Benton, D., & Parker, P. Y. (1998). Breakfast, blood glucose, and cognition. The American Journal of Clinical Nutrition, 67(4), 772S–778S.
PubMed
Article
Google Scholar
Catchlove, S. J., Macpherson, H., Hughes, M. E., Chen, Y., Parrish, T. B., & Pipingas, A. (2018). An investigation of cerebral oxygen utilization, blood flow and cognition in healthy aging. PLoS One, 13(5), e0197055.
PubMed
PubMed Central
Article
Google Scholar
Choi, M. H., Lee, S. J., Yang, J. W., Choi, J. S., Kim, H. S., Kim, H. J., et al. (2010). Activation of the limbic system under 30% oxygen during a visuospatial task: An fMRI study. Neuroscience Letters, 471(2), 70–73.
PubMed
Article
Google Scholar
Chung, S. C., & Lim, D. W. (2008). Changes in memory performance, heart rate, and blood oxygen saturation due to 30% oxygen administration. International Journal of Neuroscience, 118(4), 593–606.
PubMed
Article
Google Scholar
Chung, S. C., Tack, G. R., Kim, I. H., & Lee, S. Y. (2004a). The effect of highly concentrated oxygen administration on cerebral activation levels and lateralization in visuospatial tasks. Integrative Physiological and Behavioral Science, 39(3), 153–165.
PubMed
Article
Google Scholar
Chung, S. C., Tack, G. R., Lee, B., Eom, G. M., Lee, S. Y., & Sohn, J. H. (2004b). The effect of 30% oxygen on visuospatial performance and brain activation: An fMRI study. Brain and Cognition, 56(3), 279–285.
PubMed
Article
Google Scholar
Chung, S. C., Lee, B., Tack, G. R., Yi, J. H., You, J. H., & Son, S. H. (2006). The effect of oxygen administration on visuospatial cognitive performance: Time course data analysis of fMRI. International Journal of Neuroscience, 116(2), 177–189.
PubMed
Article
Google Scholar
Chung, S. C., Kwon, J. H., Lee, H. W., Tack, G. R., Lee, B., Yi, J. H., et al. (2007). Effects of high concentration oxygen administration on n-back task performance and physiological signals. Physiological Measurement, 28, 389.
PubMed
Article
Google Scholar
Chung, S. C., Lee, B., Tack, G. R., Yi, J. H., Lee, H. W., Kwon, J. H., et al. (2008a). Physiological mechanism underlying the improvement in visuospatial performance due to 30% oxygen inhalation. Applied Ergonomics, 39(2), 166–170.
PubMed
Article
Google Scholar
Chung, S. C., Lee, H. W., Choi, M. H., Tack, G. R., Lee, B., Yi, J. H., et al. (2008b). A study on the effects of 40% oxygen on addition task performance in three levels of difficulty and physiological signals. International Journal of Neuroscience, 118(7), 905–916.
PubMed
Article
Google Scholar
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155.
PubMed
Article
Google Scholar
Fairclough, S. H., & Houston, K. (2004). A metabolic measure of mental effort. Biological Psychology, 66, 177–190.
PubMed
Article
Google Scholar
Kennedy, D. O., & Scholey, A. B. (2000). Glucose administration, heart rate and cognitive performance: Effects of increasing mental effort. Psychopharmacology, 149(1), 63–71.
PubMed
Article
Google Scholar
Kot, J., Winklewski, P. J., Sicko, Z., & Tkachenko, Y. (2015). Effect of oxygen on neuronal excitability measured by critical flicker fusion frequency is dose dependent. Journal of Clinical and Experimental Neuropsychology, 37(3), 276–284.
PubMed
Article
Google Scholar
Macpherson, H., Roberstson, B., Sünram-Lea, S., Stough, C., Kennedy, D., & Scholey, A. (2015). Glucose administration and cognitive function: Differential effects of age and effort during a dual task paradigm in younger and older adults. Psychopharmacology, 232(6), 1135–1142.
PubMed
Article
Google Scholar
Malonek, D., & Grinvald, A. (1996). Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: Implications for functional brain mapping. Science, 272(5261), 551–554.
