Advertisement

Journal of Cognitive Enhancement

, Volume 1, Issue 4, pp 434–454 | Cite as

N-back Versus Complex Span Working Memory Training

  • Kara J. BlackerEmail author
  • Serban Negoita
  • Joshua B. Ewen
  • Susan M. Courtney
Original Article

Abstract

Working memory (WM) is the ability to maintain and manipulate task-relevant information in the absence of sensory input. While its improvement through training is of great interest, the degree to which WM training transfers to untrained WM tasks (near transfer) and other untrained cognitive skills (far transfer) remains debated and the mechanism(s) underlying transfer are unclear. Here we hypothesized that a critical feature of dual n-back training is its reliance on maintaining relational information in WM. In experiment 1, using an individual differences approach, we found evidence that performance on an n-back task was predicted by performance on a measure of relational WM (i.e., WM for vertical spatial relationships independent of absolute spatial locations), whereas the same was not true for a complex span WM task. In experiment 2, we tested the idea that reliance on relational WM is critical to produce transfer from n-back but not complex span task training. Participants completed adaptive training on either a dual n-back task, a symmetry span task, or on a non-WM active control task. We found evidence of near transfer for the dual n-back group; however, far transfer to a measure of fluid intelligence did not emerge. Recording EEG during a separate WM transfer task, we examined group-specific, training-related changes in alpha power, which are proposed to be sensitive to WM demands and top-down modulation of WM. Results indicated that the dual n-back group showed significantly greater frontal alpha power after training compared to before training, more so than both other groups. However, we found no evidence of improvement on measures of relational WM for the dual n-back group, suggesting that near transfer may not be dependent on relational WM. These results suggest that dual n-back and complex span task training may differ in their effectiveness to elicit near transfer as well as in the underlying neural changes they facilitate.

Keywords

Cognitive training Working memory Transfer Alpha power 

Notes

Acknowledgements

We wish to thank Cody Elias, Antonio Vergara, Samantha Dunnum, Myranda Gormley, Leon Li, and Carolyn Xue for help with data collection.

Funding

This project was supported by a Johns Hopkins University Science of Learning Institute Fellowship to KJB, NIH grant R01 MH082957 to SMC, and grant K23 NS073626 to JBE.

Supplementary material

41465_2017_44_MOESM1_ESM.docx (771 kb)
ESM 1 (DOCX 770 kb)

