Skip to main content
Log in

A modified inertial Tseng technique of Bilevel variational inequality problem with application to image processing

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In this paper, we propose and study a new modified Tseng inertial iterative technique for solving Bilevel quasimonotone Variational Inequality Problem (BVIP) in the framework of Hilbert spaces. In addition, we establish a strong convergence result of the proposed iterative technique under some mild assumptions, the proposed iterative technique does not need prior knowledge of Lipschitz’s constant of the quasimonotone operator. Finally, we present a numerical example of our proposed methods in comparison with some recent results in the literature, also, we apply our iterative technique to image deblurring and optimal control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availibility Statement

Data sharing not applicable to this paper as no data sets were generated or analysed during the current study.

References

  1. F. Akutsah, A. A. Mebawondu, H. A. Abass and O. K. Narain. 2023. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequlaity and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control and Optimization, 122 pp. https://doi.org/10.3934/naco.2021046.

  2. F. Akutsah, A. A. Mebawondu, G. C. Ugwunnadi and O. K. Narain. 2022. Inertial extrapolation method with regularization for solving monotone bilevel variation inequalities and fixed point problems in real Hilbert space. Journal of Nonlinear Functional Analysis, 2022, Article ID 5, 15 pp.

  3. F. Akutsah, A. A. Mebawondu, G. C. Ugwunnadi, P. Pillay and O. K. Narain. 2022. Inertial extrapolation method with regularization for solving a new class of bilevel problem in real Hilbert spaces. SeMA Journal, , 22 pp. https://doi.org/10.1007/s40324-022-00293-2

  4. Alvares, F., and H. Attouch. 2001. An inertial proximal monotone operators via discretization of a nonlinear oscillator with damping. Set Valued Analysis 9: 3–11.

    Article  MathSciNet  Google Scholar 

  5. Anh, P.N. 2012. Strong convergence theorems for nonexpansive mappings Ky Fan inequalities. Journal of Optimization Theory and Applications 154: 303–320.

    Article  MathSciNet  Google Scholar 

  6. Anh, P.K., T.V. Anh, and L.D. Muun. 2017. On bilevel split pseudomonotone variational inequality problems with applications. Acta Mathematica Vietnamica 42: 413–429.

    Article  MathSciNet  Google Scholar 

  7. Apostol, R.Y., A.A. Grynenko, and V.V. Semenov. 2012. Terative algorithms for monotone bilevel variational inequalities. Journal of Computational and Applied Mathematics 107: 3–14.

    Google Scholar 

  8. H. Attouch, X. Goudon and P. Redont. 2000. The heavy ball with friction. I. The continuous dynamical system. Communications in Contemporary Mathematics, 21(2), 1–34.

  9. Byrne, C. 2004. A unified treatment for some iterative algorithms in signal processing and image reconstruction. Inverse Problem 20: 103–120.

    Article  MathSciNet  Google Scholar 

  10. Ceng, L.C., A. Gibali, and S. Reich. 2011. The subgradient extragradient method for solving variational inequalities in Hilbert space. Journal of Optimization Theory and Applications 148: 318–335.

    Article  MathSciNet  Google Scholar 

  11. Censor, Y., A. Gibali, and S. Reich. 2011. Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61: 1119–1132.

    Article  MathSciNet  Google Scholar 

  12. Censor, Y., A. Gibali, and S. Reich. 2011. The subgradient extragradient method for solving variational inequalities in Hilbert space. Journal of Optimization Theory and Applications 148: 318–335.

    Article  MathSciNet  Google Scholar 

  13. Ceng, L.C., N. Hadjisavvas, and N.C. Wong. 2020. Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. Global Optimization 46: 635–646.

    Article  MathSciNet  Google Scholar 

  14. G. Ficher. 1963 . Sul pproblem elastostatico di signorini con ambigue condizioni al contorno. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni34, 138–142.

  15. G. Ficher. 1964. Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni7 , 91–140.

  16. Gibali, A., D.V. Thong, and P.A. Tuan. 2015. Two simple projection-type methods for solving variational inequalities in Euclidean spaces. Journal of Nonlinear Analysis and Optimization 6: 41–51.

    Google Scholar 

  17. Glackin, J., J.G. Ecker, and M. Kupferschmid. 2009. Solving bilevel linear programs using multiple objective linear programming. Journal of Optimization Theory and Applications 140: 197–212.

    Article  MathSciNet  Google Scholar 

  18. He, Y. 2006. A new double projection algorithm for variational inequalities. Journal of Computational and Applied Mathematics 185 (1): 166–173.

    Article  MathSciNet  Google Scholar 

  19. He, B.S., and L.Z. Liao. 2002. Improvements of some projection methods for monotone nonlinear variational inequalities. Optimization Theory and Applications 112: 111–128.

    Article  MathSciNet  Google Scholar 

  20. He, H., C. Ling, and H.K. Xu. 2015. A relaxed projection method for split variational inequalities. Journal of Optimization Theory and Applications 166: 213–233.

    Article  MathSciNet  Google Scholar 

  21. Korpelevich, G.M. 1976. An extragradient method for finding saddle points and for other problems. Ekon. Mat. Metody. 12: 747–756.

    MathSciNet  Google Scholar 

  22. Khoroshilova, E.V. 2013. Extragradient-type method for optimal control problem with linear constraints and convex objective function. Optimization Letters 7: 1193–1214.

    Article  MathSciNet  Google Scholar 

  23. Liduka, H. 2012. A new iterative algorithm for the variational inequality problem over the fixed point set of a firmly nonexpansive mapping. Optimization 59: 873–885.

