Skip to main content
Log in

Lower Jurassic benthic foraminiferal assemblages from shallow-marine platform carbonates of Mallorca (Spain): stratigraphic implications

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

The stratigraphic distribution of larger benthic foraminifera and other microfossils, as analysed in thin-sections, has been investigated in three stratigraphic sections from the island of Mallorca (Son Maina, S’Heretat and Cuevas de Artà). These stratigraphic sections represent deposition in a Lower Jurassic shallow-water carbonate platform succession (Es Barraca Member, Soller Formation) of the Llevant Mountains. The microfossil assemblages contain abundant benthic foraminifera and calcareous algae, including the typical Liassic dasycladalean alga Palaeodasycladus mediterraneus (Pia) and the microproblematica Thaumatoporella parvovesiculifera (Raineri), which provide good age constraint of the succession. Three consecutive biozones have been recognized based on the stratigraphic distribution of foraminifera, including the evolutionary bioseries MesoendothyraLituoseptaOrbitopsella spp., which are documented for the first time in the Balearic Basin: Biozone A (interval Zone) is characterized by the occurrence of small Siphovalvulina spp., Mesoendothyra sp. and rare Lituosepta ancestors. Biozone B (lineage Zone), whose lower boundary is defined by the first occurrence of Lituosepta recoarensis Cati and its top by the first appearance of Orbitopsella aff. primaeva (Henson). The uppermost part of biozone B shows an interval with transitional morphotypes between Lituosepta and Orbitopsella, indicating that the change between biozones B and C1 is gradual (B/C1 transition). This interval is characterized by the presence of very primitive forms of Orbitopsella. Finally, Biozone C1 (lineage Zone) is defined by the first occurrence of Orbitopsella aff. primaeva together with L. recoarensis. The upper boundary of the Biozone C1, which is defined by the first occurrence of O. praecursor s.l., is not recorded in the studied sections of the Es Barraca Member. This biostratigraphic zonation is consistent with a Sinemurian age for the Es Barraca Member with its top most likely not extending into the Pliensbachian. The proposed biostratigraphic scheme is comparable with those established for other western Tethyan margins such as the High Atlas of Morocco, the Southern Italian Alps or the Dinaric Alps of Slovenia and Croatia. The reconstruction of a depositional transect across the studied sections shows the progressive loss of the upper biozones towards the northeast, demonstrating the existence of significant hiatuses in some sections of the Llevant Mountains domain. These hiatuses point to an intra-lower Pliensbachian (Carixian) early stage of platform fragmentation, with areas affected by erosion or non-deposition, and areas with marine marly limestone sedimentation followed by deltaic siliciclastic progradation on the north-western part of Mallorca.

Resumen

Se ha investigado, mediante el análisis de láminas delgadas, la distribución estratigráfica de foraminíferos bentónicos y otros microfósiles en tres secciones estratigráficas del Jurásico Inferior de la Sierra de Levante, en la isla de Mallorca (Son Maina, S’Heretat y Cuevas de Artà). Estas secciones representan el depósito, durante el Jurásico Inferior, de un sistema de plataforma carbonatada somera (Miembro Es Barraca de la Formación Soller). La asociación de microfósiles contiene abundantes foraminíferos bentónicos y algas calcáreas, entre las que se incluyen Palaeodasycladus mediterraneus (Pia) del Lías y la microproblemática Thaumatoporella parvovesiculifera (Raineri), lo que proporciona un buen control de edad de la sucesión. En base a la distribución estratigráfica de los foraminíferos y la bioserie evolutiva MesoendothyraLituoseptaOrbitopsella spp., se han reconocido y documentado por primera vez, para el Miembro Es Barraca, tres biozonas consecutivas: Biozona A (Zona de intervalo), caracterizada por la existencia de pequeños ejemplares de Siphovalvulina spp., Mesoendothyra sp. y escasos ejemplares de Lituosepta ancestral. Biozona B (Zona de linaje), cuyo límite inferior está definido por la primera aparición de Lituosepta recoarensis Cati, mientras que su límite superior se caracteriza por la primera aparición de Orbitopsella aff. primaeva (Henson). La parte superior de la biozona B muestra un intervalo con morfotipos transicionales entre Lituosepta y Orbitopsella, indicando que el paso entre las biozonas B y C1 es gradual (transición B/C1). Este intervalo se caracteriza por la presencia de formas muy primitivas de Orbitopsella. Finalmente, la Biozona C1 (Zona de linaje) está definida por la primera aparición de Orbitopsella aff. primaeva junto con L. recoarensis. El límite superior de la Biozona C1, definido por la primera aparición de O. praecursor s.l., no se ha reconocido en las secciones estudiadas del Miembro Es Barraca. Esta zonación bioestratigráfica es compatible con una edad Sinemuriense para el Miembro Es Barraca y sugiere que el techo de la unidad muy probablemente no alcanza el Pliensbachiense. El esquema bioestratigráfico propuesto es comparable con el establecido para otros márgenes del Tethys occidental tales como el Alto Atlas en Marruecos, los Alpes del sur de Italia o los Alpes Dináricos de Eslovenia y Croacia. La reconstrucción de un transecto estratigráfico a lo largo de las secciones estudiadas muestra la pérdida progresiva de las biozonas superiores hacia el noreste, demostrando así la existencia de hiatos significativos en algunas secciones del dominio de Sierras de Levante. Estos hiatos apuntan a una fragmentación temprana de la plataforma (intra-Pliensbachiense inferior) con áreas afectadas por erosión o no-depósito, y otras áreas, al noroeste de Mallorca, con una sedimentación continua de margocaliza seguida de una progradación deltaica siliciclástica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Dercourt et al. 2000)