References

  1. Ackerman, C. M., & Courtney, S. M. (2012). Spatial relations and spatial locations are dissociated within prefrontal and parietal cortex. Journal of Neurophysiology, 108(9), 2419–2429.  https://doi.org/10.1152/jn.01024.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: A meta-analysis. Psychonomic Bulletin & Review, 22(2), 366–377.  https://doi.org/10.3758/s13423-014-0699-x.CrossRefGoogle Scholar
  3. Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12(5), 193–200.  https://doi.org/10.1016/J.Tics.2008.02.004.CrossRefPubMedGoogle Scholar
  4. Bahlmann, J., Blumenfeld, R. S., & D'Esposito, M. (2014). The rostro-caudal axis of frontal cortex is sensitive to the domain of stimulus information. Cerebral Cortex.  https://doi.org/10.1093/cercor/bht419.
  5. Bastiaansen, M., Mazaheri, A., & Jensen, O. (2012). Beyond ERP’s: Oscillatory neuronal dynamics. In S. J. Luck & E. S. Kappenman (Eds.), The Oxford handbook of event-related potential components. USA: Oxford University Press.Google Scholar
  6. Beatty, E. L., Jobidon, M. E., Bouak, F., Nakashima, A., Smith, I., Lam, Q., et al. (2015). Transfer of training from one working memory task to another: Behavioural and neural evidence. Frontiers in Systems Neuroscience, 9, 86.  https://doi.org/10.3389/fnsys.2015.00086.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berryhill, M. E., Peterson, D. J., Jones, K. T., & Stephens, J. A. (2014). Hits and misses: Leveraging tDCS to advance cognitive research. Frontiers in Psychology, 5, 800.  https://doi.org/10.3389/fpsyg.2014.00800.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Blacker, K. J., & Courtney, S. M. (2016). Distinct neural substrates for maintaining spatial locations and relations in working memory. Frontiers in Human Neuroscience, 10, 594.  https://doi.org/10.3389/fnhum.2016.00594.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Blacker, K. J., Ikkai, A., Lakshmanan, B. M., Ewen, J. B., & Courtney, S. M. (2016). The role of alpha oscillations in deriving and maintaining spatial relations in working memory. Cognitive Affective & Behavioral Neuroscience, 16(5), 888–901.  https://doi.org/10.3758/s13415-016-0439-y.CrossRefGoogle Scholar
  10. Blacker, K. J., Weisberg, S. M., Newcombe, N. S., & Courtney, S. M. (2017). Keeping track of where we are: Spatial working memory in navigation. Visual Cognition, 1–12.  https://doi.org/10.1080/13506285.2017.1322652.
  11. Bonnefond, M., & Jensen, O. (2012). Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Current Biology, 22(20), 1969–1974.  https://doi.org/10.1016/j.cub.2012.08.029.CrossRefPubMedGoogle Scholar
  12. Boot, W. R., Blakely, D. P., & Simons, D. J. (2011). Do action video games improve perception and cognition? Frontiers in Psychology, 2(226), 1–6.  https://doi.org/10.3389/fpsyg.2011.00226.Google Scholar
  13. Boot, W. R., Simons, D. J., Stothart, C., & Stutts, C. (2013). The pervasive problem of placebos in psychology: Why active control groups are not sufficient to rule out placebo effects. Perspectives on Psychological Science, 8(4), 445–454.  https://doi.org/10.1177/1745691613491271.CrossRefPubMedGoogle Scholar
  14. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.CrossRefPubMedGoogle Scholar
  15. Buschkuehl, M., Hernandez-Garcia, L., Jaeggi, S. M., Bernard, J. A., & Jonides, J. (2014). Neural effects of short-term training on working memory. Cognitive, Affective, & Behavioral Neuroscience, 14(1), 147–160.  https://doi.org/10.3758/s13415-013-0244-9.CrossRefGoogle Scholar
  16. Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the raven progressive matrices test. Psychological Review, 97(3), 404–431.CrossRefPubMedGoogle Scholar
  17. Chein, J. M., & Morrison, A. B. (2010). Expanding the mind's workspace: Training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17(2), 193–199.  https://doi.org/10.3758/PBR.17.2.193.CrossRefGoogle Scholar
  18. Chiesa, A., Calati, R., & Serretti, A. (2011). Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clinical Psychology Review, 31(3), 449–464.  https://doi.org/10.1016/j.cpr.2010.11.003.CrossRefPubMedGoogle Scholar
