Skip to main content
Log in

Spatial Contextual Cueing, Assessed in a Computerized Task, Is Not a Limiting Factor for Expert Performance in the Domain of Team Sports or Action Video Game Playing

  • Original Research
  • Published:
Journal of Cognitive Enhancement Aims and scope Submit manuscript

Abstract

In two reaction time experiments, we investigated if handball and action video game players show improved implicit learning of repeated spatial configurations for efficient search guidance in comparison to a control group without sport or video game proficiency. To this end, we used both a sport-specific pseudo 3-D contextual cueing task and the original contextual cueing paradigm (Chun and Jiang 36, 28-71, 1998). In this visual search paradigm, a target element has to be searched in a distractor-filled display. A typical block of trials consisted of one half of displays that were repeatedly presented in subsequent blocks, while the other half of displays was always randomly generated. In numerous studies with this paradigm, it has been found that search becomes more efficient in repeated displays, even though participants are often unaware of these repetitions (Chun 4, 170-178, 2000). Contextual cueing was present in all groups. Thus, all groups showed incidental learning of repeated displays. Contrary to our hypothesis, handball and action video game players did not differ in the strength of contextual cueing from the control group, although these groups had overall faster search times in the sport-specific displays of experiment 1. To conclude, our data yield no evidence for superior context-learning skills in athletes or action video game players.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abernethy, B. (1987). Selective attention in fast ball sports: II: expert-novice differences. Australian Journal of Science and Medicine in Sport, 19(4), 7–16.

    Google Scholar 

  • Abernethy, B. (1988). Visual search in sport and ergonomics: its relationship to selective attention and performer expertise. Human Performance, 1(4), 205–235.

    Article  Google Scholar 

  • Alves, H., Voss, M. W., Boot, W. R., Deslandes, A., Cossich, V., Salles, J. I., & Kramer, A. F. (2013). Perceptual-cognitive expertise in elite volleyball players. Frontiers in Psychology, 4(36), 1–9.

    Google Scholar 

  • Annac, E., Manginelli, A. A., Pollmann, S., Shi, Z., Müller, H. J., & Geyer, T. (2013). Memory under pressure: secondary-task effects on contextual cueing of visual search. Journal of Vision, 13(13), 1–15.

    Article  Google Scholar 

  • Bavelier, D., Green, C. S., Han, D. H., Renshaw, P. F., Merzenich, M. M., & Gentile, D. A. (2011). Brains on video games. Nature Reviews Neuroscience, 12(12), 763–768.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bediou, B., Adams, D. M., Mayer, R. E., Tipton, E., Green, C. S., & Bavelier, D. (2018). Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychological Bulletin, 144(1), 77–110.

    Article  PubMed  Google Scholar 

  • Bejjanki, V. R., Zhang, R., Li, R., Green, C. S., Lu, Z. L., & Bavelier, D. (2014). Action video game play facilitates the development of better perceptual templates. Proceedings of the National Academy of Sciences of the United States of America, 111(47), 16961–16966.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129, 387–398.

    Article  PubMed  Google Scholar 

  • Boot, W. R., Blakely, D. P., & Simons, D. J. (2011). Do action video games improve perception and cognition? Frontiers in Psychology, 2, 1–6.

    Article  Google Scholar 

  • Brady, T. F., & Chun, M. M. (2007). Spatial constraints on learning in visual search: modeling contextual cuing. Journal of Experimental Psychology: Human Perception and Performance, 33(4), 798–815.

    PubMed  Google Scholar 

  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.

    Article  PubMed  Google Scholar 

  • Brockmole, W. R., & Henderson, J. M. (2006). Using real-world scenes as contextual cues for search. Visual Cognition, 13(1), 99–108.

    Article  Google Scholar 

  • Buckley, D., Codina, C., Bhardwaj, P., & Pascalis, O. (2010). Action video game players and deaf observers have larger Goldmann visual fields. Vision Research, 50(5), 548–556.

    Article  PubMed  Google Scholar 

  • Castel, A. D., Pratt, J., & Drummond, E. (2005). The effects of action video game experience on the time course of inhibition of return and the efficiency of visual search. Acta Psychologica, 119, 217–230.

