Skip to main content
Log in

On Jacobi polynomials and fractional spectral functions on compact symmetric spaces

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

The Jacobi coefficients \(c_{j}^{\ell }(\alpha ,\beta )\) (\(1\le j\le \ell ; \alpha ,\beta >-1\)) associated with the normalised Jacobi polynomials \({\mathscr {P}}_k^{(\alpha , \beta )}(\eta ):=P_{k}^{(\alpha ,\beta )}(\eta )/P_{k}^{(\alpha ,\beta )}(1)\) (\(k\ge 0; \alpha ,\beta >-1, -1\le \eta \le 1\)) describe the Maclaurin heat coefficients appearing in the classical Maclaurin expansion of the heat kernel on any N-dimensional compact rank one symmetric space. These coefficients are computed by transforming the even \((2\ell )\)th \((\ell \ge 1)\) derivatives of the Jacobi polynomials \({\mathscr {P}}_{k}^{(\alpha ,\beta )}(\eta )\) into a spectral sum involving the Jacobi operator. In this paper, we generalise this idea by constructing the fractional Taylor heat coefficients (i.e., the coefficients appearing in the fractional Taylor series expansion of the heat kernel) on any rank one symmetric space of compact type. The Riemann–Liouville fractional derivative of normalised Jacobi polynomials \({\mathscr {P}}_k^{(\alpha , \beta )}(\eta )\) is considered and an interesting spectral identity explicitly described by the fractional Jacobi coefficients is established. The analytical and spectral implications of these fractional coefficients are in turn underlined. The first fractional coefficients are explicitly computed. By extension, fractional Jacobi coefficients play a crucial role in the explicit descriptions of constants appearing in the fractional power series expansion of eigenfunctions involving Jacobi polynomials. We also introduce and construct new zeta functions \({\mathcal {Z}}^{(\alpha ,\beta )}_{m,\ell \mu }={\mathcal {Z}}^{(\alpha ,\beta )}_{m,\ell \mu }(s)\) \((1\le \ell \le m, 0<\mu \le 1, s\in {\mathbb {C}})\) associated with these fractional Taylor heat coefficients. It is interesting to see that this new zeta function can be explicitly described by the newly introduced fractional Minakshisundaram-Pleijel zeta function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For more information and further reading on this scale of orthogonal polynomials, the interested reader is referred to [1, 50, 83] and [85].

  2. For more discussion on these symmetric spaces, see [86].

  3. For \(n=1\) the product and summation on the right of (B.1) are omitted.

  4. The product in the second equation of (B.2) is omitted for \(n=2.\)

References

  1. R. Askey, Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, 1975.

  2. Atangana, A., and A. Secer. 2013. A Note on fractional order derivatives and table of fractional derivatives of some special functions. Abstract and Applied Analysis 2013: 1–8.

    MathSciNet  MATH  Google Scholar 

  3. Atangana, A. 2016. On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation. Applied Mathematics and Computation 273: 948–956.

    MathSciNet  MATH  Google Scholar 

  4. Atangana, A. 2018. Non validity of index law in fractional calculus: A fractional differential operator with Makovian and non-Markovian properties. Physica A: Statistical Mechanics and its Applications 505: 688–706.

    MathSciNet  Google Scholar 

  5. Atangana, A. 2020. Fractional discretization: The African’s tortoise walk. Chaos, Solitons and Fractals 130: 109399.

    MathSciNet  Google Scholar 

  6. Atangana, A., and S.I. Araz. 2019. New numerical for ordinary differential equations: Newton polynomial. Journal of Computational and Applied Mathematics 372: 112622. https://doi.org/10.1016/j.cam.2019.112622.

    Article  MathSciNet  MATH  Google Scholar 

  7. Atangana, A., and B. Dumitru. 2016. New fractional derivatives with non-local and nonsingular kernel: Theory and application to heat transfer model. Thermal Science 20: 763–769.

    Google Scholar 

  8. Atangana, A., and J.F. Gómez-Aguilar. 2018. Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena. The European Physical Journal Plus 133: 166. https://doi.org/10.1140/epjp/i2018-12021-3.

    Article  Google Scholar 

  9. Atangana, A., and I. Koca. 2016. Chaos in a simple nonlinear system with Atangana- Baleanu derivatives with fractional order. Chaos, Solitons and Fractals 89: 447–454.

    MathSciNet  MATH  Google Scholar 

  10. Awonusika, R.O. 2018. Determinants of the Laplacians on complex projective spaces \({\mathbf{P}}^{n}\left( {\mathbb{C}}\right)\) (\(n\ge 1\)). Journal of Number Theory 190: 131–155.

    MathSciNet  MATH  Google Scholar 

  11. Awonusika, R.O. 2019. Functional determinant of Laplacian on Cayley projective plane \({\mathbf{P}}^{2}({\rm {Cay}})\). Proceedings-Mathematical Sciences 129: 48. https://doi.org/10.1007/s12044-019-0503-y.

    Article  MathSciNet  MATH  Google Scholar 

  12. Awonusika, R.O. 2019. On spectral identities involving Gegenbauer polynomials. The Journal of Analysis 27: 1123–1137.

    MathSciNet  MATH  Google Scholar 

  13. R.O. Awonusika, Maclaurin heat coefficients and associated zeta functions on quaternionic projective spaces \({\mathbf{P}}^n(\mathbb{H})\) (\(n\ge 1\)), Journal of Physics: Conference Series, Vol. 1366, 2019, 012055, https://doi.org/10.1007/s12044-019-0503-y.

  14. Awonusika, R.O. 2020. Generalised heat coefficients and associated spectral zeta functions on complex projective spaces \({\mathbf{P}}^{n}\left( {\mathbb{C}}\right)\). Complex Variables and Elliptic Equations 65: 588–620.

    MathSciNet  MATH  Google Scholar 

  15. Awonusika, R.O. 2020. On Jacobi Polynomials \({\mathscr {P}}_{k}^{(\alpha ,\beta )}\) and Coefficients \(c_{j}^{\ell }(\alpha ,\beta )\)\(\left( k\ge 0,\ell =5,6;1\le j\le \ell ;\alpha ,\beta > -1\right)\), The Journal of Analysis. https://doi.org/10.1007/s41478-020-00272-8.

  16. Awonusika, R.O., and A. Taheri. 2017. On Jacobi polynomials \(({\mathscr {P}}_k^{(\alpha, \beta )}: \alpha, \beta >-1)\) and Maclaurin spectral functions on rank one symmetric spaces. The Journal of Analysis 25: 139–166.

    MathSciNet  MATH  Google Scholar 

  17. Awonusika, R.O., and A. Taheri. 2017. On Gegenbauer polynomials and coefficients \(c^{\ell }_{j}(\nu )\) (\(1\le j\le \ell\), \(\nu >-1/2\)). Results in Mathematics 72: 1359–1367.

    MathSciNet  MATH  Google Scholar 

  18. Awonusika, R.O., and A. Taheri. 2018. A spectral identity on Jacobi polynomials and its analytic implications. Canadian Mathematical Bulletin 61: 473–482.

    MathSciNet  MATH  Google Scholar 

  19. Bhrawy, A.H., and S.I. El-Soubhy. 2010. Jacobi spectral Galerkin method for the integrated forms of second-order differential equations. Applied Mathematics and Computation 217: 2684–2697.

    MathSciNet  MATH  Google Scholar 

  20. Bhrawy, A.H., M.M. Tharwat, and M.A. Alghamdi. 2014. A new operational matrix of fractional integration for shifted Jacobi polynomials. Bulletin of the Malaysian Mathematical Sciences Society 37: 983–995.

    MathSciNet  MATH  Google Scholar 

  21. Cahn, R.S., and J.A. Wolf. 1976. Zeta functions and their asymptotic expansions for compact symmetric spaces of rank one. Commentarii Mathematici Helvetici 51: 1–21.

    MathSciNet  MATH  Google Scholar 

  22. Camporesi, R. 1990. Harmonic analysis and propagators on homogeneous spaces. Physics Reports 196: 1–134.

    MathSciNet  Google Scholar 

  23. Canuto, C., M.Y. Hussaini, A. Quarteroni, and T.A. Zang. 1988. Spectral Methods in Fluid Dynamics. Berlin: Springer.

    MATH  Google Scholar 

  24. Caputo, M., and M. Fabrizio. 2015. A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications 1: 73–85.

    Google Scholar 

  25. Coutsias, E.A., T. Hagstrom, and D. Torres. 1996. An efficient spectral method for ordinary differential equations with rational function coefficients. Mathematics of Computation 65: 611–635.

