Skip to main content
Log in

Effective improvement of beam lifetime based on radiofrequency phase modulation at the HLS-II storage ring

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A radiofrequency (RF) phase modulation method is applied to the Hefei Light Source II storage ring to deeply investigate its longitudinal beam characteristics and improve the beam lifetime. A theoretical analytical model and corresponding experimental measurements of single bunch length and island phenomena are examined. From a series of online machine experiments, we demonstrate that the suitable phase modulation amplitude is 0.02 rad, corresponding to an optimum modulation frequency ranging from 19.6 to 20.7 kHz of the RF system. Furthermore, the overall beam lifetime can be increased by a factor of 2.38 as a result of the beam dilution effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Huang, M. Ball, B. Brabson et al., Experimental determination of the Hamiltonian for synchrotron motion with RF phase modulation. Phys. Rev. E 48, 4678–4688 (1993). https://doi.org/10.1103/PhysRevE.48.4678

    Article  Google Scholar 

  2. N.P. Abreu, R.H.A. Farias, P.F. Tavares, Longitudinal dynamics with RF phase modulation in the Brazilian electron storage ring. Phys. Rev. ST Accel. Beams 9, 124401 (2006). https://doi.org/10.1103/PhysRevSTAB.9.124401

    Article  Google Scholar 

  3. F. Orsini, A. Mosnier, Effectiveness of RF phase modulation for increasing bunch length in electron storage ring. Phys. Rev. E 61, 4431–4440 (2000). https://doi.org/10.1103/PhysRevE.61.4431

    Article  Google Scholar 

  4. J.M. Byrd, W.-H. Cheng, F. Zimmermann, Nonlinear effects of phase modulation in an electron storage ring. Phys. Rev. E 57, 4706–4712 (1998). https://doi.org/10.1103/PhysRevE.57.4706

    Article  Google Scholar 

  5. G. Huang, H. Xu, G. Liu, Experiment of RF modulation at HLS. High Energy Phys. Nucl. Phys. 30, 559–561 (2006)

    Google Scholar 

  6. Yu. Senichev, N. Hertel, S. Lunt et al., Increasing the Life Time of SR Sources by RF Phase Modulation, EPAC’98, Stockholm (1998), pp. 1339–1341

  7. S. Sakanaka, M. Izawa, T. Mitsuhashi et al., Improvement in the beam lifetime by means of an RF phase modulation at the KEK Photon Factory storage ring. Phys. Rev. ST Accel. Beams 3, 050701 (2000). https://doi.org/10.1103/PhysRevSTAB.3.050701

    Article  Google Scholar 

  8. S. Sakanaka, Improvement in the Beam Stability by Means of an RF-Phase Modulation. Photon Factory, Institute of Materials Structure Science, KEK, Japan (2001)

  9. A.N. Pham, S.Y. Lee, K.Y. Ng, Method of phase space beam dilution utilizing bounded chaos generated by RF phase modulation. Phys. Rev. ST Accel. Beams 18, 124001 (2015). https://doi.org/10.1103/PhysRevSTAB.18.124001

    Article  Google Scholar 

  10. D. Quartullo, E. Shaposhnikova, H. Timko, Controlled longitudinal emittance blow-up using band-limited phase noise in CERN PSB. J. Phys. Conf. Ser. 874, 012066 (2017). https://doi.org/10.1088/1742-6596/874/1/012066

    Article  Google Scholar 

  11. M. Sommer, B. Isbarn, B. Riemann et al., Interaction of RF Phase Modulation and Coupled-Bunch Instability at the DELTA Storage Ring. IPAC’16:TUPOR027, Busan, Korea (2016)

  12. M.A. Jebramcik, F.H. Bahnsen, M. Bolsinger et al., Coherent Harmonic Generation in the Presence of Synchronized RF Phase Modulation at DELTA. IPAC’16: WEPOW013, Busan, Korea (2016)

  13. S.Y. Lee, K.Y. Ng, Application of a Localized Chaos Generated by RF-Phase Modulations in Phase-Space Dilution. HB’10: THO1C04, Morschach, Switzerland (2010)

