Skip to main content
Log in

Lower Jurassic Bahamian-type facies in the Choč Nappe (Tatra Mts, West Carpathians, Poland) influenced by paleocirculation in the Western Tethys

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The Lower Jurassic (upper Sinemurian) of the Hronicum domain (Tatra Mts., Western Carpathians, Poland) represents typical tropical shallow-water carbonates of the Bahamian-type. Eight microfacies recognized include oolitic-peloidal grainstone/packstone, peloidal-bioclastic grainstone, peloidal-lithoclastic-bioclastic-cortoidal grainstone/packstone, peloidal-bioclastic packstone/grainstone, peloidal-bioclastic wackestone, spiculitic wackestone, recrystallized peloidal-oolitic grainstone and subordinate dolosparites. The studied sediments were deposited on a shallow-water carbonate platform characterized by normal salinity, in high-energy oolite shoals, bars, back-margin, protected shallow lagoon and subordinately on restricted tidal flat. Some of them contain the microcoprolite Parafavreina, green alga Palaeodasycladus cf. mediterraneous (Pia) and Cayeuxia, typical of the Early Jurassic carbonate platforms of the Western Tethys. The spiculite wackestone from the upper part of the studied succession was deposited in a transitional to deeper-water setting. The studied upper Sinemurian carbonates of the Hronicum domain reveal microfacies similar to the other Bahamian-type platform carbonates of the Mediterranean region. Thereby, they record the northern range of the Lower Jurassic tropical shallow-water carbonates in the western part of the Tethys, albeit the thickness of the Bahamian-type carbonate successions generally decrease in a northerly direction. The sedimentation of the Bahamian-type deposits in the Hronicum domain, located during the Early Jurassic at about 28°N, besides other specific factors (i.e., light, salinity, and nutrients) was strongly controlled by the paleocirculation of warm ocean currents in the Western Tethys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aberhan M (2001) Bivalve palaeobiogeography and the Hispanic Corridor: time of opening and effectiveness of a proto-Atlantic seaway. Palaeogeogr Palaeoclimatol Palaeoecol 165:375–394

    Article  Google Scholar 

  • Alvaro M, Barnolas A, Cabra P, Comas-Rengifo MJ, Fernández-López SR, Goy A, Del Olmo P, Ramírez Del Pozo J, Simo A, Ureta S (1989) El Jurásico de Mallorca (Islas Baleares). Cuadernos de Geol Ibérica 13:67–120

    Google Scholar 

  • Andrusov D, Bystrický J, Fusán O (1973) Outline of the structure of the West Carpathians. X Congress of Carpathian-Balkan Geological Association. Introductory Excursion Guidebook. Geologický Ústav Dionýza Štúra, Bratislava

    Google Scholar 

  • Arias C (2006) Northern and Southern hemispheres ostracod palaeobiogeography during the Early Jurassic: possible migration routes. Palaeogeogr Palaeoclimatol Palaeoecol 233:63–95

    Article  Google Scholar 

  • Arias C (2007) Pliensbachian-Toarcian ostracod biogeography in NW Europe: evidence for water mass structure evolution. Palaeogeogr Palaeoclimatol Palaeoecol 251:398–421

    Article  Google Scholar 

  • Arias C (2008) Palaeoceanography and biogeography in the Early Jurassic Panthalassa and Tethys Oceans. Gondwana Res 14:306–315

    Article  Google Scholar 

  • Arias C, Whatley RC (2009) Multivariate hierarchical analyses of Early Jurassic Ostracoda assemblages. Lethaia 42:495–510

    Article  Google Scholar 

  • Bac-Moszaszwili M (1995) Diversity of Neogene and Quaternary tectonic movements in the Tatra Mountains. Folia Quat 66:131–144

    Google Scholar 

  • Bac-Moszaszwili M, Burchardt J, Głazek J, Iwanow A, Jaroszewski W, Kotański Z, Lefeld J, Mastella L, Ozimkowski W, Roniewicz P, Skupiński A, Westwalewicz-Mogilska E (1979) Geological Map of the Polish Tatra Mts. 1:30.000. Warszawa: Wydawnictwa Geologiczne