    MathSciNet  MATH  Google Scholar 

  26. Das, S. 2011. Functional Fractional Calculus. Berlin: Springer.

    MATH  Google Scholar 

  27. Davison, M., and C. Essex. 1998. Fractional differential equations and initial value problems. The Mathematical Scientist 23: 108–116.

    MathSciNet  MATH  Google Scholar 

  28. Doha, E.H. 2000. The coefficients of differentiated expansions of double and triple ultraspherical polynomials. Annales Universitatis Scientiarum Budapestinensis de Rolando Eotvos Nominatae Sectio Computatorica 19: 57–73.

    MathSciNet  MATH  Google Scholar 

  29. Doha, E.H. 2002. On the coefficients of integrated expansions and integrals of ultraspherical polynomials and their applications for solving differential equations. Journal of Computational and Applied Mathematics 139: 275–298.

    MathSciNet  MATH  Google Scholar 

  30. Doha, E.H. 2002. On the coefficients of differentiated expansions and derivatives of Jacobi polynomials. Journal of Physics A: Mathematical and General 35: 3467–3478.

    MathSciNet  MATH  Google Scholar 

  31. Doha, E.H. 2003. Explicit formulae for the coefficients of Jacobi Polynomials and their integrals. Integral Transforms and Special Functions 14: 69–86.

    MathSciNet  MATH  Google Scholar 

  32. Doha, E.H., and W.M. Abd-Elhameed. 2002. Efficient spectral-Galerkin algorithms for direct solution of second-order equations using ultraspherical polynomials. SIAM Journal on Scientific Computing 24: 548–571.

    MathSciNet  MATH  Google Scholar 

  33. Doha, E.H., and W.M. Abd-Elhameed. 2005. Accurate spectral solutions for the parabolic and elliptic partial differential equations by the ultraspherical tau method. Journal of Computational and Applied Mathematics 181: 24–25.

    MathSciNet  MATH  Google Scholar 

  34. Doha, E.H., and W.M. Abd-Elhameed. 2009. Efficient spectral ultraspherical-dual-Petrov-Galerkin algorithms for the direct solution of \((2n+1)\)th-order linear differential equations. Mathematics and Computers in Simulation 79: 3221–3242.

    MathSciNet  MATH  Google Scholar 

  35. Doha, E.H., W.M. Abd-Elhameed, and H.M. Ahmed. 2012. The coefficients of differentiated expansions of double and triple Jacobi polynomials. Bulletin of the Iranian Mathematical Society 38: 739–766.

    MathSciNet  MATH  Google Scholar 

  36. Doha, E.H., and A.H. Bhrawy. 2008. Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials. Applied Numerical Mathematics 58: 1224–1244.

    MathSciNet  MATH  Google Scholar 

  37. Doha, E.H., and S.I. El-Soubhy. 2001. Some results on the coefficients of integrated expansions of ultraspherical polynomials and their applications. Approximation Theory and its Applications 17: 69–84.

    MATH  Google Scholar 

  38. Doha, E.H., W.M. Abd-Elhameed, and A.H. Bhrawy. 2009. Efficient spectral ultraspherical-Galerkin algorithms for the direct solution of \(2n\)th-order linear differential equations. Applied Mathematical Modelling 33: 1982–1996.

    MathSciNet  MATH  Google Scholar 

  39. Doha, E.H., and W.M. Abd-Elhameed. 2014. On the coefficients of integrated expansions and integrals of Chebyshev polynomials of third and fourth kinds. Bulletin of the Malaysian Mathematical Sciences Society 37: 383–398.

    MathSciNet  MATH  Google Scholar 

  40. Dzherbashyan, M.M., and A.B. Nersesyan. 1958. The criterion of the expansion of the functions to the Dirichlet Series, Izv. Akad. Nauk Armyan. SSR Series Fiz-Mat Nauk 11: 85–108.

    Google Scholar 

  41. Erb, W. 2013. An orthogonal polynomial analogue of the Landau-Pollak-Slepian time-frequency analysis. Journal of Approximation Theory 166: 56–77.

    MathSciNet  MATH  Google Scholar 

  42. Everitt, W.N., K.H. Kwon, L.L. Littlejohn, R. Wellman, and G.J. Yoon. 2007. Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression. Journal of Computational and Applied Mathematics 208: 29–56.

    MathSciNet  MATH  Google Scholar 

  43. Filbir, F., H.N. Mhaskar, and J. Prestin. 2009. On a filter for exponentially localised kernels based on Jacobi polynomials. Journal of Approximation Theory 160: 256–280.

    MATH  Google Scholar 

  44. Fox, L., and I.B. Parker. 1968. Chebyshev Polynomials in Numerical Analysis. London: Oxford University Press.

    MATH  Google Scholar 

  45. Garrappa, R., E. Kaslik, and M. Popolizio. 2019. Evaluation of fractional integrals and derivatives of elementary functions: Overview and tutorial. Mathematics 7 (407): 1–21.

    Google Scholar 

  46. W. Gautschi, Orthogonal polynomials-Constructive theory and applications, Journal of Computational and Applied Mathematics, Vol. 12 & 13, 1985, 61–76.

  47. Gautschi, W. 1996. Orthogonal polynomials: applications and computation. Acta Numerica 5: 45–119.

    MathSciNet  MATH  Google Scholar 

  48. Gautschi, W. 2004. Orthogonal Polynomials: Computation and Approximation. Oxford: Oxford University Press.

    MATH  Google Scholar 

  49. Gottlieb, D., and S.A. Orszag. 1977. Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conference Series in Aplied Mathematics 26. Philadelphia, PA: Society for Industrial and Applied Mathematics.

    Google Scholar 

  50. Gradshtejn, I.S., and I.M. Ryzhik. 2007. Table of Integrals. Series and Products: Academic Press.

  51. Hardy, G.H. 1945. Riemann’s form of Taylor’s series. Journal of the London Mathematical Society 20: 48–57.

    MathSciNet  MATH  Google Scholar 

  52. Helgason, S. 1974. Eigenspaces of the Laplacian; integral representations and irreducibility. Journal of Functional Analysis 17: 328–353.

    MathSciNet  MATH  Google Scholar 

  53. Helgason, S. 1981. Topics in Harmonic Analysis on Homogeneous Spaces. Basel: Birkhäuser.

    MATH  Google Scholar 

  54. Herrmann, R. 2011. An Introduction for Phycists: Fractional Calculus. Singapore: World Scientific.

    Google Scholar 

  55. Ikeda, A. 2000. Spectral zeta functions for compact symmetric spaces of rank one. Kodai Mathematical Journal 23: 345–357.

    MathSciNet  MATH  Google Scholar 

  56. Ivanov, K., P. Petrushev, and Y. Xu. 2010. Sub-exponentially localised kernels and frames induced by orthogonal expansions. Mathematische Zeitschrift 264: 361–397.

    MathSciNet  MATH  Google Scholar 

  57. Karageorghis, A. 1988. A note on the Chebyshev coefficients of the general order derivative of an infinitely differentiable function. Journal of Computational and Applied Mathematics 21: 129–132.

    MathSciNet  MATH  Google Scholar 

  58. Jumarie, G. 1992. A Fokker-Planck equation of fractional order with respect to time. Journal of Mathematical Physics 33: 3536–3542.

    MathSciNet  MATH  Google Scholar 

  59. Jumarie, G. 2001. Fractional Fokker-Planck equation, solutions and applications. Physical Review, E 63: 1–17.

    Google Scholar 

  60. Jumarie, G. 2001. Schrödinger equation for quantum-fractal space-time of order n via the complex-valued fractional Brownian motion. International Journal of Modern Physics A 16: 5061–5084.

    MathSciNet  MATH  Google Scholar 

  61. Jumarie, J. 2006. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Computers and Mathematics with Applications 51: 1367–1376.

    MathSciNet  MATH  Google Scholar 

  62. Jumarie, J. 2009. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. Applied Mathematics Letters 22: 378–385.

    MathSciNet  MATH  Google Scholar 

  63. Kilbas, A.A. 2006. Theory and Applications of Fractional Differential Equations. Oxford: Elsevier.

    MATH  Google Scholar 

  64. Lewanowicz, S. 1986. Recurrence relations for the coefficients in Jacobi series solutions of linear differential equations. SIAM Journal on Mathematical Analysis 17: 1037–1052.

