Skip to main content
Log in

Ecological risk assessment of heavy metals in Morus alba leaves in Rafsanjan and Sarcheshmeh, the southeast area of Iran

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

This study aimed to assess the ecological risks of heavy metals in Morus alba leaves in Rafsanjan and Sarcheshmeh, southeast area of Iran, in 2022. Morus alba leaves were collected from the trees surrounding the streets in 14 sampling stations. Heavy metals including As, Cr, Cu, Ni, Pb, Zn, and Mn, and other metals including Al, S, P, Na, K, Mg, and Fe were determined via inductively coupled plasma-mass spectrometry (ICP-MS). Risk Index (RI) was used to assess the ecological risk potential. The concentration of heavy metals was found in the following order: Zn > Cu > Mn > Cr > Ni > Pb > As as well as Mg > K > P > S > Fe > Al for the other metals. The concentration of Cr, Cu, Ni, Mn, and Pb was higher in the samples from Sarcheshmeh compared to Rafsanjan. The highest ecological risk (Eri) was 12.67-101.56 for As, which was in the range of considerable risk, with RI in the range of 40.37-187.32. The ecological risk and RI for Pb in Rafsanjan and Sarcheshmeh were in the range of low and moderate risk, respectively. Thus, heavy metals assessment in the industrial areas by Morus alba leaves is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Esfandiari, M., & Hakimzadeh, M. A. (2022). Assessment of environmental pollution of heavy metals deposited on the leaves of trees at Yazd bus terminals. Environmental Science and Pollution Research, 29(22), 32867–32881.

    Article  CAS  PubMed  Google Scholar 

  2. Eslami, H., Nasirzadeh, M., Nabizadeh, F., Salari, M., & Alinaghizadeh, Z. (2022). Food Safety and Hygiene Knowledge and attitudes among the Health-Care Staff in the Southeast Area of Iran. Journal of Nutrition and Food Security, 7(2), 200–207.

    Google Scholar 

  3. Eslami, H., Heidari, F. A., Salari, M., Esmaeili, A., Hosseini, A. N., & Dolatabadi, M. (2022). Investigation of corrosion and scaling potential in drinking Water in Rafsanjan, Iran. J Environ Health Sustain Dev, 7(2), 1623–1631.

    CAS  Google Scholar 

  4. Esmaeili, A., & Eslami, H. (2020). Adsorption of pb (II) and zn (II) ions from aqueous solutions by Red Earth. [Article]. MethodsX, 7, 100804. https://doi.org/10.1016/j.mex.2020.100804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ebrahimi, A. A., Khosravi, R., Eslami, H., Taghavi, M., Omidi, F., & Fallahzadeh, R. A. (2022). Removal of heavy metals from compost leachate using an anaerobic consecutive system of anaerobic migrating blanket reactor-anaerobic sludge bed reactor. Desalin Water Treat, 271, 116–123.

    Article  CAS  Google Scholar 

  6. Fakhri, Y., Nematollahi, A., Bafandeh Tiz, P., Alipour, M., Shahmohammadi, S., Soleymannejad, F., et al. (2020). The concentration of potentially hazardous trace elements (PHTEs) among tap drinking water samples from Ilam City, Iran: A probabilistic non-carcinogenic risk study. International Journal of Environmental Analytical Chemistry, 1–14. https://doi.org/10.1080/03067319.2020.1791331

  7. Peirovi-Minaee, R., Alami, A., Moghaddam, A., & Zarei, A. (2023). Determination of concentration of metals in grapes grown in Gonabad Vineyards and Assessment of Associated Health Risks. Biological Trace Element Research, 201(7), 3541–3552. https://doi.org/10.1007/s12011-022-03428-8

    Article  CAS  PubMed  Google Scholar 

  8. Arumugam, G., Rajendran, R., Ganesan, A., & Sethu, R. (2018). Bioaccumulation and translocation of heavy metals in mangrove rhizosphere sediments to tissues of Avicenia marina–A field study from tropical mangrove forest. Environmental Nanotechnology Monitoring & Management, 10, 272–279.

    Article  Google Scholar 

  9. Eslami, H., Esmaeili, A., Ehrampoush, M. H., Ebrahimi, A. A., Taghavi, M., & Khosravi, R. (2020). Simultaneous presence of poly titanium chloride and Fe2O3-Mn2O3 nanocomposite in the enhanced coagulation for high rate as (V) removal from contaminated water. Journal of Water Process Engineering, 36, 101342.