  • Balsam WL, Beeson JP (2003) Sea-floor sediment distribution in the Gulf of Mexico. Deep-Sea Res 50:1421–1444

    Article  Google Scholar 

  • Barattolo B, Bigozzi A (1996) Dasycladaleans and depositional environments of the Upper Triassic–Liassic carbonate platform of the Gran Sasso (Central Apennines, Italy). Facies 35:163–208

    Article  Google Scholar 

  • Barattolo F, Romano R (2005) Shallow carbonate platform bioevents during the Upper Triassic—Lower Jurassic: an evolutive interpretation. Boll Soc Geol It 124:123–142

    Google Scholar 

  • Beales FW (1958) Ancient sediments of Bahamian type. Bull Am Ass Petrol Geol 42:1845–1880

    Google Scholar 

  • Bércziné-Makk A (1980) Triassic to Jurassic microbiofacies of Szilvágy, southwestern Hungary. Földtani Közlöny, Bull Hun Geol Soc 110:90–103

    Google Scholar 

  • Bertok C, Martire L (2009) Sedimentation, fracturing and sliding on a pelagic plateau margin: the Middle Jurassic to Lower Cretaceous succession of Rocca Busambra (Western Sicily, Italy). Sedimentol 56:1016–1040

    Article  Google Scholar 

  • Bice DM, Stewart KG (1990) The formation and drowning of isolated carbonate seamounts: tectonic and ecological controls in the northern Apennines. In: Tucker ME, Wilson JL, Crevello PD, Sarg JR, Read JF (eds) Carbonate platforms: Facies, sequences and evolution. Int Assoc of Sedimentol Spec Publ 9, pp 145–168

  • Bieda F (1959) Paleontologiczna stratygrafia eocenu tatrzańskiego i fliszu podhalańskiego (in Polish). Biuletyn Instytutu Geol 149:215–224

    Google Scholar 

  • Blau J, Grün B, Senff M (1993) Crustacean coprolites from the Triassic of the western Tethys (Lienz Dolomites, Austria; Prags Dolomites, Italy) and the western margin of Gondwana (upper Magdalena Valley, Colombia, South America). Paläontol Z 67:193–214

    Article  Google Scholar 

  • Blau J, Rosas S, Senff M (1994) Favreina peruviensis n. sp., a crustacean microcoprolite from the Liassic of Peru. Paläontol Z 68:521–527

    Article  Google Scholar 

  • Blomeier DPG, Reijmer JJG (1999) Drowning of a Lower Jurassic Carbonate Platform: Jbel Bou Dahar, High Atlas, Morocco. Facies 41:81–110

    Article  Google Scholar 

  • Bosence DW, Wood JL, Rose EPF, Quing H (2000) Low- and high-frequency sea-level changes control peritidal carbonate cycles, facies and dolomitization in the Rock of Gibraltar (Early Jurassic, Iberian Peninsula). J Geol Soc 157:61–74

    Article  Google Scholar 

  • Boyer TP, Biddle M, Hamilton M, Mishonov AV, Paver CR, Seidov D, Zweng M (2011) Gulf of Mexico regional climatology. Dataset, NOAA/NODC. https://doi.org/10.7289/v5c53hsw

    Google Scholar 

  • Brönnimann P, Caron JP, Zaninetti L (1972a) Parafavreina, n. gen., a new thalassinid anomuran (Crustacea, Decapoda) coprolite form-genus from the Triassic and Liassic of Europa and North Africa. Mitt Gesell Geol U Bergb-Studenten Wien 21:941–956

    Google Scholar 

  • Brönnimann P, Caron JP, Zaninetti L (1972b) New galatheid anomuran (Crustacea, Decapoda) coprolites from the Rhetian of Provence, southern France. Mitt Gesell Geol U Bergb-Studenten Wien 21:905–920