    MathSciNet  MATH  Google Scholar 

  65. Lewanowicz, S. 1991. A new approach to the problem of constructing recurrence relations for the Jacobi coefficients. Applied Mathematics 21: 303–326.

    MathSciNet  MATH  Google Scholar 

  66. Lewanowicz, S. 1992. Quick construction of recurrence relations for the Jacobi coefficients. Journal of Computational and Applied Mathematics 43: 355–372.

    MathSciNet  MATH  Google Scholar 

  67. Luke, Y.L. 1969. The Special Functions and Their Approximations. New York-London: Academic Press, I & II.

    MATH  Google Scholar 

  68. Mainardi, F., and R. Gorenflo. 2007. Time-fractional derivatives in relaxation processes: A tutorial survey. Fractional Calculus and Applied Analysis 10: 269–308.

    MathSciNet  MATH  Google Scholar 

  69. Mhaskar, H.N., and J. Prestin. 2009. Polynomial operators for spectral approximation of piecewise analytic functions. Applied and Computational Harmonic Analysis 26: 121–142.

    MathSciNet  MATH  Google Scholar 

  70. Minakshisundaram, S., and A. Pleijel. 1949. Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds. Canadian Journal of Mathematics 1: 242–256.

    MathSciNet  MATH  Google Scholar 

  71. Nelson, E. 1985. Quantum Fluctuations. Princeton, N J: Princeton University Press.

    MATH  Google Scholar 

  72. de Oliveira1, E.C., and A.T. Machado. 2014. A review of definitions for fractional derivatives and integral. Mathematical Problems in Engineering 2014: 1–6.

    MathSciNet  MATH  Google Scholar 

  73. Ortigueira, M.D. 2011. Fractional Calculus for Scientists and Engineers. Berlin: Springer.

    MATH  Google Scholar 

  74. Parthasarathy, P.R., and R. Sudhesh. 2006. A formula for the coefficients of orthogonal polynomials from the three-term recurrence relations. Applied Mathematics Letters 19: 1083–1089.

    MathSciNet  MATH  Google Scholar 

  75. Phillips, T.N. 1988. On the Legendre coefficients of a general order derivative of an infinitely differentiable function. IMA Journal of Numerical Analysis 8: 455–459.

    MathSciNet  MATH  Google Scholar 

  76. Phillips, T.N., and A. Karageorhis. 1990. On the coefficients of integrated expansions of ultraspherical polynomials. SIAM Journal on Numerical Analysis 27: 823–830.

    MathSciNet  MATH  Google Scholar 

  77. Podlubny, I. 1999. Fractional Differential Equations. San Diego: Academic Press.

    MATH  Google Scholar 

  78. Polterovich, I. 2000. Heat invariants of Riemannian manifolds. Israel Journal of Mathematics 119: 239–252.

    MathSciNet  MATH  Google Scholar 

  79. Polterovich, I. 2001. Combinatorics of the heat trace on spheres. Canadian Journal of Mathematics 54: 1086–1099.

    MathSciNet  MATH  Google Scholar 

  80. B. Riemann, Versuch einer allgemeinen auffasung der integration und differentiation, Gesammelte Math. Werke und Wissenchaftlicher. Leipzig: Teubner, 1876, 331–344.

  81. Srivastava, H.M., and C. Junesang. 2011. Zeta and q-Zeta Functions and Associated Series and Integrals. Oxford: Elsevier.

    MATH  Google Scholar 

  82. Sullivan, T.J. 2015. Introduction to Uncertainty Quantification, Text in Applied Mathematics, vol. 63. Switzerland: Springer.

    Google Scholar 

  83. Szegö, G. 1975. Orthogonal Polynomials. Colloquium Publications XXIII, American Mathematical Society, 4th ed. Providence: American Mathematical Society.

    Google Scholar 

  84. Trujillo, J.J., Rivero, and B. Bonilla. 1999. On a Riemann-Liouville generalised Taylor’s formula. Journal of Mathematical Analysis and Applications 231: 255–265.

    MathSciNet  MATH  Google Scholar 

  85. N.J. Vilenkin, Special Functions and the Theory of Group Representations, Translations of Mathematical Monographs, Vol. 22, AMS, 1968.

  86. Volchkov, V.V., and V.V. Volchkov. 2009. Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group. Berlin: Springer Monographs in Mathematics. Springer.

    MATH  Google Scholar 

  87. Warner, G. 1972. Harmonic Analysis on Semisimple Lie Groups, vol. I and II. Berlin: Springer.

    MATH  Google Scholar 

  88. Watanabe, Y. 1961. On some properties of fractional powers of linear operators. Proceedings of the Japan Academy 37: 273–275.

    MathSciNet  MATH  Google Scholar 

  89. Zang, T., and D.B. Haidvogel. 1979. The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials. Journal of Computational Physics 30: 167–180.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks the editor and the anonymous reviewers for their efforts to help improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Olu Awonusika.

Ethics declarations

Conflicts of interest

The author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Communicated by Samy Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Explicit calculations of the first coefficients \(\mathbb {F}_{j,k}^{m,\mu \ell }(\alpha ,\beta )\)

This section presents in explicit form the first fractional Jacobi coefficients \({\mathbb {F}}_{j,k}^{m,\ell \mu }(\alpha ,\beta )\) appearing in the spectral relation (40). Note that the proof of Theorem  5.1 does not reveal in explicit form the fractional Jacobi coefficients. We consider the special cases \({\mathbb {F}}_{j,k}^{m,\ell \mu }(\alpha ,\beta )\) \((1\le j\le \ell \le m\le 4,m\ge 1;\mu =1/2)\). These coefficients generalise those in [17, 18].

For simplicity of notation, let \({\mathbb {D}}_{k, m}^{\mu \ell }(\eta ):={\mathbf {D}}_{m}^{\mu \ell }{\mathscr {P}}_{k}^{(\alpha ,\beta )}(\eta )\).

  1. (a)

    \(m=1:\) Here we see that

    $$\begin{aligned} {\mathbb {D}}_{k, 1}^{\ell /2}(\eta )\bigg |_{\eta =1} & ={\mathsf {A}}^{1,\ell /2}_{1}{\mathsf {F}}^{1,\ell /2}_{1,k}(\alpha ,\beta ){\mathsf {y}}'(1), \end{aligned}$$
    (A.1)

    where

    $$\begin{aligned}&{\mathsf {F}}^{1,\ell /2}_{1,k}(\alpha ,\beta )=\ _3F_2\left( 1-k,1-\frac{\ell }{2},\alpha +\beta +k+2;3-\frac{\ell }{2},\alpha +2;\frac{1}{2}\right) \nonumber \\&{\mathsf {A}}^{1,\ell /2}_{1}=\frac{1}{\Gamma \left( 3-\frac{\ell }{2}\right) }, \qquad {\mathsf {y}}'(1)=\frac{k(k+\alpha +\beta +1)}{2(\alpha +1)}. \end{aligned}$$
    (A.2)

    Thus

    $$\begin{aligned} {\mathbb {D}}_{k,1}^{\ell /2}(\eta )\bigg |_{\eta =1} & ={\mathbb {F}}^{1,\ell /2}_{1,k}(\alpha ,\beta )k(k+\alpha +\beta +1) =e^{1,\ell /2}_{1,1}(\alpha ,\beta ){\mathsf {F}}^{1,\ell /2}_{1,k}(\alpha ,\beta ) k(k+\alpha +\beta +1), \end{aligned}$$
    (A.3)

    where

    $$\begin{aligned} e^{1,\ell/2}_{1,1}(\alpha,\beta)=\frac{1}{2(\alpha+1)\Gamma \left(3-\frac{\ell}{2}\right)}. \end{aligned}$$
    (A.4)
    • \((\ell =1)\) Here we see that

      $$\begin{aligned} e^{1,1/2}_{1,1}(\alpha ,\beta )=\frac{2}{3 \sqrt{\pi } (\alpha +1)}. \end{aligned}$$
  2. (b)

