Skip to main content

Advertisement

Log in

Integration of a hairpin RNA-encoding gene derived from Tobacco streak virus confers resistance in groundnut (Arachis hypogaea L.) against peanut stem necrosis disease

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The feasibility of controlling peanut stem necrosis disease caused by Tobacco streak virus (TSV) in groundnut (Arachis hypogaea L.) was explored by expressing double-stranded RNA of the replicase (Rep) gene of TSV in groundnut through genetic engineering. A hairpin (hp) RNAi construct containing 535-bp sense and antisense TSV-Rep sequences flanking a 742-bp spacer sequence (Pdk intron) under the control of the constitutive Cauliflower mosaic virus 35S promoter was made in the binary vector pART27. This chimeric gene construct was then mobilized into Agrobacterium tumefaciens strain LBA4404 via triparental mating using pRK2013 as a helper. Cotyledon explants of groundnut cultivar TMV-7 were transformed with A. tumefaciens harboring the hpRNA cassette. The presence of the transgene in the transgenic plants was confirmed up to T3 generation by PCR amplification of the 535-bp fragment of TSV-Rep gene. The bioassay results indicated that necrotic lesions were observed on the leaves of the wild-type plants 7–9 days after inoculation with TSV and stem necrosis appeared 16–20 days after inoculation, whereas the transgenic plants did not develop symptoms until harvest. ELISA results indicated that the wild-type plants inoculated with TSV recorded the highest virus concentration as compared to the transgenic lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abhary MK, Anfoka GH, Nakhla MK, Maxwell DP (2006) Post-transcriptional gene silencing in controlling viruses of the Tomato yellow leaf curl virus complex. Arch Virol 151:2349–2363

    Article  CAS  PubMed  Google Scholar 

  2. Ammara UE, Mansoor S, Saeed M, Amin I, Briddon RW, Al-Sadi AM (2015) RNA interference-based resistance in transgenic tomato plants against Tomato yellow leaf curl virus-Oman (TYLCV-OM) and its associated betasatellite. Virol J 12:38

    Article  PubMed  PubMed Central  Google Scholar 

  3. An G (1987) Binary Ti vectors for plant transformation and promoter analysis. Methods Enzymol 153:292–305

    Article  CAS  Google Scholar 

  4. Andika IB, Kondo H, Tamada T (2005) Evidence that RNA silencing-mediated resistance to Beet necrotic yellow vein virus is less effective in roots than in leaves. Mol Plant-Microbe Interact 18:194–204

    Article  CAS  PubMed  Google Scholar 

  5. Azadi P, Otang NV, Supaporn H, Khan RS, Chin DP, Nakamura I, Mii M (2011) Increased resistance to cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicase gene. Biotechnol Lett 33:1249–1255

    Article  CAS  PubMed  Google Scholar 

  6. Bag S, Singh RS, Jain RK (2007) Agrobacterium-mediated transformation of groundnut with coat protein gene of Tobacco streak virus. Indian J Virol 18:65–69

    Google Scholar 

  7. Baulcomb DC (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8:1833–1844

    Article  Google Scholar 

  8. Baulcombe DC (1994) Replicase-mediated resistance: a novel type of virus resistance in transgenic plants. Trends Microbiol 2:60–63

    Article  CAS  PubMed  Google Scholar 

  9. Baulcombe DC (2002) RNA silencing. Curr Biol 12:2–84

    Article  Google Scholar 

  10. Bonfim K, Faria JC, Nogueira EO, Mendes EA, Aragao FJ (2007) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microbe Interact 20:717–726

    Article  CAS  PubMed  Google Scholar 

  11. Brederode FT, Taschner PE, Posthumus E, Bol JF (1995) Replicase-mediated resistance to alfalfa mosaic virus. Virology 207:467–474

    Article  CAS  PubMed  Google Scholar 

  12. Brunetti A, Tavazza M, Noris E, Tavazza R, Caciagli P, Ancor G, Crespi S, Accotto GP (1997) High expression of truncated viral rep protein confers resistance to tomato yellow leaf curl virus in transgenic tomato plants. Mol Plant Microbe Interact 10:571–579

    Article  CAS  Google Scholar 

  13. Canto T, Palukaitis P (1999) Replicase-mediated resistance to cucumber mosaic virus does not inhibit localization and/or trafficking of the viral movement protein. Mol Plant Microbe Interact 12:743–747