    Google Scholar 

  • Burchart J (1972) Fission-track age determinations of accessory apatite from Tatra Mts, Poland. Earth Planet Sc Lett 15:418–422

    Article  Google Scholar 

  • Ciarapica G, Passeri L (2005) Late Triassic and Early Jurassic sedimentary evolution of the Northern Apennines: an overview. Boll Soc Geol It 124:189–201

    Google Scholar 

  • Colom Casanovas G (1969) Litomicrofacies de los terrenos secundarios de Litomicrofacies de los terrenos secundarios de España. Memor Acad Ciencias Artes Barcelona. La Sel Nat 290:457–482

    Google Scholar 

  • Császár G, Szinger B, Piros O (2013) From continental platform towards rifting of the Tisza Unit in the Late Triassic to Early Cretaceous. Geol Carp 64:279–290

    Google Scholar 

  • Damborenea SE, Echevarría J, Ros-Franch S (2013) Southern hemisphere palaeobiogeography of Triassic-Jurassic Marine bivalves. Springer, Dordrecht

    Book  Google Scholar 

  • Dera G, Pellenard P, Neige P, Deconinck J-F, Pucéat E, Dommergues J-L (2009) Distribution of clay minerals in Early Jurassic Peritethyan seas: palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeogr Palaeoclimatol Palaeoecol 271:39–51

    Article  Google Scholar 

  • Di Stefano P, Galácz A, Mallarino G, Mindszenty A, Vörös A (2002) Birth and early evolution of a Jurassic escarpment: Monte Kumeta, western Sicily. Facies 46:273–298

    Article  Google Scholar 

  • Dommergues J-L, El Hariri K (2002) Endemism as a palaeobiogeographic parameter of basin history illustrated by early- and mid-Liassic peri-Tethyan ammonite faunas. Palaeogeogr Palaeoclimatol Palaeoecol 184:407–418

    Article  Google Scholar 

  • Dozet S, Šribar L (1998) Biostratigraphy of shallow-marine Jurassic beds in southeastern Slovenia. Geologija 40:187–221

    Article  Google Scholar 

  • Duncan CP, Schladow SG, Williams WG (1982) Surface currents near the Greater and Lesser Antilles. Int Hydrogr Rev 59:67–78

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks, Am Ass Petrol Geol Mem 1:108–121

  • Elmi S, Amhoud H, Boutakiout M, Benshili K (1999) Biostratigraphic and environmental data on the history of Jebel Bou Dahar (eastern High Atlas, Morocco) paleo-shoal during the Early and Middle Jurassic. Bull Soc Geol Fr 170:619–628

    Google Scholar 

  • Fabbi S, Santantonio M (2012) Footwall progradation in syn-rift carbonate platform-slope systems (Early Jurassic, Northern Apennines, Italy). Sed Geol 281:21–34

    Article  Google Scholar 

  • Fazzouli M (1974) Facies di “laguna interna” nel Calcare Massiccio della Toscana sud-orientale. Boll Soc Geol It 93:369–396

    Google Scholar 

  • Flügel E (2010) Microfacies of carbonate rocks analysis, interpretation and application, 2nd edn. Springer, Berlin

    Google Scholar 

  • Fraser NM, Bottjer JD, Fischer AG (2004) Dissecting “Lithiotis” bivalves: implications for the Early Jurassic reef eclipse. Palaios 19:51–67

    Article  Google Scholar 

  • Gandin A (2012) Tectonic control on the sedimentary architecture of Early Mesozoic mixed siliciclastic-carbonate Pseudoverrucano (southern Tuscany, Italy). Ital J Geosci 131:77–94

    Google Scholar 

  • Gaździcki A (1978) Conodonts of the genus Misikella Kozur and Mock, 1974 from the Rhaetian of the Tatra Mts (West Carpathians). Acta Palaeontol Pol 23:341–350