    \(m=2:\) Here we have

    $$\begin{aligned} {\mathbb {D}}_{k, 2}^{\ell /2}(\eta )\bigg |_{\eta =1} & ={\mathsf {A}}^{2,\ell /2}_{1}{\mathsf {F}}^{2,\ell /2}_{1,k}(\alpha ,\beta ){\mathsf {y}}'(1) +{\mathsf {A}}^{2,\ell /2}_{2}{\mathsf {F}}^{2,\ell /2}_{2,k}(\alpha ,\beta ){\mathsf {y}}''(1), \end{aligned}$$
    (A.5)

    where

    $$\begin{aligned} {\mathsf {F}}^{2,\ell /2}_{1,k}(\alpha ,\beta )&=\ _3F_2\left( 1-k,2-\frac{\ell }{2},\alpha +\beta +k+2;4-\frac{\ell }{2},\alpha +2;\frac{1}{2}\right) \nonumber \\ {\mathsf {F}}^{2,\ell /2}_{2,k}(\alpha ,\beta )&=\ _3F_2\left( 2-k,2-\frac{\ell }{2},\alpha +\beta +k+3;5-\frac{\ell }{2},\alpha +3;\frac{1}{2}\right) \nonumber \\ {\mathsf {A}}^{2,\ell /2}_{1}&=\frac{2 \Gamma \left( 3-\frac{\ell }{2}\right) }{\Gamma \left( 2-\frac{\ell }{2}\right) \Gamma \left( 4-\frac{\ell }{2}\right) }=\frac{4-\ell }{\Gamma \left( 4-\frac{\ell }{2}\right) }, \quad {\mathsf {A}}^{2,\ell /2}_{2}=\frac{2}{\Gamma \left( 5-\frac{\ell }{2}\right) }\nonumber \\ {\mathsf {y}}''(1)&=\frac{[k(k+\alpha +\beta +1)]^{2}}{4(\alpha +1)(\alpha +2)} -\frac{(\alpha +\beta +2)k(k+\alpha +\beta +1)}{4(\alpha +1)(\alpha +2)}. \end{aligned}$$
    (A.6)

    Simplifying further we see that

    $$\begin{aligned} {\mathbb {D}}_{k,2}^{\ell /2}(\eta )\bigg |_{\eta =1} & ={\mathbb {F}}_{1,k}^{2,\ell /2}(\alpha ,\beta )k(k+\alpha +\beta +1) +{\mathbb {F}}_{2,k}^{2,\ell /2}(\alpha ,\beta )[k(k+\alpha +\beta +1)]^{2}, \end{aligned}$$
    (A.7)

    where

    $$\begin{aligned} {\mathbb {F}}^{2,\ell /2}_{1,k}(\alpha ,\beta ) & =e^{2,\ell /2}_{1,1}(\alpha ,\beta ){\mathsf {F}}^{2,\ell /2}_{1,k}(\alpha ,\beta ) +e^{2,\ell /2}_{1,2}(\alpha ,\beta ){\mathsf {F}}^{2,\ell /2}_{2,k}(\alpha ,\beta )\nonumber \\ {\mathbb {F}}^{2,\ell /2}_{2,k}(\alpha ,\beta ) & =e^{2,\ell /2}_{2,2}(\alpha ,\beta ){\mathsf {F}}^{2,\ell /2}_{2,k}(\alpha ,\beta ), \end{aligned}$$
    (A.8)

    with

    $$\begin{aligned} e^{2,\ell /2}_{1,1}(\alpha ,\beta ) & =\frac{ \left( 4-\ell \right) (8-\ell )}{4(\alpha +1)\Gamma \left( 5-\frac{ \ell }{2}\right) },\ \ e^{2,\ell /2}_{1,2}(\alpha ,\beta ) =-\frac{\alpha +\beta +2}{2(\alpha +1)(\alpha +2)\Gamma \left( 5-\frac{\ell }{2}\right) }\nonumber \\ e^{2,\ell /2}_{2,2}(\alpha ,\beta ) & =\frac{1}{2(\alpha +1) (\alpha +2)\Gamma \left( 5-\frac{ \ell }{2}\right) }. \end{aligned}$$
    (A.9)
    • \((\ell =1)\) In this case

      $$\begin{aligned} e^{2,1/2}_{1,1}(\alpha ,\beta ) & =\frac{4}{5 \sqrt{\pi } (\alpha +1)},\ \ e^{2,1/2}_{1,2}(\alpha ,\beta )=-\frac{8 (\alpha +\beta +2)}{105 \sqrt{\pi } (\alpha +1) (\alpha +2)}\nonumber \\ e^{2,1/2}_{2,2}(\alpha ,\beta ) & =\frac{8}{105 \sqrt{\pi } (\alpha +1) (\alpha +2)}. \end{aligned}$$
      (A.10)
    • \((\ell =2)\) We have

      $$\begin{aligned} e^{2,1}_{1,1}(\alpha ,\beta ) & =\frac{1}{2 (\alpha +1)},\ \ e^{2,1}_{1,2}(\alpha ,\beta )=-\frac{\alpha +\beta +2}{12 (\alpha +1) (\alpha +2)}\nonumber \\ e^{2,1}_{2,2}(\alpha ,\beta ) & =\frac{1}{12 (\alpha +1) (\alpha +2)}. \end{aligned}$$
      (A.11)
  3. (c)

    \(m=3:\) It is seen in this case that

    $$\begin{aligned} {\mathbb {D}}_{k,3}^{\ell /2}(\eta )\bigg |_{\eta =1} & ={\mathsf {A}}^{3,\ell /2}_{1}{\mathsf {F}}^{3,\ell /2}_{1,k}(\alpha ,\beta ){\mathsf {y}}'(1) +{\mathsf {A}}^{3,\ell /2}_{2}{\mathsf {F}}^{3,\ell /2}_{2,k}(\alpha ,\beta ){\mathsf {y}}''(1) +{\mathsf {A}}^{3,\ell /2}_{3}{\mathsf {F}}^{3,\ell /2}_{3,k}(\alpha ,\beta ){\mathsf {y}}'''(1), \end{aligned}$$
    (A.12)

    where

    $$\begin{aligned} {\mathsf {A}}^{3,\ell /2}_{1}&=\frac{3 \Gamma \left( 4-\frac{\ell }{2}\right) }{\Gamma \left( 2-\frac{\ell }{2}\right) \Gamma \left( 5-\frac{\ell }{2}\right) }=\frac{3 \left( 6-\ell \right) (4-\ell )}{4\Gamma \left( 5-\frac{\ell }{2}\right) }\nonumber \\ {\mathsf {A}}^{3,\ell /2}_{2}&=\frac{6 \Gamma \left( 4-\frac{\ell }{2}\right) }{\Gamma \left( 3-\frac{\ell }{2}\right) \Gamma \left( 6-\frac{\ell }{2}\right) }=\frac{3 \left( 6-\ell \right) }{\Gamma \left( 6-\frac{\ell }{2}\right) }\nonumber \\ {\mathsf {A}}^{3,\ell /2}_{3}&=\frac{6}{\Gamma \left( 7-\frac{\ell }{2}\right) }\nonumber \\ {\mathsf {F}}^{3,\ell /2}_{1,k}(\alpha ,\beta )&=\ _3F_2\left( 1-k,3-\frac{\ell }{2},\alpha +\beta +k+2;5-\frac{\ell }{2},\alpha +2;\frac{1}{2}\right) \nonumber \\ {\mathsf {F}}^{3,\ell /2}_{2,k}(\alpha ,\beta )&=\ _3F_2\left( 2-k,3-\frac{\ell }{2},\alpha +\beta +k+3;6-\frac{\ell }{2},\alpha +3;\frac{1}{2}\right) \nonumber \\ {\mathsf {F}}^{3,\ell /2}_{3,k}(\alpha ,\beta )&=\ _3F_2\left( 3-k,3-\frac{\ell }{2},\alpha +\beta +k+4;7-\frac{\ell }{2},\alpha +4;\frac{1}{2}\right) \end{aligned}$$
    (A.13)
    $$\begin{aligned} {\mathsf {y}}'''(1)&=\frac{[k(k+\alpha +\beta +1)]^{3}}{8(\alpha +1)(\alpha +2)(\alpha +3)}-\frac{(3\alpha +3\beta +8)[k(k+\alpha +\beta +1)]^{2}}{8(\alpha +1)(\alpha +2)(\alpha +3)}\nonumber \\&\quad +\frac{2(\alpha +\beta +3)(\alpha +\beta +2)k(k+\alpha +\beta +1)}{8(\alpha +1)(\alpha +2)(\alpha +3)}. \end{aligned}$$
    (A.14)

