Skip to main content
Log in

On Jacobi polynomials \({\mathscr {P}}_{k}^{(\alpha ,\beta )}\) and coefficients \(c_{j}^{\ell }(\alpha ,\beta )\) \(\left( k\ge 0, \ell =5,6; 1\le j\le \ell ; \alpha ,\beta > -1\right)\)

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In their paper, Awonusika and Taheri proved a spectral identity that relates the even (\(2\ell\))th, \(\ell \ge 1\), derivatives of Jacobi polynomials \(P_{k}^{(\alpha ,\beta )}(\cos \theta )\), \(k\ge 0; \alpha ,\beta >-1\) (evaluated at \(\theta =0\)), to the \(\ell\)th-degree polynomials \({\mathscr {R}}_{\ell }^{(\alpha ,\beta )}\left( \lambda _{k}\right) :=R_{\ell}( \lambda _{k}^{\alpha ,\beta })\) with constant coefficients \(c^{\ell }_{j}(\alpha ,\beta )\) (\(1\le j\le \ell\); \(\alpha ,\beta >-1\)), called Jacobi coefficients; the numbers \(\lambda _{k}^{\alpha ,\beta }=k(k+\alpha +\beta +1)\) (\(k\ge 0\)) are the eigenvalues of the associated Jacobi operator. These Jacobi coefficients appear in the Maclaurin spectral expansion of the Schwartz kernels of functions of the Laplacian on rank one compact symmetric spaces. The first Jacobi coefficients \(c^{\ell }_{j}(\alpha ,\beta )\) (\(1\le j\le \ell \le 4\)) were computed using the qth, \(1\le q\le \ell ,\) derivative formula for Jacobi polynomials \(P_{k}^{(\alpha ,\beta )}(t)\) (evaluated at \(t=1\)) and the basic properties of the Gamma function. In this paper, we use the Jacobi differential equation to generate a recursion formula that explicitly computes the polynomials \({\mathscr {R}}_{\ell }^{(\alpha ,\beta )}\left( \lambda _{k} \right)\) and the coefficients \(c^{\ell }_{j}(\alpha ,\beta )\). To illustrate the recursion formula we compute the higher coefficients \(c^{\ell }_{j}(\alpha ,\beta )\) for \(\ell =5,6;1\le j\le \ell\). Remarkably, the local Jacobi coefficients \({\mathsf {c}}^{q}_{j}(\alpha ,\beta )\) \((1\le j\le q\le \ell )\) (which appear in the computation of \(c^{\ell }_{j}(\alpha ,\beta )\)) coincide with the Jacobi–Stirling numbers of the first kind \({{\mathsf {j}}}{{\mathsf {s}}}_{j}^{q}(\alpha ,\beta )\), and this is a new phenomenon in the Maclaurin spectral analysis of the Laplacian on rank one compact symmetric spaces. The Jacobi coefficients \(c^{\ell }_{j}(\alpha ,\beta )\) are useful in the description of constants appearing in the power series expansion of any spectral functions involving Jacobi polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For more information and further reading on this scale of orthogonal polynomials, the interested reader is referred to [31, 35, 36] and [50].

References

  1. Andrews, G.E., E.S. Egge, W. Gawronskic, and L.L. Littlejohn. 2013. The Jacobi-Stirling numbers. Journal of Combinatorial Theory, Series A 120: 288–303.

    MathSciNet  MATH  Google Scholar 

  2. Andrews, G.E., W. Gawronskic, and L.L. Littlejohn. 2011. The Legendre– Stirling numbers. Discrete Mathematics 311: 1255–1272.

    MathSciNet  MATH  Google Scholar 

  3. Andrews, G.E., and L.L. Littlejohn. 2009. A combinatorial interpretation of the Legendre–Stirling numbers. Proc. Amer. Math. Soc. 137: 2581–2590.

    MathSciNet  MATH  Google Scholar 

  4. Askey, R. 1975. Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics.

  5. Awonusika, R.O. 2019. On spectral identities involving Gegenbauer polynomials. J. Anal. 27: 1123–1137.

    MathSciNet  MATH  Google Scholar 

  6. Awonusika, R.O., and A. Taheri. 2017. On Jacobi polynomials \(({\fancyscript {P}}_k^{(\alpha, \beta )}: \alpha, \beta >-1)\) and Maclaurin spectral functions on rank one symmetric spaces. J. Anal. 25: 139–166.

    MathSciNet  MATH  Google Scholar 

  7. Awonusika, R.O., and A. Taheri. 2017. On Gegenbauer polynomials and coefficients \(c^{\ell }_{j}(\nu )\) (\(1\le j\le \ell\), \(\nu >-1/2\)). Results Math. 72: 1359–1367.

    MathSciNet  MATH  Google Scholar 

  8. Awonusika, R.O., and A. Taheri. 2018. A spectral identity on Jacobi polynomials and its analytic implications. Canad. Math. Bull. 61: 473–482.