    Google Scholar 

  • Gaździcki A, Uchman A (2012) Fatricum provenance of the Rhaetian deposits in the “Nad Moreną” section (Przysłop Miętusi area): a correction of the Hronicum stratigraphy in the Tatra Mts. Przegląd Geol 60:333–340 (in Polish, English summary)

    Google Scholar 

  • Gaździcki A, Michalík J, Planderová-Sýkora M (1979) An Upper Triassic–Lower Jurassic sequence in the Krížna Nappe (West Tatra Mountains, West Carpathians, Czechoslovakia). Západne Karpaty Geol 5:119–148

    Google Scholar 

  • Gaździcki A, Michalík J, Tomašowých A (2000) Parafavreina coprolites from the uppermost Triassic of the Western Carpathians. Geol Carp 51:245–250

    Google Scholar 

  • Giunta G, Orioli S (2011) The Caribbean Plate evolution: trying to resolve a very complicated tectonic puzzle. In: Sharkov EV (ed) New frontiers in tectonic research—general problems, sedimentary basins and island arcs. In Tech Publisher, Rjeka, pp 221–248

    Google Scholar 

  • Golonka J, Ford D (2000) Pangean (Late Carboniferous-Middle Jurassic) paleoenvironment and lithofacies. Palaeogeogr Palaeoclimatol Palaeoecol 161:1–34

    Article  Google Scholar 

  • Gómez JJ, Comas-Rengifo MJ, Goy A (2016) Palaeoclimatic oscillations in the Pliensbachian (Early Jurassic) of the Asturian Basin (northern Spain). Clim Past 12:1199–1214

    Article  Google Scholar 

  • Grabowski P (1967) Geology of the Choč scales of Upłaz, Kończysta and Brama Kantaka east of the Kościeliska Valley (in Polish, English summary). Acta Geol Pol 17:672–696

    Google Scholar 

  • Haas J, Péró C (2004) Mesozoic evolution of the Tisza Mega-unit. Int J Earth Sc 93:297–313

    Article  Google Scholar 

  • Hallam A (2001) A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr Palaeoclimatol Palaeoecol 167:23–37

    Article  Google Scholar 

  • Handford CR, Loucks RG (1993) Carbonate depositional sequences and systems tracts-responses of carbonate platforms to relative sea-level changes. In: Loucks RG, Sarg JF (eds) Carbonate sequence stratigraphy recent developments and applications, vol 57. American Association of Petroleum Geologists Memorandum, Tulusa, pp 3–41

    Google Scholar 

  • Hopf H, Thiel V, Reitner J (2001) An example for black shale development on a carbonate platform (late Triassic, Seefeld, Austria). Facies 45:203–210

    Article  Google Scholar 

  • Illing LV (1954) Bahaman calcareous sands. Bull Am Ass Petrol Geol 38:1–95

    Google Scholar 

  • Jach R (2002) Lower Jurassic spiculite series from the Križna Unit in the Western Tatra Mts., Western Carpathians, Poland. Ann Soc Geol Pol 72:131–144

    Google Scholar 

  • Jezierska A, Łuczyński P, Staśkiewicz A (2016) Carbonate-clastic sediments of the Dudziniec Formation in the Kościeliska Valley (High-Tatric series, Tatra Mountains, Poland): role of syndepositional tectonic activity in facies development during the Early and Middle Jurassic. Geol Q 60:869–880

    Google Scholar 

  • Jurewicz E (2005) Geodynamic evolution of the Tatra Mts. and the Pieniny Klippen Belt (Western Carpathians): problems and comments. Acta Geol Pol 55:295–338

    Google Scholar 

  • Kameo K, Shearer MC, Droxler AW, Mita I, Watanabe R, Sato T (2004) Glacial–interglacial surface water variations in the Caribbean Sea during the last 300 ky based on calcareous nannofossil analysis. Palaeogeogr Palaeoclimatol Palaeoecol 212:65–76

    Article  Google Scholar 

  • Kendall CGSC, Patrick A (1969) Holocene shallow-water carbonate and evaporite sediments of Khor al Bazam, Abu Dhabi, Southwest Persian Gulf. Am Assoc Pet Geol Bull 53:841–869

