Skip to main content
Log in

Improving Touschek lifetime and synchrotron frequency spread by passive harmonic cavity in the storage ring of SSRF

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Beam lifetime of a synchrotron is dominated by Touschek scattering. In the beamline Phase II project of Shanghai synchrotron radiation facility, a passive third harmonic cavity is to be installed for bunch lengthening and instability suppressing. In this paper, the beam dynamics of the cavity is investigated. The parameters of passive operation are optimized to cancel the slope of RF voltage and lengthen the bunches. The Touschek lifetime increases are estimated for optimum and non-optimum voltage flattening. A tolerance of the operation is studied in case that there is a shift on detuning angle. The effect caused by reduction in harmonic voltage generated by lengthened bunch distribution is also estimated using iteration method. An increase in synchrotron frequency spread due to nonlinearity of the voltage giving to the bunch is found by using tracking simulation. This spread can help in damping coupled bunch instability through Landau damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.M. Liu, Z.M. Dai, H.H. Li et al., Lattice design for SSRF storage ring. High Energy Phys. Nucl. Phys. 30, (Supp. I), 144–146 (2001). doi:10.3321/j.issn:0254-3052.2006.z1.047

  2. B.C. Jiang, Z.T. Zhao, G.M. Liu, Study of Touschek lifetime in SSRF storage ring. High Energy Phys. Nucl. Phys. 30, 693–698 (2006)

    Google Scholar 

  3. M. Boscolo, Beam lifetime in low emittance rings, in Proceedings of IPAC2013, Shanghai, China, pp. 1574–1576 (2013)

  4. L.H. Chang, C. Wang, M.C. Lin et al., Effects of the passive harmonic cavity on the beam bunch, in Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee, 3904–3906 (2005)

  5. M. Migliorati, L. Palumbo, M. Zobov, Bunch length control in DAQNE by a higher harmonic cavity. Nucl. Instrum. Meth. A 354, 215–223 (1995)

    Article  Google Scholar 

  6. R.A. Bosch, C.S. Hsue, Suppression of longitudinal coupled-bunch instabilities by a passive higher harmonic cavity, in Proceedings of 1993 Particle Accelerator Conference. Washington, DC, 5, pp. D3369–D3371 (1993). doi:10.1109/PAC.1993.309653

  7. R.A. Bosch, K.J. Kleman, J.J. Bisognano, Robinson instabilities with a higher-harmonic cavity. Phys. Rev. Spec, Top-AC 4, 074401 (2001). doi:10.1103/PhysRevSTAB.4.074401

    Google Scholar 

  8. P.F. Tavares, S.C. Leemann, M. Sjostrom et al., The MAX IV storage ring project. J. Synchrotron Radiat. 21, 862–877 (2014). doi:10.1107/S1600577514011503

    Article  Google Scholar 

  9. G. Skripka, P.F. Tavares, M. Klein et al., Transverse instabilities in the MAX IV 3 GeV ring, in Proceedings of IPAC2014, Dresden, Germany, vol. 1689–1691 (2014)

  10. H. Fan, C.F. Wu, G.C. Liu, Calculations of operating schemes for a passive harmonic cavity in HLS-II. Chin. Phys. C 36, 895–899 (2012). doi:10.1088/1674-1137/36/9/018

    Article  Google Scholar 

  11. M. Georgsson, Landau cavities in third generation synchrotron light sources, in Proceedings of the 2001 Particle Accelerator Conference, Chicago, IL, 4, pp. 2689–2691 (2001). doi:10.1109/PAC.2001.987874

  12. M. Georgsson, A. Andersson, M. Eriksson, Landau cavities at MAX II. Nucl. Instrum. Meth. A 416, 465–474 (1998). doi:10.1016/S0168-9002(98)00667-6

    Article  Google Scholar 

  13. J.M. Byrd, M. Georgsson, Lifetime increase using passive harmonic cavities in synchrotron light sources. Phys. Rev. Spec. Top-AC 4, 030701 (2001). doi:10.1103/PhysRevSTAB.4.030701

    Google Scholar 

  14. G.M. Ma, Z.T. Zhao, J.F. Liu, Design of a higher harmonic cavity for the SSRF storage ring. Chin. Phys. C 32, 275 (2008). doi:10.1088/1674-1137/32/4/007

    Article  Google Scholar 

  15. H. Fan, C.F. Wu, L. Wang, Tracking simulations for the HLS-II with a passive harmonic cavity in the symmetric and asymmetric fill patterns. Chin. Phys. C 36, 1111–1115 (2012). doi:10.1088/1674-1137/36/11/013

    Article  Google Scholar 

  16. A. Hofmann, S. Myers, Beam dynamics in a double RF system, in Proceedings of the 11th International Conference on High Energy Acc, CERN, Geneva, Switzerland, pp. 610–14 (1980). doi:10.1007/978-3-0348-5540-2_83

  17. K.Y. Ng, in Passive landau cavity for the LNLS light source electron ring, FERMILAB-FN-0696 (2000)

  18. E. Métral, Stability of the longitudinal bunched-beam coherent dipole mode, in Proceedings of APAC 2004, Gyeongju, Korea, pp. 137–139 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Tang Zhao.

Additional information

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0402001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phimsen, T., Jiang, BC., Hou, HT. et al. Improving Touschek lifetime and synchrotron frequency spread by passive harmonic cavity in the storage ring of SSRF. NUCL SCI TECH 28, 108 (2017). https://doi.org/10.1007/s41365-017-0259-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0259-y

Keywords

Navigation