Skip to main content

Advertisement

Log in

Intrinsic background radiation of LaBr3(Ce) detector via coincidence measurements and simulations

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The LaBr3(Ce) detector has attracted much attention in recent years because of its superior characteristics compared with other scintillating materials in terms of resolution and efficiency. However, it has a relatively high intrinsic background radiation because of the naturally occurring radioisotopes in lanthanum, actinium, and their daughter nuclei. This limits its applications in low-counting rate experiments. In this study, we identified the radioactive isotopes in the \(\phi 3''\times 3''\) Saint-Gobain B380 detector by a coincidence measurement using a Clover detector in a low-background shielding system. Moreover, we carried out a Geant4 simulation of the experimental spectra to evaluate the activities of the main internal radiation components. The total activity of the background radiation of B380 is determined to be 1.523 (34) Bq/cm3. The main sources include 138La at 1.428 (34) Bq/cm3, 207Tl at 0.0135 (13) Bq/cm3, 211Bi at 0.0136 (15) Bq/cm3, 215Po at 0.0135 (3) Bq/cm3, 219Rn at 0.0125 (12) Bq/cm3, 223Fr at 0.0019 (11) Bq/cm3, 223Ra at 0.0127 (10) Bq/cm3, 227Th at 0.0158 (22) Bq/cm3, and 227Ac at 0.0135 (13) Bq/cm3. Of these, the activities of 207Tl, 211Po, 215Po, 223Fr, and 227Ac are deduced for the first time from the secular equilibrium established in the decay chain of 227Ac.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/lanthanum-material-data-sheet.pdf

  2. A. Iltis, M.R. Mayhugh, P. Menge et al., Lanthanum halide scintillators: properties and applications. Nucl. Instrum. Methods A 563, 359–363 (2006). https://doi.org/10.1016/j.nima.2006.02.192

    Article  Google Scholar 

  3. J.H. Liu, D.W. Li, Z.M. Zhang et al., Using a LaBr3: Ce scintillator for positron annihilation lifetime spectroscopy. Chin. Phys. C 36, 380–383 (2012). https://doi.org/10.1088/1674-1137/36/4/016

    Article  Google Scholar 

  4. Y.Y. Ji, H.Y. Choi, W. Lee et al., Application of a LaBr3(Ce) scintillation detector to an environmental radiation monitor. IEEE Trans. Nucl. Sci. 65, 2021–2028 (2018). https://doi.org/10.1109/TNS.2018.2823322

    Article  Google Scholar 

  5. I. Mouhti, A. Elanique, M.Y. Messous et al., Validation of a NaI(Tl) and LaBr3(Ce) detector’s models via measurements and Monte Carlo simulations. J. Radiat. Res. Appl. Sci. 11, 1687–8507 (2018). https://doi.org/10.1016/j.jrras.2018.06.003

    Article  Google Scholar 

  6. C. Cheng, W.B. Jia, D.Q. Hei et al., Determination of thickness of wax deposition in oil pipelines using gamma-ray transmission method. Nucl. Sci. Tech. 29, 109 (2018). https://doi.org/10.1007/s41365-018-0447-4

    Article  Google Scholar 

  7. E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, High-energy-resolution scintillator: Ce\(^{3+}\) activated LaCl3. Appl. Phys. Lett. 77, 1467 (2000). https://doi.org/10.1063/1.1308053

    Article  Google Scholar 

  8. K.S. Shah, J. Glodo, M. Klugerman et al., LaBr3: Ce scintillators for gamma-ray spectroscopy. IEEE Trans. Nucl. Sci. 50, 2410–2413 (2003). https://doi.org/10.1109/TNS.2003.820614

    Article  Google Scholar 

  9. R. Nicolini, F. Camera, N. Blasi et al., Investigation of the properties of a LaBr3: Ce scintillator. Nucl. Instrum. Methods A 582, 554–561 (2007). https://doi.org/10.1016/j.nima.2007.08.221

    Article  Google Scholar 

  10. F. Quarati, A.J.J. Bos, S. Brandenburg et al., X-ray and gamma-ray response of a \(2^{\prime \prime } \times 2^{\prime \prime }\) LaBr3: Ce scintillation detector. Nucl. Instrum. Methods A 574, 115–120 (2007). https://doi.org/10.1016/j.nima.2007.01.161

    Article  Google Scholar 

  11. A. Lavagno, G. Gervino, A. Scarfone, Study of linearity and internal background for LaBr 3: Ce gamma ray scintillation detector. Nucl. Instrum. Methods A 718, 504–505 (2013). https://doi.org/10.1016/j.nima.2012.11.024

    Article  Google Scholar 

  12. M.S. Alekhin, J.T.M. de Haas, I.V. Khodyuk et al., Improvement of gamma-ray energy resolution of LaBr3:Ce\(^{3+}\) scintillation detectors by Sr\(^{2+}\) and Ca\(^{2+}\) co-doping. Appl. Phys. Lett. 102, 161915 (2013). https://doi.org/10.1063/1.4803440

    Article  Google Scholar 

  13. R. Shi, X.G. Tuo, H.L. Li et al., Unfolding analysis of LaBr3: Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration. Nucl. Sci. Tech. 29, 1 (2018). https://doi.org/10.1007/s41365-017-0340-6

    Article  Google Scholar 

  14. https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/labr-performancesummary-2019.pdf

