Skip to main content
Log in

Iterated Integrals of Jacobi Polynomials

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

Let \(P_n^{(\alpha ,\beta )}\) be the n-th monic Jacobi polynomial with \(\alpha ,\beta >-1\). Given m numbers \(\omega _1, \ldots , \omega _m \in \mathbb {C} \setminus [-1,1]\), let \(\varOmega _m=( \omega _1, \ldots , \omega _m)\) and \(\mathscr {P}^{(\alpha ,\beta )}_{n,m,\varOmega _m}\) be the m-th iterated integral of \(\frac{(n+m)!}{n!}\;P^{(\alpha ,\beta )}_{n}\) normalized by the conditions

$$\begin{aligned} \frac{\mathrm{d}^k\,\mathscr {P}^{(\alpha ,\beta )}_{n,m,\varOmega _m}}{\mathrm{d}z^k}(\omega _{m-k})=0, \; \text { for } \; k=0,1,\ldots , m-1. \end{aligned}$$

The main purpose of the paper is to study the algebraic and asymptotic properties of the sequence of monic polynomials \(\{ \mathscr {P}_{n,m,\varOmega _m}^{(\alpha , \beta )}\}_n\). In particular, we obtain the relative asymptotic for the ratio of the sequences \(\{ \mathscr {P}^{(\alpha ,\beta )}_{n,m,\varOmega _m}\}_n\) and \(\{P_n^{(\alpha ,\beta )}\}_n\). We prove that the zeros of these polynomials accumulate on a suitable ellipse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agarwal, R.P., Wong, P.J.Y.: Error Inequalities in Polynomial Interpolation and their Applications. Springer, Dordrecht (1993)

    Book  Google Scholar 

  2. Alfaro, M., Pérez, T., Piñar, M.A., Rezola, M.L.: Sobolev orthogonal polynomials: the discrete-continuous case. Methods Appl. Anal. 6, 593–616 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Bello, J., Pijeira, H., Márquez, C., Urbina, W.: Sobolev-Gegenbauer-type orthogonality and a hydrodynamical interpretation. Integral Transform. Spec. Funct. 22, 711–722 (2011)

    Article  MathSciNet  Google Scholar 

  4. Beuchler, S., Schöberl, J.: New shape functions for triangular \(p\)-FEM using integrated Jacobi polynomials. Numer. Math. 103, 339–366 (2006)

    Article  MathSciNet  Google Scholar 

  5. Beuchler, S., Pillwein, V.: Sparse shape functions for tetrahedral \(p\)-FEM using integrated Jacobi Polynomials. Computing 80, 345–375 (2007)

    Article  MathSciNet  Google Scholar 

  6. Borrego, J., Pijeira, H.: Orthogonality with respect to a Jacobi differential operator and applications. J. Math. Anal. Appl. 404, 491–500 (2013)

    Article  MathSciNet  Google Scholar 

  7. Borwein, P.B., Chen, W., Dilcher, K.: Zeros of iterated integrals of polynomials. Can. J. Math. 47, 65–87 (1995)

    Article  MathSciNet  Google Scholar 

  8. Bosbach, C., Gawronski, W.: Strong asymptotics for Jacobi polynomials with varying weights. Methods Appl. Anal. 6, 39–54 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Brezinski, C., Driver, K.A., Redivo-Zaglia, M.: Quasi-orthogonality with applications to some families of classical orthogonal polynomials. Appl. Numer. Math. 48, 157–168 (2004)

    Article  MathSciNet  Google Scholar 

  10. Davis, P.J.: Interpolation and Approximation. Dover, New York (1975)

    MATH  Google Scholar 

  11. Kuijlaars, A.B., Martínez Finkelshtein, A.: Strong asymptotics for Jacobi polynomials with varying nonstandard parameters. J. Anal. Math. 94, 195–234 (2004)

    Article  MathSciNet  Google Scholar 

  12. Kuijlaars, A.B., Martínez Finkelshtein, A., Orive, R.: Orthogonality of Jacobi polynomials with general parameters. Electron. Trans. Numer. Anal. 19, 1–17 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Markushevich, A.I.: Theory of functions of a complex variables, vol. 1. Prentice-Hall Inc, Englewood Cliffs (1965)

    MATH  Google Scholar 

  14. Martínez Finkelshtein, A., Martínez González, P., Orive, R.: Zeros of Jacobi polynomials with varying non-classical parameters. In: Special Functions (Hong Kong, 1999), pp. 98–113. World Scientific Publishing, River Edge (2000)

  15. Martínez Finkelshtein, A., Orive, R.: Riemann-Hilbert analysis of Jacobi polynomials orthogonal on a simple contour. J. Approx. Theory 134, 137–170 (2005)

    Article  MathSciNet  Google Scholar 

  16. Moak, D.S., Saff, E.B., Varga, R.S.: On the zeros of Jacobi polynomials \(P_n^{(\alpha _n,\beta _n)}(x)\). Trans. Am. Math. Soc. 249, 159–162 (1979)

    Google Scholar 

  17. Pijeira, H., Bello, J., Urbina, W.: On polar Legendre polynomials. Rocky Mountain J. Math. 40, 2025–2036 (2010)

    Article  MathSciNet  Google Scholar 

  18. Prasolov, V.V.: Polynomials. Springer, Berlin (2004)

    Book  Google Scholar 

  19. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  20. Rainville, E.D.: Special Functions. Chelsea Publishing Co., New York (1960)

    MATH  Google Scholar 

  21. Sheil-Small, T.: Complex Polynomials. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  22. Szegő, G.: Orthogonal Polynomials, vol. 23, 4th edn. American Mathematical Society. Colloquium Publications, Providence (1975)

    MATH  Google Scholar 

  23. Timan, A.F.: Theory of Approximation of Functions of a Real Variable. Pergamon Press, Oxford (1963)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Pijeira-Cabrera.

Additional information

Communicated by Ali Hassan Mohamed Murid.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of H. Pijeira was supported by research Grant MTM2015-65888-C4-2-P Ministerio de Economía y Competitividad of Spain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pijeira-Cabrera, H., Rivero-Castillo, D. Iterated Integrals of Jacobi Polynomials. Bull. Malays. Math. Sci. Soc. 43, 2745–2756 (2020). https://doi.org/10.1007/s40840-019-00831-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-019-00831-8

Keywords

Mathematics Subject Classification

Navigation