  19. Chooi, W. T., & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40(6), 531–542.  https://doi.org/10.1016/J.Intell.2012.07.004.CrossRefGoogle Scholar
  20. Cole, M. W., Bagic, A., Kass, R., & Schneider, W. (2010). Prefrontal dynamics underlying rapid instructed task learning reverse with practice. Journal of Neuroscience, 30(42), 14245–14254.  https://doi.org/10.1523/Jneurosci.1662-10.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Colom, R., Roman, F. J., Abad, F. J., Shih, P. C., Privado, J., Froufe, M., et al. (2013). Adaptive n-back training does not improve fluid intelligence at the construct level: Gains on individual tests suggest that training may enhance visuospatial processing. Intelligence, 41(5), 712–727.  https://doi.org/10.1016/J.Intell.2013.09.002.CrossRefGoogle Scholar
  22. Conway, A. R., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 769–786.CrossRefGoogle Scholar
  23. Cusack, R., Lehmann, M., Veldsman, M., & Mitchell, D. J. (2009). Encoding strategy and not visual working memory capacity correlates with intelligence. Psychonomic Bulletin & Review, 16(4), 641–647.  https://doi.org/10.3758/PBR.16.4.641.CrossRefGoogle Scholar
  24. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence. Journal of Experimental Psychology: General, 128(3), 309–331.CrossRefGoogle Scholar
  25. Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340–347.  https://doi.org/10.1162/089892902317361886.CrossRefPubMedGoogle Scholar
  26. Foster, J. J., Sutterer, D. W., Serences, J. T., Vogel, E. K., & Awh, E. (2016). The topography of alpha-band activity tracks the content of spatial working memory. Journal of Neurophysiology, 115(1), 168–177.  https://doi.org/10.1152/jn.00860.2015.CrossRefPubMedGoogle Scholar
  27. Green, C. S., Gorman, T., & Bavelier, D. (2016). Action video-game training and its effects on perception and attentional control. In T. Strobach & J. Karbach (Eds.), Cognitive training (pp. 107–116). Switzerland: Springer International Publishing.CrossRefGoogle Scholar
  28. Haatveit, B. C., Sundet, K., Hugdahl, K., Ueland, T., Melle, I., & Andreassen, O. A. (2010). The validity of d prime as a working memory index: Results from the “Bergen n-back task”. Journal of Clinical and Experimental Neuropsychology, 32(8), 871–880.  https://doi.org/10.1080/13803391003596421.CrossRefPubMedGoogle Scholar
  29. Haegens, S., Osipova, D., Oostenveld, R., & Jensen, O. (2010). Somatosensory working memory performance in humans depends on both engagement and disengagement of regions in a distributed network. Human Brain Mapping, 31(1), 26–35.  https://doi.org/10.1002/hbm.20842.PubMedGoogle Scholar
  30. Herrmann, C. S., Senkowski, D., & Rottger, S. (2004). Phase-locking and amplitude modulations of EEG alpha: Two measures reflect different cognitive processes in a working memory task. Experimental Psychology, 51(4), 311–318.  https://doi.org/10.1027/1618-3169.51.4.311.CrossRefPubMedGoogle Scholar
  31. Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58–65.  https://doi.org/10.1038/nrn2298.CrossRefPubMedGoogle Scholar
  32. Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental Science, 12(4), F9–F15.  https://doi.org/10.1111/j.1467-7687.2009.00848.x.CrossRefPubMedGoogle Scholar
  33. Hossiep, R., Turck, D., & Hasella, M. (1999). Bochumer Matrizentest (BOMAT) advanced-short version. Gottingen: Hogrefe.Google Scholar
  34. Ikkai, A., Blacker, K. J., Lakshmanan, B. M., Ewen, J. B., & Courtney, S. M. (2014). Maintenance of relational information in working leads to suppression of the sensory cortex. Journal of Neurophysiology, 112(8), 1903–1915.  https://doi.org/10.1152/jn.00134.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jaeggi, S. M., Seewer, R., Nirkko, A. C., Eckstein, D., Schroth, G., Groner, R., & Gutbrod, K. (2003). Does excessive memory load attenuate activation in the prefrontal cortex? Load-dependent processing in single and dual tasks: Functional magnetic resonance imaging study. NeuroImage, 19(2 Pt 1), 210–225.CrossRefPubMedGoogle Scholar
  36. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Science, 105(19), 6829–6833.  https://doi.org/10.1073/pnas.0801268105.CrossRefGoogle Scholar