    Further simplification gives

    $$\begin{aligned} \mathbb {D}_{k,3}^{\ell /2}(\eta )\bigg |_{\eta =1}&={\mathbb {F}}_{1,k}^{3,\ell /2}(\alpha ,\beta )k(k+\alpha +\beta +1) +{\mathbb {F}}_{2,k}^{3,\ell /2}(\alpha ,\beta )[k(k+\alpha +\beta +1)]^{2}\nonumber \\&\quad +{\mathbb {F}}_{3,k}^{3,\ell /2}(\alpha ,\beta )[k(k+\alpha +\beta +1)]^{3}, \end{aligned}$$
    (A.15)

    where

    $$\begin{aligned} {\mathbb {F}}_{1,k}^{3,\ell /2}(\alpha ,\beta )&= e^{3,\ell /2}_{1,1}(\alpha ,\beta ){\mathsf {F}}^{3,\ell /2}_{1,k}(\alpha ,\beta )+e^{3,\ell /2}_{1,2}(\alpha ,\beta ){\mathsf {F}}^{3,\ell /2}_{2,k}(\alpha ,\beta )+e^{3,\ell /2}_{1,3}(\alpha ,\beta ){\mathsf {F}}^{3,\ell /2}_{3,k}(\alpha ,\beta )\nonumber \\ {\mathbb {F}}_{2,k}^{3,\ell /2}(\alpha ,\beta )&=e^{3,\ell /2}_{2,2}(\alpha ,\beta ){\mathsf {F}}^{3,\ell /2}_{2,k}(\alpha ,\beta )+e^{3,\ell /2}_{2,3}(\alpha ,\beta ){\mathsf {F}}^{3,\ell /2}_{3,k}(\alpha ,\beta )\nonumber \\ {\mathbb {F}}_{3,k}^{3,\ell /2}(\alpha ,\beta )&=e^{3,\ell /2}_{3,3}(\alpha ,\beta ){\mathsf {F}}^{3,\ell /2}_{3,k}(\alpha ,\beta ), \end{aligned}$$
    (A.16)

    with the coefficients

    $$\begin{aligned} e^{3,\ell /2}_{1,1}(\alpha ,\beta )&= \frac{3 (4-\ell ) (6-\ell ) (10-\ell ) (12-\ell )}{32 (\alpha +1) \Gamma \left( 7-\frac{\ell }{2}\right) }\nonumber \\ e^{3,\ell /2}_{1,2}(\alpha ,\beta )&=-\frac{3 (6-\ell ) (12-\ell ) (\alpha +\beta +2)}{8 (\alpha +1) (\alpha +2) \Gamma \left( 7-\frac{\ell }{2}\right) }\nonumber \\ e^{3,\ell /2}_{1,3}(\alpha ,\beta )&=\frac{3 (\alpha +\beta +2) (\alpha +\beta +3)}{2 (\alpha +1) (\alpha +2) (\alpha +3) \Gamma \left( 7-\frac{\ell }{2}\right) }\nonumber \\ e^{3,\ell /2}_{2,2}(\alpha ,\beta )&=\frac{3 (6-\ell ) (12-\ell )}{8 (\alpha +1) (\alpha +2) \Gamma \left( 7-\frac{\ell }{2}\right) }\nonumber \\ e^{3,\ell /2}_{2,3}(\alpha ,\beta )&=-\frac{3 (3 \alpha +3 \beta +8)}{4 (\alpha +1) (\alpha +2) (\alpha +3) \Gamma \left( 7-\frac{\ell }{2}\right) }\nonumber \\ e^{3,\ell /2}_{3,3}(\alpha ,\beta )&=\frac{3}{4(\alpha +1)(\alpha +2)(\alpha +3)\Gamma \left( 7-\frac{ \ell }{2}\right) }. \end{aligned}$$
    (A.17)
    • \((\ell =1)\) Indeed

      $$\begin{aligned} e^{3,1/2}_{1,1}(\alpha ,\beta )&=\frac{6}{7 \sqrt{\pi } (\alpha +1)},\ e^{3,1/2}_{1,2}(\alpha ,\beta )=-\frac{8 (\alpha +\beta +2)}{63 \sqrt{\pi } (\alpha +1) (\alpha +2)}\nonumber \\ e^{3,1/2}_{1,3}(\alpha ,\beta )&=\frac{32 (\alpha +\beta +2) (\alpha +\beta +3)}{3465 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3)},\ \ e^{3,1/2}_{2,2}(\alpha ,\beta )=\frac{8}{63 \sqrt{\pi } (\alpha +1) (\alpha +2)}\nonumber \\ e^{3,1/2}_{2,3}(\alpha ,\beta )&=-\frac{16 (3 \alpha +3 \beta +8)}{3465 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3)}\nonumber \\ e^{3,1/2}_{3,3}(\alpha ,\beta )&=\frac{16}{3465 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3)}. \end{aligned}$$
      (A.18)
    • \((\ell =2)\) It is clear in this case that

      $$\begin{aligned} e^{3,1}_{1,1}(\alpha ,\beta )&= \frac{1}{2 (\alpha +1)},\ \ e^{3,1}_{1,2}(\alpha ,\beta )=-\frac{\alpha +\beta +2}{8 (\alpha +1) (\alpha +2)}\nonumber \\ e^{3,1}_{1,3}(\alpha ,\beta )&=\frac{(\alpha +\beta +2) (\alpha +\beta +3)}{80 (\alpha +1) (\alpha +2) (\alpha +3)},\ \ e^{3,1}_{2,2}(\alpha ,\beta )=\frac{1}{8 (\alpha +1) (\alpha +2)}\nonumber \\ e^{3,1}_{2,3}(\alpha ,\beta )&=-\frac{3 \alpha +3 \beta +8}{160 (\alpha +1) (\alpha +2) (\alpha +3)},\ \ e^{3,1}_{3,3}(\alpha ,\beta )=\frac{1}{160 (\alpha +1) (\alpha +2) (\alpha +3)}. \end{aligned}$$
      (A.19)
    • \((\ell =3)\) Here we have

      $$\begin{aligned} e^{3,3/2}_{1,1}(\alpha ,\beta )&=\frac{3}{5 \sqrt{\pi } (\alpha +1)},\ \ e^{3,3/2}_{1,2}(\alpha ,\beta )=-\frac{12 (\alpha +\beta +2)}{35 \sqrt{\pi } (\alpha +1) (\alpha +2)}\nonumber \\ e^{3,3/2}_{1,3}(\alpha ,\beta )&=\frac{16 (\alpha +\beta +2) (\alpha +\beta +3)}{315 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3)},\ \ e^{3,3/2}_{2,2}(\alpha ,\beta )=\frac{12}{35 \sqrt{\pi } (\alpha +1) (\alpha +2)}\nonumber \\ e^{3,3/2}_{2,3}(\alpha ,\beta )&=-\frac{8 (3 \alpha +3 \beta +8)}{315 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3)}\nonumber \\ e^{3,3/2}_{3,3}(\alpha ,\beta )&=\frac{8}{315 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3)}. \end{aligned}$$
      (A.20)
  4. (d)

    \(m=4:\) Indeed

    $$\begin{aligned} {\mathbb {D}}_{k,4}^{\ell /2}(\eta )\bigg |_{\eta =1}&={\mathsf {A}}^{4,\ell /2}_{1}{\mathsf {F}}^{4,\ell /2}_{1,k}(\alpha ,\beta ){\mathsf {y}}'(1)+{\mathsf {A}}^{4,\ell /2}_{2}{\mathsf {F}}^{4,\ell /2}_{2,k}(\alpha ,\beta ){\mathsf {y}}''(1)\nonumber \\&\quad +{\mathsf {A}}^{4,\ell /2}_{3}{\mathsf {F}}^{4,\ell /2}_{3,k}(\alpha ,\beta ){\mathsf {y}}'''(1)+{\mathsf {A}}^{4,\ell /2}_{4}{\mathsf {F}}^{4,\ell /2}_{4,k}(\alpha ,\beta ){\mathsf {y}}^{(4)}(1), \end{aligned}$$
    (A.21)