    Google Scholar 

  • Korte C, Hesselbo SP (2011) Shallow-marine carbon and oxygen isotope and elemental records indicate icehouse-greenhouse cycles during the Early Jurassic. Paleoceanography 26:1–18

    Article  Google Scholar 

  • Kotański Z (1965) La coupe géologique du versant est de la Vallée Kościeliska dans les Tatras occidentales dans son développement historique (in Polish, French summary). Acta Geol Pol 15:257–320

    Google Scholar 

  • Kotański Z (1979a) The position of the Tatra Mts in the Western Carpathians. (in Polish, English summary). Przegląd Geol 26:359–369

    Google Scholar 

  • Kotański Z (1979b) On the Triassic of the Tatra Mts. (in Polish, English summary). Przegląd Geol 26:369–377

    Google Scholar 

  • Kristan-Tollmann E, Tollmann A (1983) Tethys-Faunenelemente in der Trias der USA. Mitt Österr Geol Ges 76:213–272

    Google Scholar 

  • Lefeld J (1985) Jurassic and Cretaceous lithostratigraphic units in the Tatra Mountains. Part C. Middle sub-tatric succession. Stud Geol Pol 84:82–93

    Google Scholar 

  • Love M, Baldera A, Yeung C, Robbins C (2013) The Gulf of Mexico ecosystem: a coastal and marine atlas. Ocean Conservancy, Gulf Restoration Center, New Orleans

    Google Scholar 

  • Marino M, Santantonio M (2010) Understanding the geological record of carbonate platform drowning across rifted Tethyan margins: examples from the Lower Jurassic of the Apennines and Sicily (Italy). Sed Geol 225:116–137

    Article  Google Scholar 

  • Mello J, Wieczorek J (1993) Krížnianský príkrov (Veporikum). In: Nemčok J (ed) Vysvetlivky ku Geologickej Mape Tatier, 1:50 000. Geologický Ústav Dionýza Štúra, Bratislava, pp 50–57

    Google Scholar 

  • Merino-Tomé O, Della Porta G, Kenter JAM, Verwer K, Harris PM, Adams EW, Playton T, Corrochano D (2012) Sequence development in an isolated carbonate platform (Lower Jurassic, Djebel Bou Dahar, High Atlas, Morocco): influence of tectonics, eustacy and carbonate production. Sedimentol 59:118–155

    Article  Google Scholar 

  • Morettini E, Santantonio M, Bartolini A, Cecca F, Baumgartner PO, Hunziker JC (2002) Carbon isotope stratigraphy and carbonate production during the Early-Middle Jurassic: examples from the Umbria–Marche–Sabina Apennines (central Italy). Palaeogeogr Palaeoclimatol Palaeoecol 184:251–273

    Article  Google Scholar 

  • Passeri L, Venturi F (2005) Timing and causes of drowning of the Calcare Massiccio platform in Northern Apennines. Boll Soc Geol It 124:247–258

    Google Scholar 

  • Peybernes C, Chablais J, Onoue T, Martini R (2016) Mid-oceanic shallow-water carbonates of the Panthalassa domain: new microfacies data from the Sambosan Accretionary Complex, Shikoku Island, Japan. Facies 62(24):1–27

    Google Scholar 

  • Piller W (1976) Fazies und Litostratigraphie des gebankten Dachsteinkalkes (Ober-Trias) am Nordrand des Toten Gebirges (S Grünau/Almtal. Oberösterreich). Mitt Gesell Geol U Bergb-Studenten Wien 23:113–152

    Google Scholar 

  • Principaud M, Mulder T, Gillet H, Borgomano J (2015) Large-scale carbonate submarine mass-wasting along the northwestern slope of the Great Bahama Bank (Bahamas): Morphology, architecture, and mechanisms. Sed Geol 317:27–42