  37. Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y. F., Jonides, J., & Perrig, W. J. (2010a). The relationship between n-back performance and matrix reasoning—implications for training and transfer. Intelligence, 38(6), 625–635.  https://doi.org/10.1016/J.Intell.2010.09.001.CrossRefGoogle Scholar
  38. Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., & Meier, B. (2010b). The concurrent validity of the N-back task as a working memory measure. Memory, 18(4), 394–412.  https://doi.org/10.1080/09658211003702171.CrossRefPubMedGoogle Scholar
  39. Jaeggi, S. M., Buschkuehl, M., Shah, P., & Jonides, J. (2014). The role of individual differences in cognitive training and transfer. Memory & Cognition, 42(3), 464–480.  https://doi.org/10.3758/s13421-013-0364-z.CrossRefGoogle Scholar
  40. Jausovec, N., & Jausovec, K. (2012). Working memory training: Improving intelligence—changing brain activity. Brain and Cognition, 79(2), 96–106.  https://doi.org/10.1016/j.bandc.2012.02.007.CrossRefPubMedGoogle Scholar
  41. Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12(8), 877–882.CrossRefPubMedGoogle Scholar
  42. Jokisch, D., & Jensen, O. (2007). Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. The Journal of Neuroscience, 27(12), 3244–3251.  https://doi.org/10.1523/JNEUROSCI.5399-06.2007.CrossRefPubMedGoogle Scholar
  43. Jonides, J., Schumacher, E. H., Smith, E. E., Lauber, E. J., Awh, E., Minoshima, S., & Koeppe, R. A. (1997). Verbal working memory load affects regional brain activation as measured by PET. Journal of Cognitive Neuroscience, 9(4), 462–475.  https://doi.org/10.1162/Jocn.1997.9.4.462.CrossRefPubMedGoogle Scholar
  44. Kaiser, J., Heidegger, T., Wibral, M., Altmann, C. F., & Lutzenberger, W. (2007). Alpha synchronization during auditory spatial short-term memory. Neuroreport, 18(11), 1129–1132.  https://doi.org/10.1097/WNR.0b013e32821c553b.CrossRefPubMedGoogle Scholar
  45. Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133(2), 189–217.  https://doi.org/10.1037/0096-3445.133.2.189.CrossRefGoogle Scholar
  46. Kelly, S. P., Lalor, E. C., Reilly, R. B., & Foxe, J. J. (2006). Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. Journal of Neurophysiology, 95(6), 3844–3851.  https://doi.org/10.1152/jn.01234.2005.CrossRefPubMedGoogle Scholar
  47. Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63–88.  https://doi.org/10.1016/j.brainresrev.2006.06.003.CrossRefPubMedGoogle Scholar
  48. Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlstrom, K., et al. (2005). Computerized training of working memory in children with ADHD—a randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44(2), 177–186.  https://doi.org/10.1097/00004583-200502000-00010.CrossRefPubMedGoogle Scholar
  49. Kundu, B., Sutterer, D. W., Emrich, S. M., & Postle, B. R. (2013). Strengthened effective connectivity underlies transfer of working memory training to tests of short-term memory and attention. The Journal of Neuroscience, 33(20), 8705–8715.  https://doi.org/10.1523/JNEUROSCI.5565-12.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Leung, H. C., Seelig, D., & Gore, J. C. (2004). The effect of memory load on cortical activity in the spatial working memory circuit. Cognitive, Affective, & Behavioral Neuroscience, 4(4), 553–563.CrossRefGoogle Scholar
  51. Li, S. C., Schmiedek, F., Huxhold, O., Rocke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: Practice gain, transfer, and maintenance. Psychology and Aging, 23(4), 731–742.  https://doi.org/10.1037/a0014343.CrossRefPubMedGoogle Scholar
  52. Li, C. H., He, X., Wang, Y. J., Hu, Z., & Guo, C. Y. (2017). Visual working memory capacity can be increased by training on distractor filtering efficiency. Frontiers in psychology, 8.Google Scholar
  53. Libby, L. A., Hannula, D. E., & Ranganath, C. (2014). Medial temporal lobe coding of item and spatial information during relational binding in working memory. The Journal of Neuroscience, 34(43), 14233–14242.  https://doi.org/10.1523/JNEUROSCI.0655-14.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Linke, A. C., Vincente-Grabovetsy, A., Mitchell, D. J., & Cusack, R. (2011). Encoding strategy accounts for individual differences in change detection measures of VSTM. Neuropsychologia, 49(6), 1476–1486.  https://doi.org/10.1016/j.neuropsychologia.2010.11.034.CrossRefPubMedGoogle Scholar
