Skip to main content
Log in

Study on the γ + X, γ + β, γ + α Coincidence Summing Effects of the Intrinsic Background Instrument Spectrum of a LaBr3(Ce) Scintillation Counter

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The energy resolution of a LaBr3(Ce) scintillation counter can reach 2.7% (662 keV) at room temperature. As a radiation measuring device, it has remarkably good characteristics. However, the LaBr3(Ce) crystal has its own intrinsic radioactivity background, which mainly comes from 138La and from 227Ac and its daughters. 138La can emit β, γ and X-rays through β and γ decay; 227Ac and its daughters can emit α, β and γ-rays through a, β and γ decay. α, β and X-ray energy are characteristic while β-ray energy is continuous. The energy of α, β and X-rays is mainly deposited in the crystal unless the α, β and X-rays at the edge of the crystal can escape from the crystal. Therefore, the α, β, γ and X-rays generated by the intrinsic radioactivity of the crystal are superimposed on the instrument spectrum, which makes the instrument spectrum more complicated and produces the coincidence summing effects of γ + X, γ + β and γ + α.In this research, the GEANT4.9.5 software package was used to simulate the spectra of α, β, γ and X-rays. On the basis of a combination of fitting decomposition and reconstruction, the simulation spectrum of the LaBr3(Ce) self-radioactive background was obtained accurately and was verified by using physical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bashir et al., Appl. Radiat. Isot. 154, 108880 (2019).

    Article  Google Scholar 

  2. E. Yoshida et al., Nucl. Instrum. Methods Phys. Res. A 604, 363 (2009).

    Article  ADS  Google Scholar 

  3. E. Prieto et al., Radiat. Phys. Chem. 168, 108600 (2020).

    Article  Google Scholar 

  4. P.F. Bloser et al., Nucl. Instrum. Methods Phys. Res. A 763, 26 (2014).

    Article  ADS  Google Scholar 

  5. K. Smith et al., Nucl. Instrum. Methods Phys. Res. B 414, 190 (2018).

    Article  ADS  Google Scholar 

  6. J. Jeon et al., Nucl. Instrum. Methods Phys. Res. A 954, 162302 (2020).

    Article  Google Scholar 

  7. A. Lavagno et al., Nucl. Instrum. Methods Phys. Res. A 718, 504 (2013).

    Article  ADS  Google Scholar 

  8. D. Arnold et al., Appl. Radiat. Isot. 64, 1297 (2006).

    Article  Google Scholar 

  9. F. Quarati et al., Nucl. Instrum. Methods Phys. Res. A 574, 115 (2007).

    Article  ADS  Google Scholar 

  10. P. Mekarski et al., Appl. Radiat. Isot. 67, 1957 (2009).

    Article  Google Scholar 

  11. K. Breitenecker et al., Appl. Radiat. Isot. 67, 2088 (2009).

    Article  Google Scholar 

  12. F. C. L. Crespi et al., Nucl. Instrum. Methods Phys. Res. A 602, 520 (2009).

    Article  ADS  Google Scholar 

  13. F. G. A. Quarati et al., Nucl. Instrum. Methods Phys. Res. A 683, 46 (2012).

    Article  ADS  Google Scholar 

  14. R. Nicolini et al., Nucl. Instrum. Methods Phys. Res. A 582, 554 (2007).

    Article  ADS  Google Scholar 

  15. W. Wolszczak et al., Nucl. Instrum. Methods Phys. Res. A 857, 66 (2017).

    Article  ADS  Google Scholar 

  16. H. Negm et al., in ANIMMA (June, 2013), pp. 1–5.

  17. A. A. Sonzogni et al., Nucl. Data Sheets 98, 515 (2003).

    Article  ADS  Google Scholar 

  18. R. Sandler et al., Phys. Rev. C 100, 014308 (2019).

    Article  ADS  Google Scholar 

  19. R. Bernabei et al., Nucl. Instrum. Methods Phys. Res. A 555, 270 (2005).

    Article  ADS  Google Scholar 

  20. A. Camp et al., Appl. Radiat. Isot. 109, 512 (2016).

    Article  Google Scholar 

  21. B. Milbrath et al., Nucl. Instrum. Methods Phys. Res. A 547, 504 (2005).

    Article  ADS  Google Scholar 

  22. M. Kohler et al., Appl. Radiat. Isot. 52, 717 (2000).

    Article  Google Scholar 

  23. E. L. Roy et al., Mar.Chem. 212, 64 (2019).

    Article  Google Scholar 

  24. W. Geibert et al., Mar.Chem. 109, 238 (2008).

    Article  Google Scholar 

  25. T. J. Shaw et al., Mar.Chem. 78, 197 (2002).

    Article  Google Scholar 

  26. Y. Nozaki et al., Geophys. Res. Lett. 17, 1933 (1990).

    Article  ADS  Google Scholar 

  27. Y. Lu et al., Nucl. Instrum. Methods Phys. Res. A 969, 164014 (2020).

    Article  Google Scholar 

  28. K. E. Mesick et al., Nucl. Instrum. Methods Phys. Res. A 5, 31072 (2016).

    Google Scholar 

  29. M. N. Cinti et al., Nucl. Instrum. Methods Phys. Res. A 724, 27 (2013).

    Article  ADS  Google Scholar 

  30. J. K. Hartwell et al., Appl. Radiat. Isot. 63, 223 (2005).

    Article  Google Scholar 

  31. W. J. Kernan, IEEE Trans. Nucl. Sci. 53, 395 (2006).

    Article  ADS  Google Scholar 

  32. W. M. Higgins et al., J. Cryst. Growth 287, 239 (2006).

    Article  ADS  Google Scholar 

  33. Davood Alizadeh et al., Nucl. Instrum. Methods Phys. Res. A 915, 1 (2019).

    Article  ADS  Google Scholar 

  34. S. Ashrafi et al., Open Phys. 11, 560 (2013).

    Article  ADS  Google Scholar 

  35. Y. Zhang et al., Math. Probl. Eng. 38, 931256 (2015).

    ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers whose comments greatly improved the quality of the manuscript. This research was supported by the National Science Foundation of China (Project No.41774147), National Science Foundation of China (Project No.11905020) and the National Key R&D Program of China (Project No.2017YFC0602105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shangqing Sun or Liangquan Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Ge, L., Li, Y. et al. Study on the γ + X, γ + β, γ + α Coincidence Summing Effects of the Intrinsic Background Instrument Spectrum of a LaBr3(Ce) Scintillation Counter. J. Korean Phys. Soc. 77, 1091–1099 (2020). https://doi.org/10.3938/jkps.77.1091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.1091

Keywords

Navigation