    Article  Google Scholar 

  • Pomoni-Papaioannou F, Kostopoulou V (2008) Microfacies and cycle stacking pattern in Liassic peritidal carbonate platform strata, Gavrovo-Tripolitza platform, Peloponnesus, Greece. Facies 54:417–431

    Article  Google Scholar 

  • Porter SJ, Selby D, Suzuki K, Gröcke D (2013) Opening of a trans-Pangaean marine corridor during the Early Jurassic: insights from osmium isotopes across the Sinemurian-Pliensbachian GSSP, Robin Hood’s Bay, UK. Palaeogeogr Palaeoclimatol Palaeoecol 375:50–58

    Article  Google Scholar 

  • Purkis S, Cavalcante G, Rohtla L, Oehlert AM, Harris PM, Swart PK (2017) Hydrodynamic control of whitings on Great Bahama Bank. Geology 45:939–942

    Article  Google Scholar 

  • Reijmer JJG (2014) Carbonate factories. In: Harff J, Meschede M, Petersen S, Thiede J (eds) Encyclopedia of marine geosciences. Springer, Dordrecht, pp 80–84

    Google Scholar 

  • Rey J (1997) A Liassic isolated platform controlled by tectonics: South Iberian Margin, southeast Spain. Geol Mag 134:235–247

    Article  Google Scholar 

  • Romano R, Barattolo F, Masetti D (2005) Biostratigraphic evidence of the middle Liassic hiatus in the Foza section; (eastern sector of the Trento Platform, Calcari Grigi Formation, Venetian Prealps). Boll Soc Geol Ital 124:301–312

    Google Scholar 

  • Roniewicz P (1969) Sedimentation of the Nummulite Eocene in the Tatra Mts. (in Polish, English summary). Acta Geol Pol 19:503–608

    Google Scholar 

  • Rousset C, Beal LM (2011) On the seasonal variability of the currents in the Straits of Florida and Yucatan Channel. J Geophys Res 116(C08004):1–17

    Google Scholar 

  • Rychliński T, Gaździcki A, Uchman A (2018) Dasycladacean alga Palaeodasycladus in the northern Tethys (West Carpathians, Poland) and its new palaeogeographic range during the Early Jurassic. Swiss J Geosci. https://doi.org/10.1007/s00015-018-0301-z

    Google Scholar 

  • Santantonio M, Carminati E (2011) Jurassic rifting evolution of the Apennines and Southern Alps (Italy): parallels and differences. Geol Soc Am Bull 123:468–484

    Article  Google Scholar 

  • Schlager W (2005) Carbonate sedimentology and sequence stratigraphy. SEPM concepts in sedimentology and paleontology, vol 8. SEPM (Society for Sedimentary Geology), Tulsa

    Book  Google Scholar 

  • Senowbari-Daryan B (1979) Anomuran coprolites from the Upper Triassic of the Osterhorn Mountains (Hintersee/Salzburg, Austria). Ann Naturhistor Mus Wien 82:99–107

    Google Scholar 

  • Senowbari-Daryan B, Stanley GD Jr (1986) Thalassinid anomuran microcoprolites from Upper Triassic carbonate rocks of central Peru. Lethaia 19:343–354

    Article  Google Scholar 

  • Šmuc A (2005) Jurassic and Cretaceous stratigraphy and sedimentary evolution of the Julian Alps. ZRC Publishing, ZRC SAZU, Ljubliana

    Google Scholar 

  • Szulc J, Gaździcki A (2014) Carbonate rocks of the Middle Triassic. In: Jach R, Rychliński T, Uchman A (eds) Sedimentary rocks of the Tatra Mountains. Tatrzański Park Narodowy. Wydawnictwa, Zakopane, pp 206–216

    Google Scholar 

  • Thierry J (2000) Late Sinemurian, Middle Toarcian. In: Crasquin S (ed) Atlas Peri-Tethys, palaeogeographical maps—explanatory Notes. CCGM/CGMW, Paris, pp 49–70