  55. Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659.  https://doi.org/10.1037/a0020080.CrossRefPubMedGoogle Scholar
  56. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.  https://doi.org/10.1038/36846.CrossRefPubMedGoogle Scholar
  57. Lutz, A., Slagter, H. A., Dunne, J. D., & Davidson, R. J. (2008). Attention regulation and monitoring in meditation. Trends in Cognitive Sciences, 12(4), 163–169.  https://doi.org/10.1016/j.tics.2008.01.005.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190.  https://doi.org/10.1016/j.jneumeth.2007.03.024.CrossRefPubMedGoogle Scholar
  59. McKendrick, R., Ayaz, H., Olmstead, R., & Parasuraman, R. (2014). Enhancing dual-task performance with verbal and spatial working memory training: Continuous monitoring of cerebral hemodynamics with NIRS. NeuroImage, 85(Pt 3), 1014–1026.  https://doi.org/10.1016/j.neuroimage.2013.05.103.CrossRefPubMedGoogle Scholar
  60. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100.  https://doi.org/10.1006/cogp.1999.0734.CrossRefPubMedGoogle Scholar
  61. Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin and Review, 18, 46–60.  https://doi.org/10.3758/s13423-010-0034.CrossRefPubMedGoogle Scholar
  62. Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15(1), 1–25.CrossRefPubMedGoogle Scholar
  63. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 1.Google Scholar
  64. Parkin, B. L., Ekhtiari, H., & Walsh, V. F. (2015). Non-invasive human brain stimulation in cognitive neuroscience: A primer. Neuron, 87(5), 932–945.  https://doi.org/10.1016/j.neuron.2015.07.032.CrossRefPubMedGoogle Scholar
  65. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442.CrossRefPubMedGoogle Scholar
  66. Percival, D., & Walden, A. (1993). Spectral analysis for physical applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  67. Powers, K. L., Brooks, P. J., Aldrich, N. J., Palladino, M. A., & Alfieri, L. (2013). Effects of video-game play on information processing: A meta-analytic investigation. Psychonomic Bulletin & Review, 20(6), 1055–1079.  https://doi.org/10.3758/s13423-013-0418-z.CrossRefGoogle Scholar
  68. Redick, T. S., & Lindsey, D. R. (2013). Complex span and n-back measures of working memory: A meta-analysis. Psychonomic Bulletin & Review, 20(6), 1102–1113.  https://doi.org/10.3758/s13423-013-0453-9.CrossRefGoogle Scholar
  69. Redick, T. S., Broadway, J. M., Meier, M. E., Kuriakose, P. S., Unsworth, N., Kane, M. J., & Engle, R. W. (2012). Measuring working memory capacity with automated complex span tasks. European Journal of Psychological Assessment, 28(3), 164–171.  https://doi.org/10.1027/1015-5759/a000123.CrossRefGoogle Scholar
  70. Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., et al. (2013). No evidence of intelligence improvement after working memory training: A randomized, placebo-controlled study. Journal of Experimental Psychology-General, 142(2), 359–379.  https://doi.org/10.1037/a0029082.CrossRefPubMedGoogle Scholar
  71. Richmond, L. L., Morrison, A. B., Chein, J. M., & Olson, I. R. (2011). Working memory training and transfer in older adults. Psychology and Aging, 26(4), 813–822.  https://doi.org/10.1037/a0023631.CrossRefPubMedGoogle Scholar
  72. Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology-General, 124(2), 207–231.  https://doi.org/10.1037//0096-3445.124.2.207.CrossRefGoogle Scholar
  73. Roux, F., & Uhlhaas, P. J. (2013). Working memory and neural oscillations: Alpha-gamma versus theta-gamma codes for distinct WM information? Trends in Cognitive Sciences.  https://doi.org/10.1016/j.tics.2013.10.010.
  74. Rudebeck, S. R., Bor, D., Ormond, A., O’Reilly, J. X., & Lee, A. C. H. (2012). A potential spatial working memory training task to improve both episodic memory and fluid intelligence. PLoS One, 7(11).  https://doi.org/10.1371/journal.pone.0050431.