    where

    $$\begin{aligned} {\mathsf {A}}^{4,\ell /2}_{1}= & {} \frac{4 \Gamma \left( 5-\frac{\ell }{2}\right) }{\Gamma \left( 2-\frac{\ell }{2}\right) \Gamma \left( 6-\frac{\ell }{2}\right) }=\frac{(8-\ell ) (6-\ell ) (4-\ell )}{2 \Gamma \left( 6-\frac{\ell }{2}\right) }\nonumber \\ {\mathsf {A}}^{4,\ell /2}_{2}= & {} \frac{12 \Gamma \left( 5-\frac{\ell }{2}\right) }{\Gamma \left( 3-\frac{\ell }{2}\right) \Gamma \left( 7-\frac{\ell }{2}\right) }=\frac{3 (8-\ell ) (6-\ell )}{\Gamma \left( 7-\frac{\ell }{2}\right) }\nonumber \\ {\mathsf {A}}^{4,\ell /2}_{3}= & {} \frac{24 \Gamma \left( 5-\frac{\ell }{2}\right) }{\Gamma \left( 4-\frac{\ell }{2}\right) \Gamma \left( 8-\frac{\ell }{2}\right) }=\frac{12 (8-\ell )}{\Gamma \left( 8-\frac{\ell }{2}\right) },\ \ {\mathsf {A}}^{4,\ell /2}_{4}=\frac{24}{\Gamma \left( 9-\frac{\ell }{2}\right) }\nonumber \\ {\mathsf {F}}^{4,\ell /2}_{1,k}(\alpha ,\beta )= & {} \ _3F_2\left( 1-k,4-\frac{\ell }{2},\alpha +\beta +k+2;6-\frac{\ell }{2},\alpha +2;\frac{1}{2}\right) \nonumber \\ {\mathsf {F}}^{4,\ell /2}_{2,k}(\alpha ,\beta )= & {} \ _3F_2\left( 2-k,4-\frac{\ell }{2},\alpha +\beta +k+3;7-\frac{\ell }{2},\alpha +3;\frac{1}{2}\right) \nonumber \\ {\mathsf {F}}^{4,\ell /2}_{3,k}(\alpha ,\beta )= & {} \ _3F_2\left( 3-k,4-\frac{\ell }{2},\alpha +\beta +k+4;8-\frac{\ell }{2},\alpha +4;\frac{1}{2}\right) \nonumber \\ {\mathsf {F}}^{4,\ell /2}_{4,k}(\alpha ,\beta )= & {} \ _3F_2\left( 4-k,4-\frac{\ell }{2},\alpha +\beta +k+5;9-\frac{\ell }{2},\alpha +5;\frac{1}{2}\right) \end{aligned}$$
    (A.22)

    and

    $$\begin{aligned} {\mathsf {y}}^{(4)}(1)= & {} \frac{[k(k+\alpha +\beta +1)]^{4} - 2(3\alpha +3\beta +10) [k(k+\alpha +\beta +1)]^{3}}{16(\alpha +1)(\alpha +2)(\alpha +3)(\alpha +4)}\nonumber \\&\quad +\frac{\left( 11\alpha ^{2}+11\beta ^{2}+22\alpha \beta +70\alpha +70\beta +108\right) [k(k+\alpha +\beta +1)]^{2}}{16(\alpha +1)(\alpha +2)(\alpha +3)(\alpha +4)}\nonumber \\&\quad -\frac{3(\alpha +\beta +2)(\alpha +\beta +3)(\alpha +\beta +4)k(k+\alpha +\beta +1)}{8(\alpha +1)(\alpha +2)(\alpha +3)(\alpha +4)}. \end{aligned}$$
    (A.23)

    Simplifying further we see that

    $$\begin{aligned} {\mathbb {D}}_{k,4}^{\ell /2}(\eta )\bigg |_{\eta =1} & ={\mathbb {F}}_{1,k}^{4,\ell /2}(\alpha ,\beta )k(k+\alpha +\beta +1)+{\mathbb {F}}_{2,k}^{4,\ell /2}(\alpha ,\beta )[k(k+\alpha +\beta +1)]^{2}\nonumber \\&+{\mathbb {F}}_{3,k}^{4,\ell /2}(\alpha ,\beta )[k(k+\alpha +\beta +1)]^{3}+{\mathbb {F}}_{4,k}^{4,\ell /2}(\alpha ,\beta )[k(k+\alpha +\beta +1)]^{4}, \end{aligned}$$
    (A.24)

    where

    $$\begin{aligned} {\mathbb {F}}_{1,k}^{4,\ell /2}(\alpha ,\beta )&=e^{4,\ell /2}_{1,1}(\alpha ,\beta ){\mathsf {F}}^{4,\ell /2}_{1,k}(\alpha ,\beta )+e^{4,\ell /2}_{1,2}(\alpha ,\beta ){\mathsf {F}}^{4,\ell /2}_{2,k}(\alpha ,\beta )\nonumber \\&\quad +e^{4,\ell /2}_{1,3}(\alpha ,\beta ){\mathsf {F}}^{4,\ell /2}_{3,k}(\alpha ,\beta )+e^{4,\ell /2}_{1,4}(\alpha ,\beta ){\mathsf {F}}^{4,\ell /2}_{4,k}(\alpha ,\beta )\nonumber \\ {\mathbb {F}}_{2}^{4,\ell /2}(\alpha ,\beta )&=e^{4,\ell /2}_{2,2}(\alpha ,\beta ){\mathsf {F}}^{4,\ell /2}_{2,k}(\alpha ,\beta )+e^{4,\ell /2}_{2,3}(\alpha ,\beta ){\mathsf {F}}^{4,\ell /2}_{3,k}(\alpha ,\beta )+e^{4,\ell /2}_{2,4}(\alpha ,\beta ){\mathsf {F}}^{4,\ell /2}_{4,k}(\alpha ,\beta )\nonumber \\ {\mathbb {F}}_{3,k}^{4,\ell /2}(\alpha ,\beta )&=e^{4,\ell /2}_{3,3}(\alpha ,\beta ){\mathsf {F}}^{4,\ell /2}_{3,k}(\alpha ,\beta )+e^{4,\ell /2}_{3,4}(\alpha ,\beta ){\mathsf {F}}^{4,\ell /2}_{4,k}(\alpha ,\beta )\nonumber \\ {\mathbb {F}}_{4,k}^{4,\ell /2}(\alpha ,\beta )&=e^{4,\ell /2}_{4,4}(\alpha ,\beta ){\mathsf {F}}^{4,\ell /2}_{4,k}(\alpha ,\beta ) \end{aligned}$$
    (A.25)

    with the fractional coefficients

    $$\begin{aligned} e^{4,\ell /2}_{1,1}(\alpha ,\beta )&=\frac{(4-\ell ) (6-\ell ) (8-\ell ) (12-\ell ) (14-\ell ) (16-\ell ) }{32 (\alpha +1) \Gamma \left( 9-\frac{\ell }{2}\right) }\nonumber \\ e^{4,\ell /2}_{1,2}(\alpha ,\beta )&=-\frac{3 (6-\ell ) (8-\ell ) (14-\ell ) (16-\ell )(\alpha +\beta +2)}{16 (\alpha +1) (\alpha +2) \Gamma \left( 9-\frac{\ell }{2}\right) }\nonumber \\ e^{4,\ell /2}_{1,3}(\alpha ,\beta )&=\frac{3 (8-\ell ) (16-\ell ) (\alpha +\beta +2) (\alpha +\beta +3)}{2 (\alpha +1) (\alpha +2) (\alpha +3) \Gamma \left( 9-\frac{\ell }{2}\right) }\nonumber \\ e^{4,\ell /2}_{1,4}(\alpha ,\beta )&=-\frac{9 (\alpha +\beta +2) (\alpha +\beta +3) (\alpha +\beta +4)}{(\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4) \Gamma \left( 9-\frac{\ell }{2}\right) }\nonumber \\ e^{4,\ell /2}_{2,2}(\alpha ,\beta )&=\frac{3 (6-\ell ) (8-\ell ) (14-\ell ) (16-\ell ) }{16 (\alpha +1) (\alpha +2) \Gamma \left( 9-\frac{\ell }{2}\right) }\nonumber \\ e^{4,\ell /2}_{2,3}(\alpha ,\beta )&=-\frac{3 (8-\ell ) (16-\ell ) (3 \alpha +3 \beta +8)}{4 (\alpha +1) (\alpha +2) (\alpha +3) \Gamma \left( 9-\frac{\ell }{2}\right) }\nonumber \\ e^{4,\ell /2}_{2,4}(\alpha ,\beta )&=\frac{3 \left( 11 \left( \alpha ^2+\beta ^2\right) +70 (\alpha +\beta )+22 \alpha \beta +108\right) }{2 (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4) \Gamma \left( 9-\frac{\ell }{2}\right) }\nonumber \\ e^{4,\ell /2}_{3,3}(\alpha ,\beta )&=\frac{3 (8-\ell ) (16-\ell ) }{4 (\alpha +1) (\alpha +2) (\alpha +3) \Gamma \left( 9-\frac{\ell }{2}\right) } \end{aligned}$$
    (A.26)
    $$\begin{aligned} e^{4,\ell /2}_{3,4}(\alpha ,\beta )&=-\frac{3 (3 \alpha +3 \beta +10)}{(\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4) \Gamma \left( 9-\frac{\ell }{2}\right) }\nonumber \\ e^{4,\ell /2}_{4,4}(\alpha ,\beta )&=\frac{3 }{2 (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4) \Gamma \left( 9-\frac{\ell }{2}\right) }. \end{aligned}$$
    (A.27)
    • \((\ell =1)\) Clearly we have