    Article  Google Scholar 

  10. Song, C., Ye, F., Zhang, H., Hong, J., Hua, C., Wang, B., et al. (2019). Metal (loid) oxides and metal sulfides nanomaterials reduced heavy metals uptake in soil cultivated cucumber plants. Environmental Pollution, 255, 113354.

    Article  CAS  PubMed  Google Scholar 

  11. Luo, X., Bing, H., Luo, Z., Wang, Y., & Jin, L. (2019). Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review. Environmental Pollution, 255, 113138.

    Article  CAS  PubMed  Google Scholar 

  12. Vithanage, M., Bandara, P. C., Novo, L. A., Kumar, A., Ambade, B., Naveendrakumar, G., et al. (2022). Deposition of trace metals associated with atmospheric particulate matter: Environmental fate and health risk assessment. Chemosphere, 303, 135051.

    Article  CAS  PubMed  Google Scholar 

  13. Ou, J., Zheng, L., Tang, Q., Liu, M., & Zhang, S. (2022). Source analysis of heavy metals in atmospheric particulate matter in a mining city. Environmental Geochemistry and Health, 44(3), 979–991.

    Article  CAS  PubMed  Google Scholar 

  14. El-Khatib, A. A., Barakat, N. A., Youssef, N. A., & Samir, N. A. (2020). Bioaccumulation of heavy metals air pollutants by urban trees. International Journal of Phytoremediation, 22(2), 210–222.

    Article  CAS  PubMed  Google Scholar 

  15. Kermani, M., Jafari, A., Gholami, M., Taghizadeh, F., Arfaeinia, H., Shahsavani, A., et al. (2022). Concentration, sources and bioaccessibility-based risk assessment of heavy metals in air-borne PM2. 5 in different landuses of Tehran. International Journal of Environmental Science and Technology, 19(7), 6691–6704.

    Article  CAS  Google Scholar 

  16. Karimi, A., Naghizadeh, A., Biglari, H., Peirovi, R., Ghasemi, A., & Zarei, A. (2020). Assessment of human health risks and pollution index for heavy metals in farmlands irrigated by effluents of stabilization ponds. Environmental Science and Pollution Research, 27(10), 10317–10327. https://doi.org/10.1007/s11356-020-07642-6

    Article  CAS  PubMed  Google Scholar 

  17. Olawoyin, R., Schweitzer, L., Zhang, K., Okareh, O., & Slates, K. (2018). Index analysis and human health risk model application for evaluating ambient air-heavy metal contamination in Chemical Valley Sarnia. Ecotoxicology and Environmental Safety, 148, 72–81.

    Article  CAS  PubMed  Google Scholar 

  18. Sultan, M. B., Choudhury, T. R., Alam, M. N. E., Doza, M. B., & Rahmana, M. M. (2022). Soil, dust, and leaf-based novel multi-sample approach for urban heavy metal contamination appraisals in a megacity, Dhaka, Bangladesh. Environmental Advances, 7, 100154.

    Article  CAS  Google Scholar 

  19. Mohsen, M., Ahmed, M. B., & Zhou, J. L. (2018). Particulate matter concentrations and heavy metal contamination levels in the railway transport system of Sydney, Australia. Transportation Research Part D: Transport and Environment, 62, 112–124.

    Article  Google Scholar 

  20. Zhang, J., Guan, Y., Lin, Q., Wang, Y., Wu, B., Liu, X., et al. (2022). Spatiotemporal differences and Ecological Risk Assessment of Heavy Metal Pollution of Roadside Plant Leaves in Baoji City, China. Sustainability, 14(10), 5809.

    Article  CAS  Google Scholar 

  21. Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs)(arsenic (as), cadmium (cd), chromium (cr)(VI), mercury (hrsg.), and lead (pb)) on the total environment: An overview. Environmental Monitoring and Assessment, 191, 1–21.

    Article  CAS  Google Scholar 

  22. Gupta, S., Khare, R., Bajpai, O., Rai, H., Upreti, D. K., Gupta, R. K., et al. (2016). Lichen as bioindicator for monitoring environmental status in western Himalaya, India. International Journal of Environment, 5(2), 1–15.

    Article  Google Scholar 

  23. Hajizadeh, Y., Mokhtari, M., Faraji, M., Abdolahnejad, A., & Mohammadi, A. (2019). Biomonitoring of airborne metals using tree leaves: Protocol for biomonitor selection and spatial trend. MethodsX, 6, 1694–1700.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Birke, M., Rauch, U., & Hofmann, F. (2018). Tree bark as a bioindicator of air pollution in the city of Stassfurt, Saxony-Anhalt, Germany. Journal of Geochemical Exploration, 187, 97–117.