    Google Scholar 

  • Thierry J et al (2000) Late Sinemurian. In: Dercourt J, Gaetani M et al (eds) Atlas Peri-Tethys, palaeogeographical maps. CCGM/CGMW, Paris (map 7)

    Google Scholar 

  • Tomczak M, Godfrey JS (1994) Regional oceanography: an introduction. Elsevier Science, New York

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, Oxford

    Book  Google Scholar 

  • Uchman A (1988) Red limestones—youngest member in the Choč unit, Tatra Mts, Poland. Ann Soc Geol Pol 58:267–276

    Google Scholar 

  • Uchman A (1993) Lower Jurassic carbonate sedimentation controlled by tilted blocks in the Choč Unit in the Tatra Mts, Poland. Zentralblatt für Geol und Paläontol 1:875–883

    Google Scholar 

  • Uchman A, Tchoumatchenco P (1994) Remarks on the stratigraphy and brachiopod palaeobiogeography in the Lower Jurassic Hierlatz-type limestone facies: the Choč Unit, Central Western Carpathians. Geol Carp 45:195–202

    Google Scholar 

  • Uchman A, Gaździcki A, Rychliński T, Łaska W (2017) Jurassic of the Upper Subtatric (Choč) Nappe in the Dolina Kościeliska Valley region. Jurassica XIII, Jurassic Geology of the Tatra Mts. Abstracts and Field Trip Guidebook. Poland, Kościelisko near Zakopane, June 19th-23rd, 2017. Polish Geological Institute, National Research Institute, Warsaw, pp 108–115

    Google Scholar 

  • Vörös A, Galácz A (1998) Jurassic palaeogeography of the Transdanubian Central Range (Hungary). Riv It Paleontol Stratigr 104:69–84

    Google Scholar 

  • Wójcik K (1981) Facies development of the high-tatric Lias in the vicinity of the Chochołowska Valley (Tatra Mts) (in Polish, English summary). Przegląd Geol 29:405–410

    Google Scholar 

  • Wójcik K (1985) Dudziniec Formation. In: Lefeld J (ed) Jurassic and Cretaceous lithostratigraphic units in the Tatra Mountains. Stud Geol Pol 84:10–21

  • Wright VP (1992) A revised classification of limestones. Sed Geol 76:177–186

    Article  Google Scholar 

  • Zempolich WG (1993) The drowning succession in Jurassic carbonates of the Venetian Alps, Italy: a record of supercontinental breakup, gradual eustatic rise, and eutrophication of shallow-water environments. In: Loucks RG Sarg, JF (eds) Carbonate sequence stratigraphy. Am Assoc Petrol Geol Mem 57:63–105

  • Ziegler PA (1990) Geological Atlas of Western and Central Europe, 2nd and completely revised edition. In: Maatschappi BV (ed) Shell international petro. Geological Society Publishing House, Bath

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the authorities of the Tatra National Park (Zakopane, Poland) for providing the permission for fieldwork. T. R. and A. U. was supported by the Jagiellonian University (DS funds). Many thanks are offered to Maurizio Marino (Rome) and an anonymous reviewer for critical, constructive remarks, which helped to improve the final version of the paper. We are grateful M. Tucker, the journal editor, for useful remarks and kind help with editorial matters and language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Rychliński.

Appendix

Appendix

Description of ichnofossils

Ichnogenus Parafavreina Brönnimann, Caron and Zaninetti 1972a, b

Type ichnospecies: Parafavreina thoronetensis Brönnimann, Caron and Zaninetti 1972a, b

Parafavreina thoronetensis Brönnimann, Caron and Zaninetti 1972a, b

Figure 5

Selected synonyms of Parafavreina thoronetensis Brönnimann, Caron and Zaninetti 1972a, b

*1972 Parafavreina thoronetensis n. gen. et n. sp.—Brönnimann, Caron and Zaninetti: 947, pl. 1, Figs. 1–16, pl. 2, Figs. 1–10