      $$\begin{aligned} e^{4,1/2}_{1,1}(\alpha ,\beta )&=\frac{8}{9 \sqrt{\pi } (\alpha +1)},\ \ e^{4,1/2}_{1,2}(\alpha ,\beta )=-\frac{16 (\alpha +\beta +2)}{99 \sqrt{\pi } (\alpha +1) (\alpha +2)}\nonumber \\ e^{4,1/2}_{1,3}(\alpha ,\beta )&=\frac{128 (\alpha +\beta +2) (\alpha +\beta +3)}{6435 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3)}\nonumber \\ e^{4,1/2}_{1,4}(\alpha ,\beta )&=-\frac{256 (\alpha +\beta +2) (\alpha +\beta +3) (\alpha +\beta +4)}{225225 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4)} \end{aligned}$$
      (A.28)
      $$\begin{aligned} e^{4,1/2}_{2,2}(\alpha ,\beta )&=\frac{16}{99 \sqrt{\pi } (\alpha +1) (\alpha +2)},\ \ e^{4,1/2}_{2,3}(\alpha ,\beta )=-\frac{64 (3 \alpha +3 \beta +8)}{6435 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3)}\nonumber \\ e^{4,1/2}_{2,4}(\alpha ,\beta )&=\frac{128 \left( 11 \left( \alpha ^2+\beta ^2\right) +70 (\alpha +\beta )+22 \alpha \beta +108\right) }{675675 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4)}\nonumber \\ e^{4,1/2}_{3,3}(\alpha ,\beta )&=\frac{64}{6435 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3)}\nonumber \\ e^{4,1/2}_{3,4}(\alpha ,\beta )&=-\frac{256 (3 \alpha +3 \beta +10)}{675675 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4)}\nonumber \\ e^{4,1/2}_{4,4}(\alpha ,\beta )&=\frac{128}{675675 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4)}. \end{aligned}$$
      (A.29)
    • \((\ell =2)\) Here we see that

      $$\begin{aligned} e^{4,1}_{1,1}(\alpha ,\beta )&=\frac{1}{2 (\alpha +1)},\ \ e^{4,1}_{1,2}(\alpha ,\beta )=-\frac{3 (\alpha +\beta +2)}{20 (\alpha +1) (\alpha +2)}\nonumber \\ e^{4,1}_{1,3}(\alpha ,\beta )&=\frac{(\alpha +\beta +2) (\alpha +\beta +3)}{40 (\alpha +1) (\alpha +2) (\alpha +3)}\nonumber \\ e^{4,1}_{1,4}(\alpha ,\beta )&=-\frac{(\alpha +\beta +2) (\alpha +\beta +3) (\alpha +\beta +4)}{560 (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4)} \end{aligned}$$
      (A.30)
      $$\begin{aligned} e^{4,1}_{2,2}(\alpha ,\beta )&=\frac{3}{20 (\alpha +1) (\alpha +2)},\ e^{4,1}_{2,3}(\alpha ,\beta )=-\frac{3 \alpha +3 \beta +8}{80 (\alpha +1) (\alpha +2) (\alpha +3)}\nonumber \\ e^{4,1}_{2,4}(\alpha ,\beta )&=\frac{11 \left( \alpha ^2+\beta ^2\right) +70 (\alpha +\beta )+22 \alpha \beta +108}{3360 (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4)}\nonumber \\ e^{4,1}_{3,3}(\alpha ,\beta )&=\frac{1}{80 (\alpha +1) (\alpha +2) (\alpha +3)}\nonumber \\ e^{4,1}_{3,4}(\alpha ,\beta )&=-\frac{3 \alpha +3 \beta +10}{1680 (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4)}\nonumber \\ e^{4,1}_{4,4}(\alpha ,\beta )&=\frac{1}{3360 (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4)}. \end{aligned}$$
      (A.31)
    • \((\ell =3)\) In this case we have

      $$\begin{aligned} e^{4,3/2}_{1,1}(\alpha ,\beta )&=\frac{4}{7 \sqrt{\pi } (\alpha +1)},\ e^{4,3/2}_{1,2}(\alpha ,\beta )=-\frac{8 (\alpha +\beta +2)}{21 \sqrt{\pi } (\alpha +1) (\alpha +2)}\nonumber \\ e^{4,3/2}_{1,3}(\alpha ,\beta )&=\frac{64 (\alpha +\beta +2) (\alpha +\beta +3)}{693 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3)}\nonumber \\ e^{4,3/2}_{1,4}(\alpha ,\beta )&=-\frac{128 (\alpha +\beta +2) (\alpha +\beta +3) (\alpha +\beta +4)}{15015 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4)} \end{aligned}$$
      (A.32)
      $$\begin{aligned} e^{4,3/2}_{2,2}(\alpha ,\beta )&=\frac{8}{21 \sqrt{\pi } (\alpha +1) (\alpha +2)},\ \ e^{4,3/2}_{2,3}(\alpha ,\beta )=-\frac{32 (3 \alpha +3 \beta +8)}{693 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3)}\nonumber \\ e^{4,3/2}_{2,4}(\alpha ,\beta )&=\frac{64 \left( 11 \left( \alpha ^2+\beta ^2\right) +70 (\alpha +\beta )+22 \alpha \beta +108\right) }{45045 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4)}\nonumber \\ e^{4,3/2}_{3,3}(\alpha ,\beta )&=\frac{32}{693 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3)}\nonumber \\ e^{4,3/2}_{3,4}(\alpha ,\beta )&=-\frac{128 (3 \alpha +3 \beta +10)}{45045 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4)}\nonumber \\ e^{4,3/2}_{4,4}(\alpha ,\beta )&=\frac{64}{45045 \sqrt{\pi } (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4)}. \end{aligned}$$
      (A.33)
    • \((\ell =4)\) Here we see that

      $$\begin{aligned} e^{4,2}_{1,1}(\alpha ,\beta )&=0,\ \ e^{4,2}_{1,2}(\alpha ,\beta )=-\frac{\alpha +\beta +2}{4 (\alpha +1) (\alpha +2)}\nonumber \\ e^{4,2}_{1,3}(\alpha ,\beta )&=\frac{(\alpha +\beta +2) (\alpha +\beta +3)}{10 (\alpha +1) (\alpha +2) (\alpha +3)}\nonumber \\ e^{4,2}_{1,4}(\alpha ,\beta )&=-\frac{(\alpha +\beta +2) (\alpha +\beta +3) (\alpha +\beta +4)}{80 (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4)} \end{aligned}$$
      (A.34)
      $$\begin{aligned} e^{4,2}_{2,2}(\alpha ,\beta )&=\frac{1}{4 (\alpha +1) (\alpha +2)},\ \ e^{4,2}_{2,3}(\alpha ,\beta )=-\frac{3 \alpha +3 \beta +8}{20 (\alpha +1) (\alpha +2) (\alpha +3)}\nonumber \\ e^{4,2}_{2,4}(\alpha ,\beta )&=\frac{11 \left( \alpha ^2+\beta ^2\right) +70 (\alpha +\beta )+22 \alpha \beta +108}{480 (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4)}\nonumber \\ e^{4,2}_{3,3}(\alpha ,\beta )&=\frac{1}{20 (\alpha +1) (\alpha +2) (\alpha +3)}\nonumber \\ e^{4,2}_{3,4}(\alpha ,\beta )&=-\frac{3 \alpha +3 \beta +10}{240 (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4)}\nonumber \\ e^{4,2}_{4,4}(\alpha ,\beta )&=\frac{1}{480 (\alpha +1) (\alpha +2) (\alpha +3) (\alpha +4)}. \end{aligned}$$
      (A.35)

The fractional coefficients for other cases \(0<\mu <1, 1\le j\le \ell \le m\) can be computed similarly.

Appendix B: The multiplicity \(M_{k}({\mathscr {X}})\) and associated coefficients

This section presents polynomial representations of the multiplicity \(M_{k}({\mathscr {X}})\) and their corresponding coefficients.