  15. O.J. Roberts, A.M. Bruce, P.H. Regan et al., A LaBr3: Ce fast-timing array for DESPEC at FAIR. Nucl. Instrum. Methods A 748, 91–95 (2014). https://doi.org/10.1016/j.nima.2014.02.037

    Article  Google Scholar 

  16. B. Longfellow, P.C. Bender, J. Belarge et al., Commissioning of the LaBr3(Ce) detector array at the National Superconducting Cyclotron Laboratory. Nucl. Instrum. Methods A 916, 141–147 (2018). https://doi.org/10.1016/j.nima.2018.10.215

    Article  Google Scholar 

  17. B.D. Milbrath, R.C. Runkle, T.W. Hossbach et al., Characterization of alpha contamination in lanthanum trichloride scintillators using coincidence measurements. Nucl. Instrum. Methods A 547, 504–510 (2005). https://doi.org/10.1016/j.nima.2004.11.054

    Article  Google Scholar 

  18. B.D. Milbrath, J.I. Mcintyre, R.C. Runkle et al., Contamination studies of LaBr3(Ce) scintillators. IEEE Trans. Nucl. Sci. 53, 3031–3034 (2006). https://doi.org/10.1109/TNS.2006.881064

    Article  Google Scholar 

  19. R. Rosson, J. Lahr, B. Kahn, Radation background in a LaBr3\(\gamma\)-ray scintillation detector. Health Phys. 101, 703–708 (2011). https://doi.org/10.1097/HP.0b013e3182211172

    Article  Google Scholar 

  20. F.G.A. Quarati, I.V. Khodyuk, C.W.E. Eijk et al., Study of 138La radioactive decays using LaBr3 scintillators. Nucl. Instrum. Methods A 53, 46–52 (2012). https://doi.org/10.1016/j.nima.2012.04.066

    Article  Google Scholar 

  21. A. Camp, A. Vargas, J.M. Fernández-Vareab, Determination of LaBr3(Ce) internal background using a HPGe detector and Monte Carlo simulations. Appl. Radiat. Isot. 109, 512–517 (2016). https://doi.org/10.1016/j.apradiso.2015.11.093

    Article  Google Scholar 

  22. https://www.nndc.bnl.gov/nudat2/chartnuc.jsp

  23. Y.A. Trofimov, E.E. Lupar, V.N. Yurov, Linearity of the energy scale of a detector based on a LaBr3(Ce) scintillator. Instrum. Exp. Tech. 56, 151–155 (2013). https://doi.org/10.1134/S0020441213010314

    Article  Google Scholar 

  24. A. Giaz, G. Gosta, F. Camera et al., Measurement of \(\beta ^-\)decay continuum spectrum of 138La. Europhys. Lett. 110, 42002 (2015). https://doi.org/10.1209/0295-5075/110/42002

    Article  Google Scholar 

  25. F.G.A. Quarati, P. Dorenbos, X. Mougeot, Experiments and theory of 138La radioactive decay. Appl. Radiat. Isot. 108, 30–34 (2016). https://doi.org/10.1016/j.apradiso.2015.11.080

    Article  Google Scholar 

  26. F.G.A. Quarati, P. Dorenbos, X. Mougeot, Reprint of experiments and theory of 138La radioactive decay. Appl. Radiat. Isot. 109, 172–176 (2016). https://doi.org/10.1016/j.apradiso.2016.01.017

    Article  Google Scholar 

  27. R. Sandler, G. Bollen, J. Dissanayake et al., Direct determination of the 138La \(\beta ^-\)decay Q value using Penning trap mass spectrometry. Phys. Rev. C 100, 014308 (2019). https://doi.org/10.1103/PhysRevC.100.014308

    Article  Google Scholar 

  28. D.H. Wright, GEANT4-a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2002). https://doi.org/10.2172/799992

    Article  Google Scholar 

  29. J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006). https://doi.org/10.1109/TNS.2006.869826

    Article  Google Scholar 

  30. J. Allison, K. Amako, J. Apostolakis et al., Recent developments in Geant4. Nucl. Instrum. Methods A 835, 186–225 (2016). https://doi.org/10.1016/j.nima.2016.06.125

    Article  Google Scholar 

  31. M. Moszynski, M. Kapusta, D.Wolski et al., Energy Resolution of Scintillation detectors with large area avalanche photodiodes and photomultipliers light readout. IEEE Nucl. Sci. Symp 556, 259-265 (2012) https://doi.org/10.1016/j.nima.2005.09.049

  32. L.C. He, L.J. Diao, B.H. Sun et al., Summing coincidence correction for \(\gamma\)-ray measurements using the HPGe detector with a low background shielding system. Nucl. Instrum. Methods A 880, 22–27 (2018). https://doi.org/10.1016/j.nima.2017.09.043

    Article  Google Scholar 

  33. https://radware.phy.ornl.gov/gf3/gf3.html$♯$5.3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Hua Sun.

Additional information

This work was supported by the National Key R & D program of China (No. 2016YFA0400504) and by the National Natural Science Foundation of China (Nos. U1832211, U1867210, 11922501, 11961141004, 11575018, 11790322, and U1932209).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Sun, BH., Zhu, LH. et al. Intrinsic background radiation of LaBr3(Ce) detector via coincidence measurements and simulations. NUCL SCI TECH 31, 99 (2020). https://doi.org/10.1007/s41365-020-00812-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00812-8

Keywords

Navigation