    Article  CAS  Google Scholar 

  25. Mihailović, A., Budinski-Petković, L., Popov, S., Ninkov, J., Vasin, J., Ralević, N. M., et al. (2015). Spatial distribution of metals in urban soil of Novi sad, Serbia: GIS based approach. Journal of Geochemical Exploration, 150, 104–114. https://doi.org/10.1016/j.gexplo.2014.12.017

    Article  CAS  Google Scholar 

  26. Chugh, M., Kumar, L., Bhardwaj, D., & Bharadvaja, N. (2022). Chapter 11 - Bioaccumulation and detoxification of heavy metals: An insight into the mechanism. In M. P. Shah, S. Rodriguez-Couto, & R. T. Kapoor (Eds.), Development in Wastewater Treatment Research and processes (pp. 243–264). Elsevier.

  27. Rodríguez-Santamaría, K., Zafra-Mejía, C. A., & Rondón-Quintana, H. A. (2022). Macro-morphological traits of leaves for Urban Tree selection for Air Pollution Biomonitoring: A review. Biosensors, 12(10), 812.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mussali-Galante, P., Santoyo-Martínez, M., Castrejón-Godínez, M. L., Breton-Deval, L., Rodríguez-Solis, A., Valencia-Cuevas, L. (2023). The bioaccumulation potential of heavy metals by Gliricidia sepium (Fabaceae) in mine tailings. Environmental Science and Pollution Research, 1–18.

  29. Prabagar, S., Dharmadasa, R. M., Lintha, A., Thuraisingam, S., & Prabagar, J. (2021). Accumulation of heavy metals in grape fruit, leaves, soil and water: A study of influential factors and evaluating ecological risks in Jaffna, Sri Lanka. Environmental and Sustainability Indicators, 12, 100147.

    Article  Google Scholar 

  30. Sharma, P., Yadav, P., Ghosh, C., & Singh, B. (2020). Heavy metal capture from the suspended particulate matter by Morus alba and evidence of foliar uptake and translocation of PM associated zinc using radiotracer (65Zn). Chemosphere, 254, 126863. https://doi.org/10.1016/j.chemosphere.2020.126863

    Article  CAS  PubMed  Google Scholar 

  31. Taghizadeh, M. (2019). Investigation of Bioaccumulation of Heavy metals Concentration in Arak Metropolitan. Journal of Research in Environmental Health, 5(1), 31–42. https://doi.org/10.22038/jreh.2019.37780.1273

    Article  Google Scholar 

  32. Alahabadi, A., Ehrampoush, M. H., Miri, M., Aval, H. E., Yousefzadeh, S., Ghaffari, H. R., et al. (2017). A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere, 172, 459–467.

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Xiang, M., Li, Y., Yang, J., Lei, K., Li, Y., Li, F., et al. (2021). Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environmental Pollution, 278, 116911. https://doi.org/10.1016/j.envpol.2021.116911

    Article  CAS  PubMed  Google Scholar 

  34. Kumar, V., Pandita, S., & Setia, R. (2022). A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. Gondwana Research, 103, 487–501. https://doi.org/10.1016/j.gr.2021.10.028

    Article  ADS  CAS  Google Scholar 

  35. Arisekar, U., Shakila, R. J., Shalini, R., Jeyasekaran, G., Keerthana, M., Arumugam, N., et al. (2022). Distribution and ecological risk assessment of heavy metals using geochemical normalization factors in the aquatic sediments. Chemosphere, 294, 133708.

    Article  CAS  PubMed  Google Scholar 

  36. Kandziora-Ciupa, M., Gospodarek, J., & Nadgórska-Socha, A. (2022). Pollution and ecological risk assessment of heavy metals in forest soils with changes in the leaf traits and membrane integrity of Vaccinium myrtillus L. European Journal of Forest Research, 141(3), 409–419.