  75. Sadaghiani, S., Scheeringa, R., Lehongre, K., Morillon, B., Giraud, A. L., D'Esposito, M., & Kleinschmidt, A. (2012). Alpha-band phase synchrony is related to activity in the fronto-parietal adaptive control network. The Journal of Neuroscience, 32(41), 14305–14310.  https://doi.org/10.1523/JNEUROSCI.1358-12.2012.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Salminen, T., Kuhn, S., Frensch, P. A., & Schubert, T. (2016). Transfer after dual n-back training depends on striatal activation change. The Journal of Neuroscience, 36(39), 10198–10213.  https://doi.org/10.1523/JNEUROSCI.2305-15.2016.CrossRefPubMedGoogle Scholar
  77. Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., et al. (2005a). A shift of visual spatial attention is selectively associated with human EEG alpha activity. The European Journal of Neuroscience, 22(11), 2917–2926.  https://doi.org/10.1111/j.1460-9568.2005.04482.x.CrossRefPubMedGoogle Scholar
  78. Sauseng, P., Klimesch, W., Schabus, M., & Doppelmayr, M. (2005b). Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. International Journal of Psychophysiology, 57(2), 97–103.  https://doi.org/10.1016/j.ijpsycho.2005.03.018.CrossRefPubMedGoogle Scholar
  79. Schneiders, J. A., Opitz, B., Krick, C. M., & Mecklinger, A. (2011). Separating intra-modal and across-modal training effects in visual working memory: An fMRI investigation. Cerebral Cortex, 21(11), 2555–2564.  https://doi.org/10.1093/cercor/bhr037.CrossRefPubMedGoogle Scholar
  80. Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138(4), 628–654.  https://doi.org/10.1037/A0027473.CrossRefPubMedGoogle Scholar
  81. Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. (2016). Do "brain-training" programs work? Psychological Science in the Public Interest, 17(3), 103–186.  https://doi.org/10.1177/1529100616661983.CrossRefPubMedGoogle Scholar
  82. Stephenson, C. L., & Halpern, D. F. (2013). Improved matrix reasoning is limited to training on tasks with a visuospatial component. Intelligence, 41, 341–357.  https://doi.org/10.1016/j.intell.2013.05.006.CrossRefGoogle Scholar
  83. Tang, Y. Y., Holzel, B. K., & Posner, M. I. (2015). The neuroscience of mindfulness meditation. Nature Reviews Neuroscience, 16(4), 213–225.  https://doi.org/10.1038/nrn3916.CrossRefPubMedGoogle Scholar
  84. Thompson, T. W., Waskom, M. L., Garel, K. L., Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., et al. (2013). Failure of working memory training to enhance cognition or intelligence. PLoS One, 8(5), e63614.  https://doi.org/10.1371/journal.pone.0063614.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Thompson, T. W., Waskom, M. L., & Gabrieli, J. D. (2016). Intensive working memory training produces functional changes in large-scale frontoparietal networks. J Cogn Neurosci, 1–14. doi: https://doi.org/10.1162/jocn_a_00916
  86. Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428(6984), 751–754.  https://doi.org/10.1038/nature02466.CrossRefPubMedGoogle Scholar
  87. Vanderplas, J. M., & Garvin, E. A. (1959). The association value of random shapes. Journal of Experimental Psychology, 57(3), 147–154.CrossRefPubMedGoogle Scholar
  88. van Gerven, M., Bahramisharif, A., Heskes, T., & Jensen, O. (2009). Selecting features for BCI control based on a covert spatial attention paradigm. Neural Networks, 22(9), 1271–1277.Google Scholar
  89. Vartanian, O., Jobidon, M. E., Bouak, F., Nakashima, A., Smith, I., Lam, Q., & Cheung, B. (2013). Working memory training is associated with lower prefrontal cortex activation in a divergent thinking task. Neuroscience, 236, 186–194.  https://doi.org/10.1016/j.neuroscience.2012.12.060.CrossRefPubMedGoogle Scholar
  90. Zanto, T. P., Rubens, M. T., Thangavel, A., & Gazzaley, A. (2011). Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nature Neuroscience, 14(5), 656–661.  https://doi.org/10.1038/nn.2773.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kara J. Blacker
    • 1
    Email author
  • Serban Negoita
    • 1
  • Joshua B. Ewen
    • 1
    • 2
    • 3
  • Susan M. Courtney
    • 1
    • 4
    • 5
  1. 1.Department of Psychological & Brain SciencesJohns Hopkins UniversityBaltimoreUSA
  2. 2.Neurology and Developmental MedicineKennedy Krieger InstituteBaltimoreUSA
  3. 3.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUSA
  5. 5.F.M. Kirby Center for Functional NeuroimagingKennedy Krieger InstituteBaltimoreUSA

Personalised recommendations