The Sphere \({\mathbb {S}}^{n}\) The polynomial transformation of the multiplicity \(M_{k}({\mathbb {S}}^{n})\) according to whether n is odd or even is obtained as follows.

  1. (a)

    Odd \(n\ge 3\). We haveFootnote 3

    $$\begin{aligned} M_{k}({\mathbb {S}}^{n})&=\frac{(k+n-2)!}{(n-1)!k!}(n+2k-1)=\frac{2k+n-1}{(n-1)!}\prod _{j=1}^{n-2} (k+j)\nonumber \\&= \frac{2}{(n-1)!} \prod \limits _{j=0}^{\frac{n-3}{2}} \left[ \left( k+\frac{n-1}{2} \right) ^{2}-j^{2} \right] \nonumber \\&= \frac{2}{(n-1)!} \sum \limits _{m=0}^{\frac{n-3}{2}}{} \texttt {E}_{m,n}\left( k+\frac{n-1}{2} \right) ^{2m+2} \end{aligned}$$
    (B.1)

    with the first coefficients \(\left( \texttt {E}_{m,n}:0\le m\le (n-3)/2\right)\) given in Table 2.

    Table 2 The coefficients \(\left( \texttt {E}_{m,n}:0\le m\le (n-3)/2\right)\)
  2. (b)

    Even \(n\ge 2\). Indeed we haveFootnote 4

    $$\begin{aligned} M_{k}({\mathbb {S}}^{n})&=\frac{(k+n-2)!}{(n-1)!k!}(n+2k-1)=\frac{2k+n-1}{n-1}\prod _{j=1}^{n-2}\frac{k+j}{j} \nonumber \\&=\frac{2\left( k+\frac{n-1}{2}\right) }{(n-1)!}\prod \limits _{j=1/2}^{\frac{n-3}{2}}\left[ \left( k+\frac{n-1}{2} \right) ^{2}-j^{2} \right] \nonumber \\&=\frac{2}{(n-1)!}\sum \limits _{m=0}^{\frac{n-2}{2}}{} \texttt {F}_{m,n}\left( k+\frac{n-1}{2} \right) ^{2m+1}. \end{aligned}$$
    (B.2)

    Here again the first coefficients \((\texttt {F}_{m,n}:0\le m\le (n-2)/2)\) are given in Table 3.

    Table 3 The coefficients \((\texttt {F}_{m,n}:0\le m\le (n-2)/2)\)

The Complex Projective Space \({\mathbf {P}}^{n}({\mathbb {C}})\). The following polynomial representations of the multiplicity \(M_{k}\left( {\mathbf {P}}^{n}({\mathbb {C}})\right)\) hold.

  1. (a)

    Odd \(n\ge 1\). Note that \({\mathbf {P}}^1({\mathbb {C}})\) is the sphere \({\mathbb {S}}^{2}\). We see that

    $$\begin{aligned} M_{k}\left( {\mathbf {P}}^{n}({\mathbb {C}})\right)&=\frac{2k+n}{n}\left[ \frac{\Gamma (k+n)}{k!\Gamma (n)}\right] ^{2}=\frac{2k+n}{n}\prod \limits _{j=1}^{n-1}\left( \frac{k+j}{j}\right) ^{2}\nonumber \\&=\frac{2\left( k+\frac{n}{2}\right) }{n!(n-1)!}\prod \limits _{j=1/2}^{\frac{n-2}{2}}\left[ \left( k+\frac{n}{2} \right) ^{2}-j^{2} \right] ^{2}\nonumber \\&=\frac{2}{n!(n-1)!}\sum \limits _{m=0}^{n-1}{} \texttt {G}_{m,n}\left( k+\frac{n}{2} \right) ^{2m+1}, \end{aligned}$$
    (B.3)

    where the first coefficients \(\left( \texttt {G}_{m,n}:0\le m\le n-1\right)\) are illustrated in Table 4.

    Table 4 The coefficients \(\left( \texttt {G}_{m,n}:0\le m\le n-1\right)\)
  2. (b)

    Even \(n\ge 2\). It is seen here that

    $$\begin{aligned} M_{k}\left( {\mathbf {P}}^{n}({\mathbb {C}})\right)&=\frac{2k+n}{n}\left[ \frac{\Gamma (k+n)}{k!\Gamma (n)}\right] ^{2}=\frac{2k+n}{n}\prod \limits _{j=1}^{n-1}\left( \frac{k+j}{j}\right) ^{2}\nonumber \\&=\frac{2\left( k+\frac{n}{2}\right) ^{3}}{n!(n-1)!}\prod \limits _{j=1}^{\frac{n-2}{2}}\left[ \left( k+\frac{n}{2} \right) ^{2}-j^{2} \right] ^{2}\ \ (\text{ product } \text{ omitted } \text{ for } n=2)\nonumber \\&=\frac{2}{n!(n-1)!}\sum \limits _{m=0}^{n-2}{} \texttt {H}_{m,n}\left( k+\frac{n}{2} \right) ^{2m+3}, \end{aligned}$$
    (B.4)

    where the first coefficients \(\left( \texttt {H}_{m,n}:0\le m\le n-2\right)\) are illustrated in Table 5.

    Table 5 The coefficients \(\left( \texttt {H}_{m,n}: 0\le m\le n-2\right)\)

The Quaternionic Projective Space \({\mathbf {P}}^{n}({\mathbb {H}})\). It is clear that

$$\begin{aligned} M_{k}\left( {\mathbf {P}}^{n}({\mathbb {H}})\right)&= \frac{(2k+2n+1)\Gamma (k+2n)\Gamma (k+2n+1)}{\Gamma (2n+2)\Gamma (2n)\Gamma (k+1)\Gamma (k+2)}\nonumber \\&=\frac{(k+2n)(2k+2n+1)}{2n(2n+1)(k+1)}\prod \limits _{j=1}^{2n-1}\left( \frac{k+j}{j}\right) ^{2}\nonumber \\&=\frac{2\left( k+\frac{2n+1}{2}\right) \left[ \left( k+\frac{2n+1}{2}\right) ^{2}-\left( \frac{2n-1}{2}\right) ^{2} \right] }{(2n+1)!(2n-1)!}\prod \limits _{j=1/2}^{\frac{2n-3}{2}}\left[ \left( k+\frac{2n+1}{2} \right) ^{2}-j^{2} \right] ^{2}\nonumber \\&=\frac{2}{(2n+1)!(2n-1)!}\sum \limits _{m=0}^{2n-1}{} \texttt {I}_{m,n}\left( k+\frac{2n+1}{2} \right) ^{2m+1}. \end{aligned}$$
(B.5)

The first coefficients \(\left( \texttt {I}_{m,n}:0\le m\le 2n-1\right)\) are illustrated in Table 6.

Table 6 The coefficients \(\left( \texttt {I}_{m,n}:0\le m\le 2n-1\right)\)

The Cayley Projective Plane \({\mathbf {P}}^{2}(\mathrm {Cay})\). It is seen in this case that

$$\begin{aligned} M_{k}\left( {\mathbf {P}}^{2}(\mathrm {Cay})\right)&= 6(2k+11)\frac{\Gamma (k+8)\Gamma (k+11)}{7!11!k!\Gamma (k+4)}\nonumber \\&=\frac{(2k+11)}{11}\prod _{j=1}^{3}\frac{k+j}{j}\prod \limits _{l=4}^{7}\left( \frac{k+l}{l}\right) ^{2}\prod _{p=8}^{10}\frac{k+p}{p}\nonumber \\&=\frac{ 2k+11}{840\cdot 11!}\prod \limits _{j=1/2}^{3/2}\left[ \left( k+\frac{11}{2}\right) ^{2}-j^{2} \right] ^{2} \prod \limits _{j=5/2}^{9/2}\left[ \left( k+\frac{11}{2}\right) ^{2}-j^{2} \right] \nonumber \\&=\frac{ 1}{420\cdot 11!}\sum \limits _{m=0}^{7}{} \texttt {J}_{m,2}\left( k+\frac{11}{2} \right) ^{2m+1}. \end{aligned}$$
(B.6)

The coefficients \(\left( \texttt {J}_{m,2}:0\le m\le 7\right)\) are illustrated in Table 7.

Table 7 The coefficients \(\left( \texttt {J}_{m,2}:0\le m\le 7\right)\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awonusika, R.O. On Jacobi polynomials and fractional spectral functions on compact symmetric spaces. J Anal 29, 987–1024 (2021). https://doi.org/10.1007/s41478-020-00292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-020-00292-4

Keywords

Mathematics Subject Classification

Navigation