Fig. 2
Fig. 3

Modified from Álvaro et al. (1989)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Álvaro, M., Barnolas, A., Cabra, P., Comas-Rengifo, M. J., Fernández-López, S. R., Goy, A., et al. (1989). El Jurásico de Mallorca (Islas Baleares). Cuadernos de Geología Ibérica,13, 67–120.

    Google Scholar 

  • Arbona, J., Fontbote, M., González-Donoso, J. M., Linares, A., Olóriz, F., Pomar, L., et al. (1984). Precisiones bioestratigráficas y aspectos sedimentológicos del Jurásico-Cretácico basal de la isla de Cabrera (Baleares). Cuadernos de Geología,12, 169–186.

    Google Scholar 

  • Azerêdo, A. C., Manuppella, G., & Ramalho, M. M. (2003). The late Sinemurian carbonate platform and microfossils with Tethyan affinities of the Algarve Basin (South Portugal). Facies,48, 49–60.

    Article  Google Scholar 

  • Barnolas, A., & Simó, J. A. (1984). Sedimentología del Jurásico de Mallorca. In A. Barnolas (Ed.), Grupo Español del Mesozoico (pp. 73–120). Palma de Mallorca: IGMECGS S.A.

    Google Scholar 

  • Barnolas, A., Simò, J. A., Rosales, I., Gil-Peña, I., Sevillano, A., & Armendáriz, M. (2010). Revisión de la información paleogeográfica del Jurásico de Mallorca basada en datos sedimentológicos y en el análisis de cuenca. In J. I. Ruiz-Omeñaca, L. Piñuea, & J. C. García-Ramos (Eds.), Comunicaciones del V Congreso del Jurásico de España (p. 163). Colunga: Museo del Jurásico de Asturias.

    Google Scholar 

  • Bassoullet, J. P. (1997). Les grands foraminifères. In: Cariou, E. and Hantzpergue, P. (coords.). Biostratigraphic du Jurassique Ouest-Européen et Méditerranéen. Groupe Francais d´étude du Jurassique. Bulletin du Centre Recherches Elf Exploration Production Mém,17, 293–304.

    Google Scholar 

  • BouDagher-Fadel, M. K. (2008). Evolution and geological significance of larger benthic Foraminifera. Developments in paleontology and stratigraphy (Vol. 21). Amsterdam: Elsevier.

    Google Scholar 

  • BouDagher-Fadel, M. K., & Bosence, D. W. J. (2007). Early Jurassic benthic foraminiferal diversification and biozones in shallow-marine carbonates of western Tethys. Senckenbergiana Lethaea,87, 1–39.

    Article  Google Scholar 

  • Colom, G. (1942). Sobre nuevos hallazgos de yacimientos fosilíferos del Lias medio y superior en la Sierra Norte de Mallorca. Boletín de la Real Sociedad Española de Historia Natural,11, 221–265.