1976 Parafavreina thoronetensis Brönnimann, Caron and Zaninetti—Piller: 143

1979 Parafavreina thoronetensis Brönnimann, Caron and Zaninetti—Senowbari-Daryan: 100, pl. 1, Figs. 8, 11, 12, 17–19.

1980 Parafavreina thoronetensis Brönnimann, Caron and Zaninetti—Bércziné Makk, pl. 4: Fig. 2

1983 Parafavreina thoronetensis Brönnimann, Caron and Zaninetti—Kristan-Tollmann and Tollmann: abb. 13: Figs. 1–6; taf. 15: Figs. 1–12

1986 Parafavrema thoronetensis Brönnimann, Caron and Zaninetti 1972a, b—Senowbari-Daryan and Stanley: 346, figs. lb, 3d, 4a, c–e, 5c–f.

1993 Parafavrema thoronetensis Brönnimann, Caron and Zaninetti 1972a, b—Blau, Grün and Senff, Fig. 5D–H

1994 Parafavrema thoronetensis Brönnimann, Caron and Zaninetti 1972a, b—Blau, Rosas and Senff, Fig. 5i–m

2000 Parafavrema thoronetensis Brönnimann, Caron and Zaninetti 1972a, b—Gaździcki, Michalík and Tomašowých, pl. 1: Figs. 1–2; pl. 2: Figs. 1–8; Fig. 3

2012 Parafavrema thoronetensis Brönnimann, Caron and Zaninetti 1972a, b—Gandin, Fig. 5g, i

Material: 13 specimens in three thin-sections from sample Z7, visible in cross, oblique, and longitudinal section, partly broken. Some microcoprolites are also present in samples Z2, Z3, Z4, and Z6 (for sample locations see Figs. 2, 5a), but their exact classification is uncertain due to their poor preservation and abrasion.

Stratigraphic range: Norian—Lower Jurassic.

Description: Parafavreina thoronetensis is characterized by a circular or subcircular outline in cross section, flattened slightly from the underside (“ventral” side) in some samples (Fig. 3c, d). It shows two bilateral symmetrical groups of longitudinal canals (35–40 in number), of triangular or rarely crescent shape in cross section. However, this feature is poorly recognizable in the studied material. The canals are 30–50 μm in width. In longitudinal section, the canals are preserved as elongate sparite-filled voids (about 150 μm long) arranged in linear rows resembling a dotted line. One pellet shows up to six such parallel rows.

Remarks: The studied coprolites correspond well with descriptions and illustrations given by Brönnimann et al. (1972a), Senowbari-Daryan and Stanley (1986), Gaździcki et al. (2000), and Gandin (2012).

Occurrence: The ichnospecies Parafavreina thoronetensis is known from many Late Triassic–Early Jurassic formations not only of Tethyan realm, including the Norian Hauptdolomit and the upper Rhaetian deposits of the Northern Calcareous Alps (Senowbari-Daryan 1979), the Norian Hauptdolomite facies of Tyrol (Hopf et al. 2001), Rhaetian of the Lienz Dolomites in the Southern Alps (Blau et al. 1993), Lower Jurassic of central Greece and Algeria (Brönnimann et al. 1972a), Spain (Colom Casanovas 1969), Rhaetian of the Transdanubian Range (Bércziné-Makk 1980), Rhaetian of Provence, France (Brönnimann et al. 1972b), southern Tuscany, Italy (Gandin 2012), Western Carpathians (Gaździcki et al. 2000) but also from the Lower Jurassic of Peru (Blau et al. 1994), Norian of Columbia (Blau et al. 1993), Rhaetian of California, USA (Kristan-Tollmann and Tollmann 1983), and the Norian–Sinemurian of the Shikoku Island, southwest Japan (Peybernes et al. 2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rychliński, T., Uchman, A. & Gaździcki, A. Lower Jurassic Bahamian-type facies in the Choč Nappe (Tatra Mts, West Carpathians, Poland) influenced by paleocirculation in the Western Tethys. Facies 64, 15 (2018). https://doi.org/10.1007/s10347-018-0528-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-018-0528-1

Keywords

Navigation