Skip to main content

Advertisement

Log in

Unfolding analysis of LaBr3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study mainly examines a method to deconvolve the LaBr3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration. In the algorithm, the full width at half maximum (FWHM) of full energy peak was calculated by the cubic spline interpolation algorithm and calibrated by a square root of a quadratic function that changes with the energy. Additionally, the detector response matrix was constructed to deconvolve the gamma spectrum. Furthermore, an improved SNIP algorithm was proposed to eliminate the background. In the experiment, several independent peaks of 152Eu, 137Cs, and 60Co sources were detected by a LaBr3:Ce scintillator that were selected to calibrate the energy resolution. The Boosted Gold algorithm was applied to deconvolve the gamma spectrum. The results showed that the peak position difference between the experiment and the deconvolution was within ± 2 channels and the relative error of peak area was approximately within 0.96–6.74%. Finally, a 133Ba spectrum was deconvolved to verify the efficiency and accuracy of the algorithm in unfolding the overlapped peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk et al., High-energy-resolution scintillator: Ce3+ activated LaBr 3. Appl. Phys. Lett. 79, 1573–1575 (2001). https://doi.org/10.1063/1.1385342

    Article  Google Scholar 

  2. K.S. Shah, J. Glodo, M. Klugerman et al., LaBr 3: Ce scintillators for gamma-ray spectroscopy. IEEE Trans. Nucl. Sci. 50, 2410–2413 (2003). https://doi.org/10.1109/TNS.2003.820614

    Article  Google Scholar 

  3. R. Nicolini, F. Camera, N. Blasi et al., Investigation of the properties of a 1″ × 1″ LaBr 3: Ce scintillator. Nucl. Instrum. Methods A 582, 554–561 (2007). https://doi.org/10.1016/j.nima.2007.08.221

    Article  Google Scholar 

  4. Z. Li, Y.W. Zhang, S.F. Sun et al., Study on response function model for γ-ray scintillation detector. At. Energy Sci. Technol. 49, 1354–1358 (2015). https://doi.org/10.7538/yzk.2015.49.08.1354. (in Chinese)

    Google Scholar 

  5. R. Shi, X.G. Tuo, H.L. Li et al., 239Pu alpha spectrum analysis based on PIPS detector response function and variations with vacuum and distance. Nucl. Sci. Tech. 28, 4–10 (2017). https://doi.org/10.1007/s41365-016-0163-x

    Article  Google Scholar 

  6. T.P. Li, M. Wu, Reconstruction of objects by direct demodulation. Astrophys. Space Sci. 215, 213–227 (1994). https://doi.org/10.1007/BF00660079

    Article  MATH  Google Scholar 

  7. L.B. Lucy, An iterative technique for the rectification of observed distributions. Astron. J. 79, 745–754 (1974). https://doi.org/10.1086/111605

    Article  Google Scholar 

  8. M. Morháč, V. Matoušek, High-resolution boosted deconvolution of spectroscopic data. J. Comput. Appl. Math. 235, 1629–1640 (2011). https://doi.org/10.1016/j.cam.2010.09.005

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Morháč, V. Matoušek, Complete positive deconvolution of spectrometric data. Digit. Signal Process. 19, 372–392 (2009). https://doi.org/10.1016/j.dsp.2008.06.002

    Article  Google Scholar 

  10. M. Morháč, J. Kliman, V. Matoušek et al., Efficient one-and two-dimensional gold deconvolution and its application to γ-ray spectra decomposition. Nucl. Instrum. Methods A 401, 385–408 (1997). https://doi.org/10.1016/S0168-9002(97)01058-9

    Article  Google Scholar 

  11. R. Gold, An iterative unfolding method for response matrices. Math. Comput. Res. Dev. Rep. 6984, 1–39 (1964). https://doi.org/10.2172/4634295

    Google Scholar 

  12. M. Morháč, Deconvolution methods and their applications in the analysis of γ-ray spectra. Nucl. Instrum. Methods A 559, 119–123 (2006). https://doi.org/10.1016/j.nima.2005.11.129

    Article  Google Scholar 

  13. L. Li, X.G. Tuo, M.Z. Liu et al., High-resolution boosted reconstruction of γ-ray spectra. Nucl. Sci. Technol. 25, 18–24 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.050202