    Google Scholar 

  • Colom, G. (1966). Dos niveles micropaleontológicos interesantes en el Lias inferior del Sur de España y Baleares. Acta Geologica Hispanica,1(3), 15–18.

    Google Scholar 

  • Colom, G. (1970). Estudio litológico y micropaleontológico del Lías de la Sierra Norte y porción central de la isla de Mallorca. Memorias de la Real Academia de la Ciencias exactas, físicas y naturales de Madrid, Tomo XXIV, Mem 2.

  • Colom, G. (1980). Estudios sobre las litofacies y micropaleontología del Lías inferior de la Isla de Cabrera (Baleares). Revista Española de Micropaleontología,12, 47–64.

    Google Scholar 

  • Colom, G., & Dufaure, P. (1962). Présence de la zone à Palaeodasycladus mediterraneus (Pia) dans le Lias moyen du Pla de Cuber (Majorque). Comptes Rendus de l’Académie des Sciences de Paris,12, 2617–2619.

    Google Scholar 

  • Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M. F., et al. (Eds.). (2000). Atlas Peri-Tethys, Palaeogeographical maps, I–XX. Paris: CCGM/CGMW.

    Google Scholar 

  • Dewey, J. F., Pitman, W. C., Ryan, W. B. F., & Bonnin, J. (1973). Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin,84, 3137–3180.

    Article  Google Scholar 

  • Etheve, N., Mohn, G., Frizon de Lamotte, D., Roca, E., Tugend, J., & Gómez-Romeu, J. (2018). Extreme mesozoic crustal thinning in the Eastern Iberia Margin: the example of the Columbrets Basin (Valencia Trough). Tectonics,37(2), 1–27.

    Article  Google Scholar 

  • Fallot, P. (1922). Étude geologique de la sierra de Majorque. Thése détat. Libr. Polytechnique Ch. Béranger, Paris i Liège.

  • Fornós, J., Rodriguez-Perea, A., & Sabat, F. (1984). El mesozoico de la Serra de Son Amoixa (Serres de Llevant, Mallorca). I Congreso Español de Geología. Tomo,1, 173–185.

    Google Scholar 

  • Franceschi, M., Dal Corso, J., Cobianchi, M., Roghi, G., Penasa, L., Picotti, V., et al. (2019). Tethyan carbonate platform transformation during the Early Jurassic (Sinemurian–Pliensbachian, Southern Alps): comparison with the Late Triassic Carnian Pluvial Episode. Geological Society of America Bulletin,131, 1255–1275.

    Article  Google Scholar 

  • Fugagnoli, A. (2000). First record of Everticyclammina Redmond 1964 (E. Praevirguliana n. sp.; Foraminifera) from the early Jurassic of the Venetian Prealps (Calcari Grigi, Trento platform, northern Italy). Journal of Foraminiferal Research,30, 126–134.

    Article  Google Scholar 

  • Fugagnoli, A. (2004). Trophic regimes of benthic foraminiferal assemblages in Lower Jurassic shallow water carbonates from northeastern Italy (Calcari Grigi, Trento Platform, Venetian Prealps). Palaeogeography, Palaeoclimatology, Palaeoecology,205, 111–130.

    Article  Google Scholar 

  • Fugagnoli, A., & Bassi, D. (2015). Taxonomic and biostratigraphic reassessment of Lituosepta recoarensis Cati, 1959 (Foraminifera, Lituolacea). Journal of Foraminiferal Research,45, 402–412.

    Article  Google Scholar 

  • Fugagnoli, A., & Loriga Broglio, C. (1998). Revised biostratigraphy of Lower Jurassic shallow water carbonates from the Venetian Prealps (Calcari Grigi, Trento Platform, Nothern Italy). Studi Trentini di Science Naturali Acta Geologica,73(1996), 35–73.

    Google Scholar 

  • Gale, L. (2014). Lower Jurassic foraminiferal biostratigraphy of Podpeč Limestone (External Dinarides, Slovenia). Geologija,57, 119–146.

    Article  Google Scholar 

  • Gale, L., & Kelemen, M. (2017). Early Jurassic foraminiferal assemblages in platform carbonates of Mt. Krim central Slovenia. Geologija,60(1), 99–115.