    Article  CAS  Google Scholar 

  14. Carr JP, Gal-on A, Palukaitis P, Zaitlin M (1994) Replicase-mediated resistance to cucumber mosaic virus in transgenic plants involves suppression of both virus replication in the inoculated leaves and long-distance movement. Virology 199:439–447

    Article  CAS  PubMed  Google Scholar 

  15. Cillo F, Palukaitis P (2014) Transgenic resistance. Adv Virus Res 90:35–146

    Article  PubMed  Google Scholar 

  16. Dietzgen RG, Callaghan B, Higgins CM, Birch RG, Chen K, Xu Z (2001) Differentiation of peanut seedborne potyviruses and curcumoviruses by RT-PCR. Plant Dis 859:989–992

    Article  Google Scholar 

  17. Ehrenfeld N, Roman E, Serrano C, Arce-Johnson P (2004) Replicase mediated resistance against Potato Leaf roll Virus in potato Desiree plants. Biol Res 37:71–82

    Article  CAS  PubMed  Google Scholar 

  18. Elayabalan S, Kalaiponmani K, Subramaniam S, Selvarajan R, Panchanathan R, Muthuvelayoutham R, Kumar KK, Balasubramanian P (2013) Development of Agrobacterium-mediated transformation of highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease. World J Microbiol Biotechnol 29:589–596

    Article  CAS  PubMed  Google Scholar 

  19. Faria JC, Albino MMC, Dias BBA, Cancado LJ, da Cunha NB, Silva LM, Vianna GR, Aragao FJL (2006) Partial resistance to Bean golden mosaic virus in a transgenic common bean (Phaseolus vulgaris L.) line expressing a mutated rep gene. Plant Sci 171:565–571

    Article  CAS  Google Scholar 

  20. Gal-On A, Wolf D, Pilowski M, Zelcer A (2000) Transgenic F1 hybrids harboring a defective viral replicase exhibit high resistance to CMV in the field. Acta Physiol Plant 22:311–312

    Article  Google Scholar 

  21. Golemboski DB, Lomonossoff GP, Zaitlin M (1990) Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci USA 87:6311–6315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goodwin J, Chapman K, Swaney S, Parks TD, Wernsman EA, Dougherty WG (1996) Genetic and biochemical dissection of transgenic RNA-mediated virus resisitance. Plant Cell 8:95–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hellwald KH, Palukaitis P (1995) Viral RNA as a potential target for two independent mechanisms of replicase-mediated resistance against Cucumber mosaic virus. Cell 83:937–946

    Article  CAS  PubMed  Google Scholar 

  24. Ibrahim AB, Aragao FJ (2015) RNAi-mediated resistance to viruses in genetically engineered plants. Methods Mol Biol 1287:81–92

    Article  CAS  PubMed  Google Scholar 

  25. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kalantidis K, Psaradakis S, Tabler M, Sagris M (2002) The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant Microbe Interact 15:826–833

    Article  CAS  PubMed  Google Scholar 

  27. Kalyani G, Reddy AS, Kumar PL, Rao RDVJP, Aruna R, Waliyar F, Nigam SN (2007) Sources of resistance to Tobacco streak virus in wild Arachis (Fabaceae: Papilionoidae) germplasm. Plant Dis 91:1585–1590

    Article  Google Scholar 

  28. Kamo K, Jordan R, Guaragna MA, Hsu HT, Ueng P (2010) Resistance to Cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase or coat protein subgroup II gene from Cucumber mosaic virus. Plant Cell 29:695–704

    Article  CAS  Google Scholar 

  29. Le DT, Chu HD, Sasaya T (2015) Creation of transgenic rice plants producing small interfering RNA of Rice tungro spherical virus. GM Crops Food 6:47–53

    Article  PubMed  Google Scholar 

  30. Longstaff M, Brigneti G, Boccard F, Chapman S, Baulcombe D (1993) Extreme resistance to potato virus X infection in plants expressing a modified component of the putative viral replicase. EMBO J 12:379–386

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Matzke AJM, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148

    Article  CAS  PubMed  Google Scholar 

  32. Mehta R, Radhakrishnan T, Kumar A, Yadav R, Dobaria JR, Thirumalaisamy PP, Jain RK, Chigurupati P (2013) Coat protein-mediated transgenic resistance of peanut (Arachis hypogaea L.) to peanut stem necrosis disease through Agrobacterium-mediated genetic transformation. Indian J Virol 24:205–213

    Article  PubMed  PubMed Central  Google Scholar 

  33. Missiou A, Kalantidis K, Boutla A, Tzortzakaki S, Tabler M, Tsagris M (2004) Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Mol Breeding 14:185–197