    MathSciNet  MATH  Google Scholar 

  9. Beckermann, B., M. Putinar, E.B. Saff, and N. Stylianopoulos. 2020. Perturbations of Christoffel-Darboux kernels: detection of outliers. Foundations Comput. Math. https://doi.org/10.1007/s10208-020-09458-9.

  10. Brown, G., and F. Dai. 2005. Approximation of smooth functions on compact two-point homogeneous spaces. J. Funct. Anal. 220: 401–423.

    MathSciNet  MATH  Google Scholar 

  11. Breuer, J. 2019. Scaling limits of Jacobi matrices and the Christoffel–Darboux kernel. Constr. Approx. https://doi.org/10.1007/s00365-019-09492-z.

  12. Camporesi, R. 1990. Harmonic analysis and propagators on homogeneous spaces. Physics Reports 196: 1–134.

    MathSciNet  Google Scholar 

  13. Canuto, C., M.Y. Hussaini, A. Quarteroni, and T.A. Zang. 1988. Spectral Methods in Fluid Dynamics. Berlin: Springer.

    MATH  Google Scholar 

  14. Daems, E., and A.B.J. Kuijlaars. 2004. A Christoffel–Darboux formula for multiple orthogonal polynomials. J. Approx. Theory 130: 188–200.

    MathSciNet  MATH  Google Scholar 

  15. De Micheli, E., and G.A. Viano. 2013. The expansion in Gegenbauer polynomials: a simple method for the fast computation of the Gegenbauer coefficients. Journal of Computational Physics 239: 112–122.

    MathSciNet  MATH  Google Scholar 

  16. Doha, E.H., and S.I. El-Soubhy. 2001. Some results on the coefficients of integrated expansions of ultraspherical polynomials and their applications. Approx. Theory & its Appl. 17: 69–84.

    MATH  Google Scholar 

  17. Doha, E.H. 2002. On the coefficients of integrated expansions and integrals of ultraspherical polynomials and their applications for solving differential equations. Journal of Computational and Applied Mathematics 139: 275–298.

    MathSciNet  MATH  Google Scholar 

  18. Doha, E.H. 2003. Explicit formulae for the coefficients of Jacobi Polynomials and their integrals. Integral Transforms and Special Functions 14: 69–86.

    MathSciNet  MATH  Google Scholar 

  19. Doha, E.H., and W.M. Abd-Elhameed. 2014. On the coefficients of integrated expansions and integrals of Chebyshev polynomials of third and fourth kinds. Bull. Malays. Math. Sci. Soc. 37: 383–398.

    MathSciNet  MATH  Google Scholar 

  20. Dziubański, J. 1997. Triebel–Lizorkin spaces associated with Laguerre and Hermite expansions. Proc. Amer. Math. Soc. 125: 3547–3554.

    MathSciNet  MATH  Google Scholar 

  21. Egge, E.S. 2010. Legendre-Stirling permutations. Electron. J. Combin. 31: 1735–1750.

    MathSciNet  MATH  Google Scholar 

  22. Epperson, J. 1997. Hermite and Laguerre wave packet expansions. Studia Math. 126: 199–217.

    MathSciNet  MATH  Google Scholar 

  23. Erb, W. 2013. An orthogonal polynomial analogue of the Landau–Pollak–Slepian time-frequency analysis. J. Approx. Theory 166: 56–77.

    MathSciNet  MATH  Google Scholar 

  24. Everitt, W.N., K.H. Kwon, L.L. Littlejohn, R. Wellman, and G.J. Yoon. 2007. Jacobi–Stirling numbers, Jacobi polynomials, and the leftdefinite analysis of the classical Jacobi differential expression. J. Comput. Appl. Math. 208: 29–56.

    MathSciNet  MATH  Google Scholar 

  25. Everitt, W.N., L.L. Littlejohn, and R. Wellman. 2002. Legendre polynomials, Legendre–Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression. J. Comput. Appl. Math. 148: 29–56.

    MathSciNet  MATH  Google Scholar 

  26. Filbir, F., H.N. Mhaskar, and J. Prestin. 2009. On a filter for exponentially localised kernels based on Jacobi polynomials. J. Approx. Theory 160: 256–280.

    MathSciNet  MATH  Google Scholar 

  27. Filbir, F., and W. Themistoclakis. 2008. Polynomial approximation on the sphere using scattered data. Math. Nachr. 281: 650–668.

    MathSciNet  MATH  Google Scholar 

  28. Fox, L., and I.B. Parker. 1968. Chebyshev Polynomials in Numerical Analysis. London: Oxford University Press.

    MATH  Google Scholar 

  29. Gelineau, Y., and J. Zeng. 2010. Combinatorial interpretations of the Jacobi–Stirling numbers. Electron. J. Combin. 17: R70.

    MathSciNet  MATH  Google Scholar 

  30. Gottlieb, D., and S.A. Orszag. 1977. Numerical analysis of spectral methods: theory and applications, CBMS-NSF Regional Conference Series in Aplied Mathematics 26. Philadelphia: Society for Industrial and Applied Mathematics.