    Article  Google Scholar 

  • Guex, J. (2016). Retrograde evolution during major extinction crises. Springer, Berlin: SpringerBriefs in Evolutionary Biology.

    Book  Google Scholar 

  • Hottinger, L. (1967). Foraminifères imperforés du Mesozoïque marocain. Notes et Mémoires Service Géologique,209, 1–168.

    Google Scholar 

  • Hottinger, L. (2000). Functional morphology of benthic foraminiferal shells, envelopes of cells beyond measure. Micropaleontology,46, 57–86.

    Google Scholar 

  • Kabal, Y., & Tasli, K. (2003). Biostratigraphy of the Lower Jurassic carbonates from the Aydinick area (Central Taurides, S. Turkey) and morphological analysis of Lituolipora termieri (Hottinger, 1967). Journal of Foraminiferal Research,33, 338–351.

    Article  Google Scholar 

  • Mancinelli, A., Chiocchini, M., Chiocchini, R. A., & Romano, A. (2005). Biostratigraphy of Upper Triassic–Lower Jurassic carbonate platform sediments of the central-southern Apennines (Italy). Rivista Italiana di Paleontologia e Stratigrafia,111, 271–283.

    Google Scholar 

  • Masetti, D., Figus, B., Jenkyns, H. C., Barattolo, F., Mattioli, E., & Posenato, R. (2016). Carbon-isotope anomalies and demise of carbonate platforms in the Sinemurian (Early Jurassic) of the Tethyan region: evidence from the Southern Alps (Northern Italy). Geological Magazine,154, 625–650.

    Article  Google Scholar 

  • Ogg, J. G., Ogg, G., & Gradstein, F. M. (2016). A concise geologic time scale (1st ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Preto, N., Breda, A., Dal Corso, J., Franceschi, M., Rocca, F., Spada, C., et al. (2017). The Loppio Oolitic Limestone (Early Jurassic, Southern Alps): a prograding oolitic body with high original porosity originated by a carbonate platform crisis and recovery. Marine and Petroleum Geology,79, 394–411.

    Article  Google Scholar 

  • Rosales, I., Barnolas, A., Goy, A., Sevillano, A., Armendáriz, M., & López-García, J. M. (2018). Isotope records (C–O–Sr) of late Pliensbachian-early Toarcian environmental perturbations in the westernmost Tethys (Majorca Island, Spain). Palaeogeography Palaeoclimatololy Palaeoecology,497, 168–185.

    Article  Google Scholar 

  • Ruiz-Ortiz, P. A., Bosence, D. W., Rey, J., Nieto, L. M., Castro, J. M., & Molina, J. M. (2004). Tectonic control of facies architecture, sequence stratigraphy and drowning of a Liassic carbonate platform (Betic Cordillera, Southern Spain). Basin Research,16, 235–257.

    Article  Google Scholar 

  • Rychliński, T., Uchman, A., & Gaździcki, A. (2018). Lower Jurassic Bahamian-type facies in the Choč Nappe (Tatra Mts, West Carpathians, Poland) influenced by palaeocirculation in the Western Tethys. Facies,64, 15.

    Article  Google Scholar 

  • Schlagintweit, F., & Velić, I. (2011). Foraminiferan test and dasycladalean thalli as cryptic microhabitats for thaumatoporellacean algae from Mesozoic (Late Triassic–Late Cretaceus) platform carbonates. Facies,58, 79–94.

    Article  Google Scholar 

  • Scotese, C. R., & Schettino, A. (2017). Late Permian–Early Jurassic paleogeography of Western Tethys and the World. Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. Amsterdam: Elsevier.

    Google Scholar 

  • Septfontaine, M. (1980). Les Foraminifères imperforés des milieux de plateforme au Mésozoïque: détermination pratique, interprétation phylogénétique et utilisation biostratigraphique. Revue de Micropaléontologie,23, 169–203.

    Google Scholar 

  • Septfontaine, M. (1984). Biozonation (à l’aide des Foraminifères imperforés) de la plate-forme interne carbonatée liasique du Haut Atlas (Maroc). Revue de Micropaléontologie,27, 209–229.

    Google Scholar 

  • Septfontaine, M. (1988). Vers une classification évolutive des lituolidés (Foraminifères) jurassiques en milieu de plate-forme carbonatée. Revue Paléobiologie,2(86), 229–256.