    Article  CAS  Google Scholar 

  34. Mitter N, Dietzgen RG (2012) Use of hairpin RNA constructs for engineering plant virus resistance. Methods Mol Biol 894:191–208

    Article  CAS  PubMed  Google Scholar 

  35. Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  36. Nomura K, Ohshima K, Anai T, Uekusa H, Kita N (2004) RNA silencing of the introduced coat protein gene of Turnip mosaic virus confers broad-spectrum resistance in transgenic Arabidopsis. Phytopathology 94:730–736

    Article  CAS  PubMed  Google Scholar 

  37. Noris E, Accotto GP, Tavazza R, Brunetti A, Crespi S, Tavazza M (1996) Resistance to tomato yellow leaf curl geminivirus in Nicotiana benthamiana plants transformed with a truncated viral C1 gene. Virology 224:130–138

    Article  CAS  PubMed  Google Scholar 

  38. Ntui VO, Kynet K, Khan RS, Ohara M, Goto Y, Watanabe M, Fukami M, Nakamura I, Mii M (2014) Transgenic tobacco lines expressing defective CMV replicase-derived dsRNA are resistant to CMV-O and CMV-Y. Mol Biotechnol 56:50–63

    Article  CAS  PubMed  Google Scholar 

  39. Ogwok E, Odipio J, Halsey M, Gaitan-Solis E, Bua A, Taylor NJ, Fauquet CM, Alicai T (2012) Transgenic RNA interference (RNAi)-derived field resistance to cassava brown streak disease. Molecular Plant Pathology 13:1019–1031

    Article  CAS  PubMed  Google Scholar 

  40. Palukaitis P, Zaitlin M (1997) Replicase-mediated resistance to plant virus disease. Adv Virus Res 48:349–377

    Article  CAS  PubMed  Google Scholar 

  41. Pooggin M, Shivaprasad PV, Veluthambi K, Hohn T (2003) RNAi targeting of DNA virus in plants. Nat Biotechnol 21:131–132

    Article  CAS  PubMed  Google Scholar 

  42. Pradeep K, Satya VK, Selvapriya M, Vijayasamundeeswari A, Ladhalakshmi D, Paranidharan V, Rabindran R, Samiyappan R, Balasubramanian P, Velazhahan R (2012) Engineering resistance against Tobacco streak virus (TSV) in sunflower and tobacco using RNA interference. Biol Plant 56:735–741

    Article  CAS  Google Scholar 

  43. Prasada Rao RDVJ, Reddy AS, Reddy SV, Thirumala Devi K, Chander Rao S, Manoj Kumar V, Subramanyam K, Yellamanda Reddy T, Nigam SN, Reddy DVR (2003) The host range of Tobacco streak virus in India and transmission by thrips. Ann Appl Biol 142:365–368

    Article  Google Scholar 

  44. Prins M, Goldbach R (1996) RNA-mediated virus resistance in transgenic plants. Arch Virol 141:2259–2276

    Article  CAS  PubMed  Google Scholar 

  45. Ramiah M, Bhat AI, Jain RK, Pant RP, Ahlawat YS, Prabhakar K, Varma A (2001) Isolation of an isometric virus causing sunflower necrosis disease in India. Plant Dis 85:443

    Article  Google Scholar 

  46. Reddy AS, Prasada Rao RDVJ, Thirumala Devi K, Reddy SV, Mayo MA, Roberts I, Satyanarayana T, Subramaniam K, Reddy DVR (2002) Occurrence of Tobacco streak virus on peanut (Arachis hypogaea) in India. Plant Dis 86:173–178

    Article  CAS  Google Scholar 

  47. Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance-deriving resistance genes from the parasite’s own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  48. Sharma KK, Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159:7–19

    Article  CAS  PubMed  Google Scholar 

  49. Sharma VK, Basu S, Chakraborty S (2015) RNAi mediated broad-spectrum transgenic resistance in Nicotiana benthamiana to chilli-infecting begomoviruses. Plant Cell Rep 34:1389–1399

    Article  CAS  PubMed  Google Scholar 

  50. Shekhawat UK, Ganapathi TR, Hadapad AB (2012) Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. J Gen Virol 93:1804–1813

    Article  CAS  PubMed  Google Scholar 

  51. Shimizu T, Nakazono-Nagaoka E, Akita F, Uehara-Ichiki T, Omura T, Sasaya T (2011) Immunity to Rice black streaked dwarf virus, a plant reovirus, can be achieved in rice plants by RNA silencing against the gene for the viroplasm component protein. Virus Res 160:400–403