    Article  PubMed  Google Scholar 

  • Chaddock, L., Neider, M. B., Voss, M. W., Gaspar, J. G., & Kramer, A. F. (2011). Do athletes excel at everyday tasks? Medicine & Science in Sports & Exercise, 43(10), 1920–1926.

    Google Scholar 

  • Chisholm, J. D., & Kingstone, A. (2012). Improved top-down control reduces oculomotor capture: the case of action video game players. Attention, Perception, & Psychophysics, 74(2), 257–262.

    Article  Google Scholar 

  • Chisholm, J. D., Hickey, C., Theeuwes, J., & Kingstone, A. (2010). Reduced attentional capture in action video game players. Attention, Perception, & Psychophysics, 72(3), 667–671.

    Article  Google Scholar 

  • Chua, K.-P., & Chun, M. M. (2003). Implicit scene learning is viewpoint dependent. Perception & Psychophysics, 65(1), 72–80.

    Article  Google Scholar 

  • Chun, M. M. (2000). Contextual cuing of visual attention. Trends in Cognitive Sciences, 4, 170–178.

    Article  PubMed  Google Scholar 

  • Chun, M. M., & Jiang, Y. (1998). Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71.

    Article  PubMed  Google Scholar 

  • Chun, M. M., & Jiang, Y. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10, 360–365.

    Article  Google Scholar 

  • Clark, J. E., Lanphear, A. K., & Riddick, C. C. (1987). The effects of videogame playing on the response selection processing of elderly adults. Journal of Gerontology, 42(1), 82–85.

    Article  PubMed  Google Scholar 

  • Colagiuri, B., & Livesey, E. J. (2016). Contextual cuing as a form of nonconscious learning: theoretical and empirical analysis in large and very large samples. Psychonomic Bulletin & Review, 23(6), 1996–2009.

    Article  Google Scholar 

  • Deveau, J., Ozer, D. J., & Seitz, A. R. (2014). Improved vision and on-field performance in baseball through perceptual learning. Current Biology, 24, 146–147.

    Article  Google Scholar 

  • Dye, M. W. G., Green, C. S., & Bavelier, D. (2009). Increasing speed of processing with action video games. Current Directions in Psychological Science, 18(6), 321–326.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ericsson, K. A., Charness, N., Feltovich, P., & Hoffman, R. R. (2006). Cambridge handbook of expertise and expert performance (pp. 685–705). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Faubert, J. (2013). Professional athletes have extraordinary skills for rapidly learning complex and neutral dynamic visual scenes. Scientific Reports, 3, 1–3.

    Article  Google Scholar 

  • Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18(10), 850–855.

    Article  PubMed  Google Scholar 

  • Furley, P., & Memmert, D. (2010). Differences in spatial working memory as a function of team sports expertise: the Corsi Block-tapping task in sport psychological assessment. Perceptual and Motor Skills, 110, 801–808.

    Article  PubMed  Google Scholar 

  • Furley, P., & Memmert, D. (2011). Studying cognitive adaptions in the field of sport: broad or narrow transfer? A comment on Allen, Fioratou, and McGeorge (2011). Perceptual and Motor Skills, 113(2), 481–488.

    Article  PubMed  Google Scholar 

  • Geringswald, F., & Pollmann, S. (2015). Central and peripheral vision loss differentially affects contextual cueing in visual search. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(5), 1485–1496.

    PubMed  Google Scholar 

  • Geyer, T., Zehetleitner, M., & Müller, H. J. (2010). Contextual cueing of pop-out visual search: when context guides the deployment of attention. Journal of Vision, 10(5), 20 1–11.

    Article  PubMed  Google Scholar 

  • Goujon, A., Didierjean, A., & Thorpe, S. (2015). Investigating implicit statistical learning mechanisms through contextual cueing. Trends in Cognitive Sciences, 19(9), 524–533.

    Article  PubMed  Google Scholar 

  • Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534–537.