    MathSciNet  Google Scholar 

  24. Luiu, H., and J. Yang. 2020. Weak convergence of iterative methods for solving quasimonotone variational inequalities. Computational Optimization and Applications 77: 491–508.

    Article  MathSciNet  Google Scholar 

  25. Luo, Z.Q., J.S. Pang, and D. Ralph. 1996. Mathematical programs with equilibrium constraints. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  26. Mainge, P.E. 2008. A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM Journal on Control and Optimization 47: 1499–1515.

    Article  MathSciNet  Google Scholar 

  27. Matkowski, J. 1975. Integrable solutions of functional equations. Dissertation 127: 1–68.

    MathSciNet  Google Scholar 

  28. Matkowski, J. 1977. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Amer. Math. Soc. 62 (2): 344–348.

    Article  MathSciNet  Google Scholar 

  29. Minh, N.H., L.H.M. Van, and T.V. Anh. 2021. An algorithm for a class of bilevel variational inequality with split variational inequality and fixed point problem constraints. Acta Mathematica Vietnamica. https://doi.org/10.1007/s40306-020-00389-9.

    Article  Google Scholar 

  30. B. Tan, Q. Xiaolong, and Y. Jen-Chih. 2021. Two modified inertial projection algorithms for bilevel pseudomonotone variational inequalities with applications to optimal control problems, Numerical Algorithms, : 130.

  31. Hadjisavvas, N., and S. Schaible. 1996. Quasimonotone variational inequalities in Banach spaces. Journal of Optimization Theory and Applications 90: 95–111.

    Article  MathSciNet  Google Scholar 

  32. Polyak, B.T. 1964. Some methods of speeding up the convergence of iteration methods. Politehn Univ Buchar Sci Bull Ser A Appl Math Phys. 4 (5): 1–17.

    Google Scholar 

  33. Preininger, J., and P.T. Vuong. 2018. On the convergence of the gradient projection method for convex optimal control problems with bang-bang solutions. Computational Optimization and Applications 70: 221–238.

    Article  MathSciNet  Google Scholar 

  34. Hansen, P.C. 2010. Discrete inverse problems: insight and algorithms. Philadelphia: SIAM.

    Book  Google Scholar 

  35. Hansen, P.C. 1997. Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. Philadelphia: SIAM.

    Google Scholar 

  36. Reich, S., and T.M. Tuyen. 2020. A new algorithm for solving the split common null point problem in Hilbert spaces. Numer. Algorithms 83: 789–805.

    Article  MathSciNet  Google Scholar 

  37. Salahuddin. 2020. The extragradient method for quasi-monotone variational inequalities, Optimization, . https://doi.org/10.1080/02331934.2020.1860979.

  38. Saejung, S., and P. Yotkaew. 2012. Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Analysis 75: 742–750.

    Article  MathSciNet  Google Scholar 

  39. Shehu, Y., P.T. Vuong, and A. Zemkoho. 2019. An inertial extrapolation method for convex simple bilevel optimization. Optim. Methods Softw.https://doi.org/10.1080/10556788.2019.1619729.

    Article  Google Scholar 

  40. Stampacchia, G. 1964. Formes bilineaires coercitives sur les ensembles convexes. C. R. Math. Acad. Sci. 258: 4413–4416.

    MathSciNet  Google Scholar 

  41. Tian, M., and B.N. Jiang. 2017. Weak convergence theorem for a class of split variational inequality problems and applications in Hilbert space. J. Inequal. Appl. 123: 1–20.

    MathSciNet  Google Scholar 

  42. B. Tan, L. Liu and X. Qin. 2020. Self adaptive inertial extragradient algorithms for solving bilevel pseudomonotone variational inequality problems, Applied Math., . https://doi.org/10.1007/s13160-020-00450-y

  43. Thong, D.V., X.-H. Li, Q.L. Dong, Y.J. Cho, and T.M. Rassias. 2020. A projection and contraction method with adaptive step sizes for solving bilevel pseudomonotone variational inequality problems. Optimization. https://doi.org/10.1080/02331934.2020.1849206.

    Article  Google Scholar 

  44. Wang, F., and H.K. Xu. 2011. Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Analysis 74 (12): 4105–4111.

    Article  MathSciNet  Google Scholar 

  45. Xu, H.K. 2011. Averaged mappings and the gradient-projection algorithm. Journal of Optimization Theory and Applications 150: 360–378.

    Article  MathSciNet  Google Scholar 

  46. Y. Yao, Muglia and G. L. Marino. 2014. A modified Korpelevichs method convergent to the minimum-norm solution of a variational inequality, Optimization,63 , 559–569

  47. Vuong, P.T., and Y. Shehu. 2019. Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. Numer. Algorithms 81: 269–291.

    Article  MathSciNet  Google Scholar 

  48. S. E. Yimer, P. Kuman, A. G. Gebrie and R. Wangkeeree. 2019. Inertial method for bilevel variational inequality problems with fixed point and minimizer point constraints, MDPI, Mathematics, 841(7) . https://doi.org/10.3390/math7090841.

  49. Zheng, L. 2018. A double projection algorithm for quasimonotone variational inequalities in Banach spaces. Inequal. Appl. 123: 1–20.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers for their useful comments that greatly improve the paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The authors acknowledge and agree with the content, accuracy and integrity of the manuscript and take absolute accountability for the same. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. A. Mebawondu.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Communicated by Sorin-Mihai Grad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mebawondu, A.A., George, R., Narain, O.K. et al. A modified inertial Tseng technique of Bilevel variational inequality problem with application to image processing. J Anal (2024). https://doi.org/10.1007/s41478-024-00756-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41478-024-00756-x

Keywords

Mathematics Subject Classification

Navigation