  14. P. Yang, Z. Bai, T. Zhang et al., Design of a hybrid ten-bend-achromat lattice for a diffraction-limited storage ring light source. Nucl. Instrum. Methods A 943, 162506 (2019). https://doi.org/10.1016/j.nima.2019.162506

    Article  Google Scholar 

  15. W. Fan, Z. Bai, W. Gao et al., Physics issues in diffraction limited storage ring design. Sci. China Phys. Methods 55, 802–807 (2012). https://doi.org/10.1007/s11433-012-4696-7

    Article  Google Scholar 

  16. S.C. Leemann, Interplay of Touschek scattering, intrabeam scattering, and RF cavities in ultralow-emittance storage rings. Phys. Rev. ST Accel. Beams 17, 050705 (2014). https://doi.org/10.1103/PhysRevSTAB.17.050705

    Article  Google Scholar 

  17. T. Phimsen, B. Jiang et al., Improving Touschek lifetime and synchrotron frequency spread by passive harmonic cavity in the storage ring of SSRF. Nucl. Sci. Tech. 28, 108 (2017). https://doi.org/10.1007/s41365-017-0259-y

    Article  Google Scholar 

  18. P. Gong, Y. Zhao, H. Hou et al., Tuning control system of a third harmonic superconducting cavity in the Shanghai Synchrotron Radiation Facility. Nucl. Sci. Tech. 30, 157 (2019). https://doi.org/10.1007/s41365-019-0669-0

    Article  Google Scholar 

  19. J. Zheng, Y. Yang, B. Sun et al., Central RF frequency measurement of the HLS-II storage ring. Chin. Phys. C 40, 047005 (2016). https://doi.org/10.1088/1674-1137/40/4/047005

    Article  Google Scholar 

  20. S. Wang, W. Xu, X. Zhou et al., Development of a tune knob for lattice adjustment in the HLS-II storage ring. Nucl. Sci. Tech. 29, 176 (2018). https://doi.org/10.1007/s41365-018-0513-y

    Article  Google Scholar 

  21. D. Jeon, M. Ball, J. Budnick et al., A mechanism of anomalous diffusion in particle beams. Phys. Rev. Lett. 80, 2314–2317 (1998). https://doi.org/10.1103/PhysRevLett.80.2314

    Article  Google Scholar 

  22. C.M. Chu, M. Ball, B. Brabson et al., Effects of overlapping parametric resonances on the particle diffusion process. Phys. Rev. E 60, 6051–6060 (1999). https://doi.org/10.1103/PhysRevE.60.6051

    Article  Google Scholar 

  23. P. Kumar, A.D. Ghodke, A.K. Karnewar et al., Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring. Rev. Sci. Instrum. 84, 123301 (2013). https://doi.org/10.1063/1.4833395

    Article  Google Scholar 

  24. X. Huang, J. Corbett, Measurement of beam lifetime and applications for SPEAR3. Nucl. Instrum. Methods A 629, 31–36 (2011). https://doi.org/10.1016/j.nima.2010.10.147

    Article  Google Scholar 

  25. F. Chen, Z. Chen, Y. Zhou et al., Touschek lifetime study based on the precisely bunch-by-bunch BCM system at SSRF. Nucl. Sci. Tech. 30, 144 (2019). https://doi.org/10.1007/s41365-019-0655-6

    Article  Google Scholar 

  26. B.G. Sun, P. Lu, D.H. He et al., Development of new DCCT system for hefei light source. High Energy Phys. Nucl. Phys. 27, 169–172 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yun-Kun Zhao, Bao-Gen Sun, Ji-Gang Wang, and Fang-Fang Wu. The first draft of the manuscript was written by Yun-Kun Zhao and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bao-Gen Sun.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 12075236, 11575181, 11705203, 51627901) and the Anhui Provincial Natural Science Foundation (No. 1808085QA24).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YK., Sun, BG., Wang, JG. et al. Effective improvement of beam lifetime based on radiofrequency phase modulation at the HLS-II storage ring. NUCL SCI TECH 32, 1 (2021). https://doi.org/10.1007/s41365-020-00836-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00836-0

Keywords

Navigation