    Article  PubMed  Google Scholar 

  • Green, C. S., & Bavelier, D. (2006). Effect of action video games on the spatial distribution of visuospatial attention. Journal of Experimental Psychology: Human Perception and Performance, 32(6), 1465–1478.

    PubMed  Google Scholar 

  • Green, C. S., & Bavelier, D. (2007). Action-video-game experience alters the spatial resolution of vision. Psychological Science, 18(1), 88–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Green, C. S., & Bavelier, D. (2012). Learning, attentional control, and action video games. Current Biology, 22, 197–206.

    Article  Google Scholar 

  • Green, C. S., Kattner, F., Eichenbaum, A., Bediou, B., Adams, D. M., Mayer, R. E., & Bavelier, D. (2017). Playing some video games but not others is related to cognitive abilities: a critique of Unsworth et al. (2015). Psychological Science, 28, 679–682.

    Article  PubMed  Google Scholar 

  • Greenfield, P. M., DeWinstanley, P., Kilpatrick, H., & Kaye, D. (1994). Action video games and informal education: effects on strategies for dividing visual attention. Journal of Applied Developmental Psychology, 15(1), 105–123.

    Article  Google Scholar 

  • Hubert-Wallander, B., Green, C. S., Sugarman, M., & Bavelier, D. (2011). Changes in search rate but not in the dynamics of exogenous attention in action videogame players. Attention, Perception, & Psychophysics, 73, 2399–2412.

    Article  Google Scholar 

  • Hüttermann, S., Memmert, D., & Simons, D. J. (2014). The size and shape of the attentional “spotlight” varies with differences in sports expertise. Journal of Experimental Psychology: Applied, 20(2), 147–157.

    PubMed  Google Scholar 

  • Irons, J. L., Remington, R. W., & McLean, J. P. (2011). Not so fast: rethinking the effects of action video games on attentional capacity [abstract]. Australian Journal of Psychology, 63(4), 224–231.

    Article  Google Scholar 

  • Jiang, Y., & Leung, A. W. (2005). Implicit learning of ignored visual context. Psychonomic Bulletin & Review, 12(1), 100–106.

    Article  Google Scholar 

  • Jiang, Y., & Wagner, L. C. (2004). What is learned in spatial contextual cuing—configuration or individual locations? Perception & Psychophysics, 66(3), 454–463.

    Article  Google Scholar 

  • Kristjánsson, Á. (2013). The case for causal influences of action videogame play upon vision and attention. Attention, Perception, & Psychophysics, 75(4), 667–672.

    Article  Google Scholar 

  • Li, R., Polat, U., Makous, W., & Bavelier, D. (2009). Enhancing the contrast sensitivity function through action video game training. Nature Neuroscience, 12(5), 549–551.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lleras, A., & von Mühlenen, A. (2004). Spatial context and top-down strategies in visual search. Spatial Vision, 17(4–5), 465–482.

    PubMed  Google Scholar 

  • Lum, J., Enns, J. T., & Pratt, J. (2002). Visual orienting in college athletes: explorations of athlete type and gender. Research Quarterly for Exercise and Sport, 73(2), 156–167.

    Article  PubMed  Google Scholar 

  • Manginelli, A. A., Langer, N., Klose, D., & Pollmann, S. (2013). Contextual cueing under working memory load: selective interference of visuospatial load with expression of learning. Attention, Perception, & Psychophysics, 75(6), 1103–1117.

    Article  Google Scholar 

  • Mann, D. T. Y., Williams, A. M., Ward, P., & Janelle, C. M. (2007). Perceptual-cognitive expertise in sport: a meta-analysis. Journal of Sport & Exercise Psychology, 29(4), 457–478.

    Article  Google Scholar 

  • Memmert, D., Simons, D. J., & Grimme, T. (2009). The relationship between visual attention and expertise in sports. Psychology of Sport and Exercise, 10(1), 146–151.

    Article  Google Scholar 

  • Müller-Plath, G., Ott, D., & Pollmann, S. (2010). Deficits in subprocesses of visual feature search after frontal, parietal, and temporal brain lesions—a modeling approach. Journal of Cognitive Neuroscience, 22, 1399–1424.

