental part of the Reguibat shield, northern Mauritania. Arab J Geosci 17, 170 (2024). https://doi.org/10.1007/s12517-024-11973-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-024-11973-w

Keywords

Navigation