    Google Scholar 

  14. X.Y. Ai, Y.X. Wei, W.Y. Xiao, Direct demodulation method for γ spectra analysis detected by CZT detectors. J. Tsinghua Univ. Sci. Technol. 46, 821–824 (2006). https://doi.org/10.3321/j.issn:1000-0054.2006.06.018. (in Chinese)

    Google Scholar 

  15. M. Jandel, M. Morháč, J. Kliman et al., Decomposition of continuum γ-ray spectra using synthesized response matrix. Nucl. Instrum. Methods A 516, 172–183 (2004). https://doi.org/10.1016/j.nima.2003.07.047

    Article  Google Scholar 

  16. C.M. Salgado, C.C. Conti, P.H.B. Becker, Determination of HPGe detector response using MCNP5 for 20–150 keV X-rays. Appl. Radiat. Isot. 64, 700–705 (2006). https://doi.org/10.1016/j.apradiso.2005.12.011

    Article  Google Scholar 

  17. Z. Li, X.G. Tuo, R. Shi et al., A statistical approach to fit Gaussian part of full-energy peaks from Si (PIN) and SDD X-ray spectrometers. Sci. China Technol. Sci. 57, 19–24 (2014). https://doi.org/10.1007/s11431-013-5427-7

    Article  Google Scholar 

  18. M. Morháč, V. Matoušek, J. Kliman, Efficient algorithm of multidimensional deconvolution and its application to nuclear data processing. Digit. Signal Process. 13, 144–171 (2003). https://doi.org/10.1016/S1051-2004(02)00011-8

    Article  Google Scholar 

  19. P. Bandžuch, M. Morháč, J. Krištiak, Study of the Van Cittert and Gold iterative methods of deconvolution and their application in the deconvolution of experimental spectra of positron annihilation. Nucl. Instrum. Methods A 384, 506–515 (1997). https://doi.org/10.1016/S0168-9002(96)00874-1

    Article  Google Scholar 

  20. Z. Li, X.G. Tuo, R. Shi et al., Analytic fitting and simulation methods for characteristic X-ray peaks from Si-PIN detector. Nucl. Sci. Tech. 24, 060206 (2013). https://doi.org/10.13538/j.1001-8042/nst.2013.06.007

    Google Scholar 

  21. Z. Li, X.G. Tuo, J.B. Yang et al., Statistical distribution based detector response function of a Si (PIN) detector for Kα and Kβ X-ray. Chin. Phys. C 37, 018202 (2013). https://doi.org/10.1088/1674-1137/37/1/018202

    Article  Google Scholar 

  22. P. Dorenbos, J.T.M. de Haas, C.W.E. van Eijk, Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals. IEEE Trans. Nucl. Sci. 42, 2190–2202 (1995). https://doi.org/10.1109/23.489415

    Article  Google Scholar 

  23. M. Moszyński, W. Czarnacki, W. Klamra et al., Intrinsic energy resolution of pure NaI studied with large area avalanche photodiodes at liquid nitrogen temperatures. Nucl. Instrum. Methods A 505, 63–67 (2003). https://doi.org/10.1016/S0168-9002(03)01021-0

    Article  Google Scholar 

  24. M. Moszynski, J. Zalipska, M. Balcerzyk et al., Intrinsic energy resolution of NaI(Tl). Nucl. Instrum. Methods A 484, 259–269 (2002). https://doi.org/10.1016/S0168-9002(01)01964-7

    Article  Google Scholar 

  25. C.G. Ryan, E. Clayton, W.L. Griffin et al., SNIP: a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nucl. Instrum. Methods B 34, 396–402 (1988). https://doi.org/10.1016/0168-583X(88)90063-8

    Article  Google Scholar 

  26. M. Morháč, V. Matoušek, Peak clipping algorithms for background estimation in spectroscopic data. Appl. Spectrosc. 62, 91–106 (2008). https://doi.org/10.1366/000370208783412762

    Article  Google Scholar 

  27. M. Morháč, An algorithm for determination of peak regions and baseline elimination in spectroscopic data. Nucl. Instrum. Methods A 600, 478–487 (2009). https://doi.org/10.1016/j.nima.2008.11.132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Guo Tuo.

Additional information

This study was supported by the National Natural Science Foundation of China (Nos. 41374130 and 41604154).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Tuo, XG., Li, HL. et al. Unfolding analysis of LaBr3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration. NUCL SCI TECH 29, 1 (2018). https://doi.org/10.1007/s41365-017-0340-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0340-6

Keywords

Navigation