    Article  PubMed  Google Scholar 

  • Murphy, K. (2017). The field of view is more useful in golfers than regular exercisers. Advances in Cognitive Psychology, 13, 64–69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nougier, V., Ripoll, H., & Stein, J.-F. (1989). Orienting of attention in highly-skilled athletes. International Journal of Sport Psychology, 20, 205–223.

    Google Scholar 

  • Oudejans, R. R., Michaels, C. F., & Bakker, F. C. (1997). The effects of baseball experience on movement initiation in catching fly balls. Journal of Sports Sciences, 15(6), 587–595.

    Article  PubMed  Google Scholar 

  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10(4), 437–442.

    Article  PubMed  Google Scholar 

  • Pesce-Anzeneder, C., & Bösel, R. (1998). Modulation of the spatial extent of the attentional focus in high-level volleyball players. European Journal of Cognitive Psychology, 10(3), 247–267.

    Article  Google Scholar 

  • R Development Core Team (2007). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Schmidt, A., Geringswald, F., Sharifian, F., & Pollmann, S. (2018). Not scene learning, but attentional processing is superior in team sport athletes and action video game players. bioRxiv. https://doi.org/10.1101/353953.

  • Simon, H. A., & Chase, W. G. (1973). Skill in chess. American Scientist, 61, 394–403.

    Google Scholar 

  • Simons, D. J., & Chabris, C. F. (2010). The invisible gorilla: how our intuitions deceive us [abstract]. New York: Crown Publishing Group.

    Google Scholar 

  • Smyth, A. C., & Shanks, D. R. (2008). Awareness in contextual cuing with extended and concurrent explicit tests. Memory & Cognition, 36(2), 403–415.

    Article  Google Scholar 

  • Song, J. H., & Jiang, Y. (2005). Connecting the past with the present: how do humans match an incoming visual display with visual memory? Journal of Vision, 5, 322–330.

    Article  PubMed  Google Scholar 

  • Starkes, J. L., & Ericsson, K. A. (Eds.) (2003). Expert performance in sports: advances in research on sport expertise. Champaign: Human Kinetics.

  • Tenenbaum, G., & Eklund, R. C. (2007). Handbook of sport psychology (pp. 161–262). New York: Wiley.

    Book  Google Scholar 

  • Thomas, J. R., Gallagher, J., & Lowry, K. (2003). Developing motor and sport expertise: meta-analytic findings. In Communication to the Conference North American Society of Psychology of Sport and Physical Activity, Savannah, GA. In J. G. Tenenbaum & R. C. Eklund (Eds.), Handbook of sport psychology (pp. 161–178). Hoboken: John Wiley & Sons, Inc..

    Google Scholar 

  • Vadillo, M. A., Konstantinidis, E., & Shanks, D. R. (2016). Underpowered samples, false negatives, and unconscious learning. Psychonomic Bulletin & Review, 23(1), 87–102.

    Article  Google Scholar 

  • Vestberg, T., Gustafson, R., Maurex, L., Ingvar, M., & Petrovic, P. (2012). Executive functions predict the success of top-soccer players. PLoS One, 7(4), e34731.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vickery, T. J., Sussman, R. S., & Jiang, Y. V. (2010). Spatial context learning survives interference from working memory load. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1358–1371.

    PubMed  Google Scholar 

  • Voss, M. W., Kramer, A. F., Basak, C., Prakash, R. S., & Roberts, B. (2010). Are expert athletes ‘expert’ in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. Applied Cognitive Psychology, 24(6), 812–826.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Florian Baumgartner and Daniel Kottke by helpful statistical advice and discussions.

We would also like to thank the Sportclub Magdeburg for the opportunity to study elite athletes, the coaches for their support, and the athletes for their willingness to participate in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Schmidt.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, A., Geringswald, F. & Pollmann, S. Spatial Contextual Cueing, Assessed in a Computerized Task, Is Not a Limiting Factor for Expert Performance in the Domain of Team Sports or Action Video Game Playing. J Cogn Enhanc 3, 281–292 (2019). https://doi.org/10.1007/s41465-018-0096-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41465-018-0096-x

Keywords

Navigation