    Google Scholar 

  31. Gradshtejn, I.S., and I.M. Ryzhik. 2007. Table of Integrals, Series and Products. Academic Press: Academic Press.

    Google Scholar 

  32. Ivanov, K., P. Petrushev, and Y. Xu. 2010. Sub-exponentially localised kernels and frames induced by orthogonal expansions. Math. Z. 264: 361–397.

    MathSciNet  MATH  Google Scholar 

  33. Karageorghis, A. 1988. A note on the Chebyshev coefficients of the general order derivative of an infinitely differentiable function. J. Comput. Appl. Math. 21: 129–132.

    MathSciNet  MATH  Google Scholar 

  34. Kerkyacharian, G., P. Petrushev, D. Picard, and Y. Xu. 2009. Decomposition of Triebel-Lizorkin and Besov spaces in the context of Laguerre expansions. J. Funct. Anal. 256: 1137–1188.

    MathSciNet  MATH  Google Scholar 

  35. Koornwinder, T.H. 1974. The addition formula for Jacobi polynomials: \({ I}\) Summary of results. Indag. Math. 34: 188–191.

    MathSciNet  MATH  Google Scholar 

  36. Koornwinder, T.H. 1975. A new proof of a Paley–Wiener type theorem for the Jacobi transform. Ark. Matematik 13: 145–159.

    MathSciNet  MATH  Google Scholar 

  37. Mhaskar, H.N., and J. Prestin. 2009. Polynomial operators for spectral approximation of piecewise analytic functions. Appl. Comput. Harmon. Anal. 26: 121–142.

    MathSciNet  MATH  Google Scholar 

  38. Mhaskar, H.N. 2004. Polynomial operators and local smoothness classes on the unit interval. J. Approx. Theory 131: 243–267.

    MathSciNet  MATH  Google Scholar 

  39. Narcowich, F.J., P. Petrushev, and J.D. Ward. 2006. Localised tight frames on spheres. SIAM J. Math. Anal. 38: 574–594.

    MathSciNet  MATH  Google Scholar 

  40. Narcowich, F.J., P. Petrushev, and J.D. Ward. 2006. Decomposition of Besov and Triebel–Lizorkin Spaces on the Sphere. J. Funct. Anal. 238: 530–564.

    MathSciNet  MATH  Google Scholar 

  41. Parthasarathy, P.R., and R. Sudhesh. 2006. A formula for the coefficients of orthogonal polynomials from the three-term recurrence relations. Applied Mathematics Letters 19: 1083–1089.

    MathSciNet  MATH  Google Scholar 

  42. Patel, S., and B.L. Panigrahi. 2020. Legendre spectral projection methods for weakly singular Hammerstein integral equations of mixed type. J. Anal. 28: 387–413.

    MathSciNet  MATH  Google Scholar 

  43. Petrushev, P., and Y. Xu. 2005. Localised polynomial frames on the interval with Jacobi weights. J. Fourier Anal. Appl. 11: 557–575.

    MathSciNet  MATH  Google Scholar 

  44. Petrushev, P., and Y. Xu. 2008. Localised polynomial frames on the ball. Constr. Approx. 27: 121–148.

    MathSciNet  MATH  Google Scholar 

  45. Petrushev, P., and Y. Xu. 2008. Decomposition of spaces of distribution induced by Hermite expansion. J. Fourier Anal. Appl. 14: 373–414.

    MathSciNet  Google Scholar 

  46. Phillips, T.N. 1988. On the Legendre coefficients of a general order derivative of an infinitely differentiable function. IMA J. Numer. Anal. 8: 455–459.

    MathSciNet  MATH  Google Scholar 

  47. Phillips, T.N., and A. Karageorhis. 1990. On the coefficients of integrated expansions of ultraspherical polynomials. SIAM J. Numer. Anal. 27: 823–830.

    MathSciNet  MATH  Google Scholar 

  48. Sloane, N.J.A. On-Line Encyclopedia of Integer Sequences , published electronically at http://oeis.org/A156289.

  49. Szegö, G. 1975. Orthogonal Polynomials, fourth edition, American Mathematical Society, Colloquium Publications XXIII, American Mathematical Society, Providence.

  50. N.J. Vilenkin, Special Functions and the Theory of Group Representations, Translations of Mathematical Monographs, Vol. 22, AMS, 1968.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Olu Awonusika.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awonusika, R.O. On Jacobi polynomials \({\mathscr {P}}_{k}^{(\alpha ,\beta )}\) and coefficients \(c_{j}^{\ell }(\alpha ,\beta )\) \(\left( k\ge 0, \ell =5,6; 1\le j\le \ell ; \alpha ,\beta > -1\right)\). J Anal 29, 649–667 (2021). https://doi.org/10.1007/s41478-020-00272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-020-00272-8

Keywords

Mathematics Subject Classification

Navigation