    Google Scholar 

  • Sevillano, A., Rosales, I., Bádenas, B., Barnolas, A., & López-García, J. M. (2019). Spatial and temporal facies evolution of a Lower Jurassic carbonate platform, NW Tethyan margin (Mallorca, Spain). Facies,65, 3. https://doi.org/10.1007/s10347-018-0545-0.

    Article  Google Scholar 

  • Sokač, B. (2001). Lower and middle Liassic calcareous algae (Dasycladales) from Mt. Velebit (Croatia) and Mt. Trnovski Gozd (Slovenia) with particular reference to the genus Palaeodasycladus (Pia, 1920) 1927 and its species. Geologia Croatica,54(2), 133–257.

    Google Scholar 

  • Thierry, J. (2000). Late Sinemurian (193–191 Ma). In J. Dercourt, M. Gaetani, B. Vrielynck, E. Barrier, B. Biji-Dubal, M. F. Brunet, J. P. Cadet, S. Crasquin, & M. Sandulescu (Eds.), Atlas Peri-Tethys. Palaeogeographical Maps explanatory notes (pp. 49–59). Paris: Commission for the Geologic Map of the World.

    Google Scholar 

  • Vachard, D., Munnecke, A., & Servais, T. (2004). New SEM observations of keriothecal walls: implications for the evolution of Fusulinida. Journal of Foraminiferal Research,34, 232–242.

    Article  Google Scholar 

  • Velić, I. (2007). Stratigraphy and palaeobiogeography of Mesozoic benthic foraminifera of the Karst Dinarides (SE Europe). Geologia Croatica,60, 1–113.

    Google Scholar 

  • Veseli, V., Velić, I., Vlahovic, I., Tisljar, J., & Stankovic, D. (2006). Biozonation of Sinemurian and Pliensbachian larger benthic foraminifera (Velebit Mt., Croatia). FORAMS 2006. Anuário do Instituto de Geociências UFRJ,29(1), 368–369.

    Google Scholar 

  • Zempolich, W.G. (1993). The drowning succession in Jurassic carbonates of the Venetian Alps, Italy, a record of supercontinent breakup, gradual eustatic rise, and eutrophication of shallow water environments. In R.G. Loucks, J.F. Sarg (Eds.), Carbonate Sequence Stratigraphy: Recent Developments and Applications (pp. 63– 105). AAPG Memoir, 57.

Download references

Acknowledgements

This paper is a contribution to the research projects RTI2018-093613-B-100 and CGL2017-85038-P funded by the Spanish Ministry of Science, Innovation and Universities. The authors are grateful to two anonymous reviewers for their critical reading and useful comments that improved the manuscript. We also include a special acknowledgment to Mike Simmons (Halliburton) for his help with the English revision of the final version of the manuscript and to Associate Editor Juan Carlos Braga for handing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Sevillano.

Glossary

Advanced or ancestor form (morphotype)

This term, usual in paleontological and evolutionary studies, permits a rough estimation of the degree of morphological evolution in a bioseries (evolutionary trend) through time, such as the schematic morphological steps proposed by Septfontaine (1988), Fig. 1, which seems to fit for the orbitopsellinids and many other discoidal larger foraminifera taxa of Mesozoic carbonate shelves around the Tethyan domain. Logically (Depéret’s Law) ancestral forms are smaller (less than 0.5 mm) and have a simpler morphology, whereas the advanced forms display a larger test with complex inner microstructures and modifications of the shape and size of the adult chambers. The term “inner microstructures” means endoskeletal (pillars) and exoskeletal (vertical radial partitions) elements. This can be a response to better and larger symbiotic hosting (“greenhouse structures”) and changes (see Hottinger 2000).

Morphotype

This practical and informal term designates the particular morphology of one individual which could belong to a new taxon not yet introduced. In a bioseries it can be a missing link connecting morphologically two chronospecies already defined (see Septfontaine 1988, Fig. 1, and Guex 2016 for a current use of the term).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevillano, A., Septfontaine, M., Rosales, I. et al. Lower Jurassic benthic foraminiferal assemblages from shallow-marine platform carbonates of Mallorca (Spain): stratigraphic implications. J Iber Geol 46, 77–94 (2020). https://doi.org/10.1007/s41513-019-00117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-019-00117-9

Keywords

Palabras clave

Navigation