    Article  CAS  Google Scholar 

  37. Moghaddam, A., Afsharnia, M., Mokhtari, M., & Peirovi-Minaee, R. (2022). Management and health risk assessment of chemical contamination events in water distribution systems using PSO. Environmental Monitoring and Assessment, 194(5), 362. https://doi.org/10.1007/s10661-021-09676-w

    Article  PubMed  Google Scholar 

  38. Mohseni-Bandpei, A., Ashrafi, S. D., Kamani, H., & Paseban, A. (2017). Contamination and Ecological Risk Assessment of Heavy Metals in Surface soils of Esfarayen City. Iran [Research Article], 6(2), e39703. https://doi.org/10.5812/jhealthscope.39703

    Article  Google Scholar 

  39. Eslami, H., Esmaeili, A., Razaeian, M., Salari, M., Hosseini, A. N., Mobini, M., et al. (2022). Potentially toxic metal concentration, spatial distribution, and health risk assessment in drinking groundwater resources of southeast Iran. [Article]. Geoscience Frontiers, 13(1), 101276. https://doi.org/10.1016/j.gsf.2021.101276

    Article  CAS  Google Scholar 

  40. Parvaz, N., Amin, F., Nadimi, A. E., & Eslami, H. (2023). Correlation between weather conditions and COVID-19 pandemic in the southeast area of Iran. Spatial Information Research. https://doi.org/10.1007/s41324-023-00536-y

    Article  Google Scholar 

  41. Arpanaei, A., Attarroshan, S., Sabzalipour, S., & Arpanaei, I. (2021). Bioaccumulation of some heavy metals (copper, Nickel, and lead) and air pollution tolerance index of Prosopis juliflora and Conocarpus erectus species in Mahshahr, Iran. [Research]. Iranian Journal of Health and Environment, 13(4), 747–766.

    Google Scholar 

  42. Li, Y., Li, P., & Liu, L. (2022). Source identification and potential ecological risk assessment of heavy metals in the topsoil of the Weining Plain (Northwest China). Exposure and Health, 14(2), 281–294.

    Article  CAS  Google Scholar 

  43. Gholizadeh, A., Taghavi, M., Moslem, A., Neshat, A. A., Najafi, M. L., Alahabadi, A., et al. (2019). Ecological and health risk assessment of exposure to atmospheric heavy metals. Ecotoxicology and Environmental Safety, 184, 109622.

    Article  CAS  PubMed  Google Scholar 

  44. Pehluvan, M., Karlidag, H., & Turan, M. (2012). Heavy metal levels of mulberry (Morus alba L.) grown at different distances from the roadsides. The Journal of Animal & Plant Sciences, 22(3), 665–670.

    CAS  Google Scholar 

  45. Nikolova, T. (2015). Absorption of Pb, Cu, Zn and cd type Morus alba L. cultivated on soils contaminated with heavy metals. Bulgarian Journal of Agricultural Science, 21(4), 747–750.

    Google Scholar 

  46. Cicek, A., & Koparal, A. S. (2004). Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tunçbilek Thermal Power Plant. Chemosphere, 57(8), 1031–1036. https://doi.org/10.1016/j.chemosphere.2004.07.038

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Amini, M., & Forghani, A. (2015). Evaluation of Ni pollution in leaf of Plantain (Platanus Orientalis) and soil in Rasht city area. Journal of Soil Management and Sustainable Production, 5(1), 263–268.

    Google Scholar 

  48. Tanushree, B., Chakraborty, S., Bhumika, F., & Piyal, B. (2011). Heavy metal concentrations in street and leaf deposited dust in Anand City, India. Research Journal of Chemical Sciences, 2231, 606X.

    Google Scholar 

  49. Yi, W., Dong, Q., Yang, F., & Zhu, C. (2018). Pollution characteristics, sources analysis and potential ecological risk assessment of heavy metals in different functional zones of Baoji city. Ecology and Environmental Sciences, 27(11), 2142–2149.

    Google Scholar 

  50. Youssef, N. (2020). Bioaccumulation of Heavy metals in Urban Tree leaves. Egyptian Journal of Botany, 60(1), 261–273.

    Google Scholar 

Download references

Acknowledgements

This study is the outcome of a research project (400263) with the ethics approval code of IR.RUMS.REC.1400.237 by Rafsanjan University of Medical Sciences, Rafsanjan, Iran. The authors would appreciate all the support provided by Rafsanjan University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hadi Eslami or Reza Ali Fallahzadeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami, H., Ebrahimi, E., Baberi, F. et al. Ecological risk assessment of heavy metals in Morus alba leaves in Rafsanjan and Sarcheshmeh, the southeast area of Iran. Spat. Inf. Res. (2024). https://doi.org/10.1007/s41324-024-00578-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41324-024-00578-w

Keywords

Navigation