    Article  CAS  PubMed  Google Scholar 

  52. Shimizu T, Ugamino T, Hiraguri A, Nakazono-Nagaoka F, Uehara-Ichiki T, Nakajima M, Akutsu K, Omura T, Sasaya T (2013) Strong resistance against Rice grassy stunt virus is induced in transgenic rice plants expressing double-stranded RNA of the viral genes for nucleocapsid or movement proteins as targets for RNA interference. Phytopathology 103:513–519

    Article  PubMed  Google Scholar 

  53. Shukla S, Kalyani G, Kulkarni N, Waliyar F, Nigam SN (2005) Mechanism of transmission of Tobacco streak virus by Scirtothrips dorsalis, Frankliniella schultzei and Megalurothrips usitatus in groundnut, Arachis hypogaea L. J Oilseeds Res 22:215–217

    Google Scholar 

  54. Sijen T, Wellink J, Hiriart JP, van Kammen A (1996) RNA-mediated virus resistance: role of repeated transgenes and delineation of targeted regions. Plant Cell 8:2277–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Smith NA, Singh SP, Wang MB, Stoutjesdijk P, Green A, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNA. Nature 407:319–320

    Article  CAS  PubMed  Google Scholar 

  56. Thomas PE, Lawson EC, Zalewski JC, Reed GL, Kaniewski WK (2000) Extreme resistance to Potato leaf roll virus in potato cv. Russet Burbank mediated by the viral replicase gene. Virus Res 71:49–62

    Article  CAS  PubMed  Google Scholar 

  57. Tyagi H, Rajasubramaniam S, Rajam MV, Dasgupta I (2008) RNA-interference in rice against Rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants. Transgenic Res 17:897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vanitharani R, Chellappan P, Fauquet CM (2003) Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cells. Proc Natl Acad Sci USA 100:9632–9636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vazquez RC, Asurmendi S, Hopp HE (2001) Transgenic resistance in potato plants expressing potato leaf roll virus (PLRV) replicase gene sequences is RNA-mediated and suggests the involvement of post-transcriptional gene silencing. Arch Virol 146:1337–1353

    Article  Google Scholar 

  60. Vemana K, Jain RK (2010) New experimental hosts of Tobacco streak virus and absence of true seed transmission in leguminous hosts. Indian J Virol 21:117–127

    Article  CAS  PubMed  Google Scholar 

  61. Wang F, Li W, Zhu J, Fan F, Wang J, Zhong W, Wang MB, Liu Q, Zhu QH, Zhou T, Lan Y, Zhou Y, Yang J (2016) Hairpin RNA targeting multiple viral genes confers strong resistance to Rice black streaked dwarf virus. Int J Mol Sci 17:705

    Article  PubMed Central  Google Scholar 

  62. Wang MB, Abbott D, Waterhouse PM (2000) A single copy of a virus derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol 1:401–410

    Article  Google Scholar 

  63. Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  65. Yang Y, Sherwood TA, Patte CP, Hiebert E, Polston JE (2004) Use of Tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology 94:490–496

    Article  CAS  PubMed  Google Scholar 

  66. Zhou Y, Yuan Y, Yuan F, Wang M, Zhong H, Gu M, Liang G (2012) RNAi-directed down-regulation of RSV results in increased resistance in rice (Oryza sativa L.). Biotechnol Lett 34:965–972

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the CSIRO Plant Industry, Australia, for providing the vectors pHANNIBAL and pART27. We are grateful to Dr. S. Muthukrishnan, Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA, for critical reading of the manuscript. This study was funded by the University Grants Commission, New Delhi, India (Grant No. 42-200/2013-SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rethinasamy Velazhahan.

Ethics declarations

Ethical approval

This article is original and not published elsewhere. Corresponding author confirms that all authors have approved the manuscript and there are no ethical issues in publication of the manuscript. The study has been approved by the Institutional Bio-safety Committee (IBSC) of Tamil Nadu Agricultural University, Coimbatore, India.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, M.G., Senthilraja, C., Adhithya, R. et al. Integration of a hairpin RNA-encoding gene derived from Tobacco streak virus confers resistance in groundnut (Arachis hypogaea L.) against peanut stem necrosis disease. J Plant Dis Prot 123, 205–214 (2016). https://doi.org/10.1007/s41348-016-0039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-016-0039-7

Keywords

Navigation