PubMed
Article
Google Scholar
Moss, M. C., & Scholey, A. B. (1996). Oxygen administration enhances memory formation in healthy young adults. Psychopharmacology, 124(3), 255–260.
PubMed
Article
Google Scholar
Moss, M. C., Scholey, A. B., & Wesnes, K. (1998). Oxygen administration selectively enhances cognitive performance in healthy young adults: A placebo-controlled double-blind crossover study. Psychopharmacology, 138(1), 27–33.
PubMed
Article
Google Scholar
Nielson, K. A., Radtke, R. C., & Jensen, R. A. (1996). Arousal-induced modulation of memory storage processes in humans. Neurobiology of Learning and Memory, 66(2), 133–142.
PubMed
Article
Google Scholar
Owen, L., & Sunram-Lea, S. I. (2011). Metabolic agents that enhance ATP can improve cognitive functioning: A review of the evidence for glucose, oxygen, pyruvate, creatine, and L-carnitine. Nutrients, 3(8), 735–755.
PubMed
PubMed Central
Article
Google Scholar
Parker, P. Y., & Benton, D. (1995). Blood glucose levels selectively influence memory for word lists dichotically presented to the right ear. Neuropsychologia, 33(7), 843–854.
PubMed
Article
Google Scholar
Plet, J., Pedersen, P., Jensen, F., & Hansen, J. (1992). Increased working capacity with hyperoxia in humans. European Journal of Applied Physiology and Occupational Physiology, 65(2), 171–177.
PubMed
Article
Google Scholar
Riby, L. M. (2004). The impact of age and task domain on cognitive performance: A meta-analytic review of the glucose facilitation effect. Brain Impairment, 5(2), 145–165.
Article
Google Scholar
Scholey, A. B. (2001). Fuel for thought. The Psychologist, 14(4), 196–201.
Google Scholar
Scholey, A. B., Moss, M. C., & Wesnes, K. (1998). Oxygen and cognitive performance: The temporal relationship between hyperoxia and enhanced memory. Psychopharmacology, 140(1), 123–126.
PubMed
Article
Google Scholar
Scholey, A. B., Moss, M. C., Neave, N., & Wesnes, K. (1999). Cognitive performance, hyperoxia, and heart rate following oxygen administration in healthy young adults. Physiology & Behavior, 67(5), 783–789.
Article
Google Scholar
Scholey, A. B., Harper, S., & Kennedy, D. (2001). Cognitive demand and blood glucose. Physiology and Behavior, 73(4), 585–592.
PubMed
Article
Google Scholar
Scholey, A. B., Laing, S., & Kennedy, D. O. (2006). Blood glucose changes and memory: Effects of manipulating emotionality and mental effort. Biological Psychology, 71(1), 12–19.
PubMed
Article
Google Scholar
Scholey, A. B., Sünram-Lea, S. I., Greer, J., Elliott, J., & Kennedy, D. O. (2009). Glucose administration prior to a divided attention task improves tracking performance but not word recognition: Evidence against differential memory enhancement? Psychopharmacology, 202(1), 549–558.
PubMed
Article
Google Scholar
Smith, M. A., Riby, L. M., Eekelen, J. A. M. V., & Foster, J. K. (2011). Glucose enhancement of human memory: A comprehensive research review of the glucose memory facilitation effect. Neuroscience and Biobehavioral Reviews, 35(3), 770–783.
PubMed
Article
Google Scholar
Sohn, J. H., Chung, S. C., & Jang, E. H. (2005). 30% oxygen inhalation enhances cognitive performance through robust activation in the brain. Journal of Physiological Anthropology and Applied Human Science, 24(1), 51–53.
PubMed
Article
Google Scholar
Turner, J. R., & Carroll, D. (1985). Heart rate and oxygen consumption during mental arithmetic, a video game, and graded exercise: Further evidence of metabolically-exaggerated cardiac adjustments? Psychophysiology, 22(3), 261–267.
PubMed
Article
Google Scholar
Yu, R., Wang, B., Li, S., Wang, J., Zhou, F., Chu, S., et al. (2015). Cognitive enhancement of healthy young adults with hyperbaric oxygen: A preliminary resting-state fMRI study. Clinical Neurophysiology, 126(11), 2058–2067.
PubMed
Article
Google Scholar