Skip to main content
Log in

Evaluating ecotourism assets in the Cameroonian cities hosting the 33rd edition of the Africa Cup of Nations

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Considering the African Cup of Nations (AfCoN) as an important tourism opportunity, the present article aims to advertise Cameroon’s touristic potential by assessing the ecological conditions of 11 cities hosting matches of the competition and their respective dance patrimony. In addition to the urban thermal field variance index (UTFVI), the land surface temperature (LST) was computed. Both parameters are derived from Landsat-8 OLI images using a combined GIS-remote sensing method and spatially represented. According to the UTFVI values, the ecological conditions are at least acceptable everywhere except a thin zone in Ngaoundere where conditions are bad. Minimum values of UTFVI in those cities are respectively −0.12, −0.22, −1.05, −0.14, −0.08, −0.06, −0.50, −0.77, −0.50, −0.57 and −0.12 while maximum values are respectively 0.23, 0.29, 0.23, 0.14, 0.42, 0.11, 20, 0.35, 21, 56 and 0.14. LST range from 10 °C (in Douala with a max value of 27 °C) to 71 °C (in Foumban with a min value of 59 °C). Each city under study has a set of traditional dances that can attract potential visitors. The article contributes to the promotion of sustainability and ecotourism in Cameroon on the occasion of the 33rd AfCoN edition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bokaie, M., Zarkesh, M. K., Arasteh, P. D., & Hosseini, A. (2016). Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/ Land Cover in Tehran. Sustainable Cities and Society, 23, 94–104. https://doi.org/10.1016/j.scs.2016.03.009

    Article  Google Scholar 

  2. Bonafoni, S., Baldinelli, G., & Verducci, P. (2017). Sustainable strategies for smart cities: Analysis of the town development effect on surface urban heat island through remote sensing methodologies. Sustainable Cities and Society, 29, 211–218. https://doi.org/10.1016/j.scs.2016.11.005

    Article  Google Scholar 

  3. Kaplan, G., Avdan, U., & Avdan, Z. Y. (2018). Urban heat island analysis using the Landsat 8 satellite data: A case study in Skopje Macedonia. Proceedings, 2(358), 1–5. https://doi.org/10.3390/ecrs-2-05171

    Article  Google Scholar 

  4. Shirani-bidabadi, N., Nasrabadi, T., Faryadi, S., Larijani, A., & Roodposhti, M. S. (2019). Evaluating the spatial distribution and the intensity of urban heat island using remote sensing, case study of Isfahan city in Iran. Sustainable Cities and Society, 45, 686–692. https://doi.org/10.1016/j.scs.2018.12.005

    Article  Google Scholar 

  5. Mudede, M. F., Newete, S. W., Abutaleb, K., & Nkongolo, N. (2020). Monitoring the urban environment quality in the city of Johannesburg using remote sensing data. Journal of African Earth Sciences, 171, 103969. https://doi.org/10.1016/j.jafrearsci.2020.103969

    Article  Google Scholar 

  6. Aretouyap, Z., Bisso, D., Njandjock, N. P., Yembe, S. J., & Diab, A. D. (2018). The equatorial rainforest of Central Africa between economic needs and sustainability requirements. Journal of Environmental Management, 206, 20–27. https://doi.org/10.1016/j.jenvman.2017.10.005

    Article  Google Scholar 

  7. Abutaleb, K., Ngie, A., Darwish, A., Ahmed, M., Arafat, S., & Ahmed, F. (2015). Assessment of urban heat island using remotely sensed imagery over greater Cairo Egypt. Advances in Remote Sensing, 4, 35–47. https://doi.org/10.4236/ars.2015.41004

    Article  Google Scholar 

  8. Piri, I., Moosavi, M., Taheri, A. Z., Alipur, H., Shojaei, S., & Mousavi, S. A. (2019). The spatial assessment of suitable areas for medicinal species of Astragalus (Astragalus hypsogeton Bunge) using the Analytic Hierarchy Process (AHP) and Geographic Information System (GIS). The Egyptian Journal of Remote Sensing and Space Science, 22(2), 193–201.

    Article  Google Scholar 

  9. Pink, S. (2006). The future of visual anthropology: Engaging the senses. Abingdon, Oxon: Rutledge.

    Book  Google Scholar 

  10. Creswell, J. (2014). Research design: Qualitative, quantitative, and mixed methods approaches. Thousand Oaks, CA: Sage.

    Google Scholar 

  11. Glaw, X., Inder, K., Kable, A., & Hazelton, M. (2017). Visual methodologies in qualitative research: Autophotography and photo elicitation applied to mental health research. International Journal of Qualitative Methods, 16, 1–8. https://doi.org/10.1177/1609406917748215

  12. Daniel, Y. P. (1996). Tourism dance performances authenticity and creativity. Annals of Tourism Research, 23(4), 780–797. https://doi.org/10.1016/0160-7383(96)00020-5

    Article  Google Scholar 

  13. Ingles, P. (2001). Performing traditional dances for modern tourists in the Amazon. International Journal of Hospitality & Tourism Administration, 1(3–4), 143–159. https://doi.org/10.1300/J149v01n03_09

    Article  Google Scholar 

  14. Henriques, C., & Custódio, M. J. (2008). Folk Dancing, Tourism and Identity. A Relationship in (de) construction?

  15. Banio, A., & Malchrowicz-Mośko, E. (2019). Dance in tourism from an anthropological perspective: An introduction to the research issue. Turyzm/Tourism, 29(1), 15–21. https://doi.org/10.2478/tour-2019-0002

    Article  Google Scholar 

  16. Teikeu, A. W., Meli’i, J. L., Njandjock, N. P., Tabod, C. T., Enyegue, A. N. F., & Aretouyap, Z. (2016). Assessment of groundwater quality in Yaounde area, Cameroon, using geostatistical and statistical approaches. Environmental Earth Sciences, 75, 21. https://doi.org/10.1007/s12665-015-4779-7

    Article  Google Scholar 

  17. Maes, J., Molombe, J. M., Mertens, K., Parra, C., Poesen, J., Che, V. B., & Kervyn, M. (2019). Socio-political drivers and consequences of landslide and flood risk zonation: A case study of Limbe city, Cameroon. Environment and Planning C: Politics and Space, 37(4), 707–731.

    Google Scholar 

  18. Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62, 241–252. https://doi.org/10.1016/S0034-4257(97)00104-1

    Article  Google Scholar 

  19. Jimenez-Munoz, J. C., Sobrino, J. A., Skokovi, D., Mattar, C., & Cristobal, J. (2014). Land surface temperature retrieval methods from landsat-8 thermal infrared sensor data. Geoscience and Remote Sensing Letters IEEE, 11(10), 1840–1843. https://doi.org/10.1109/LGRS.2014.2312032

    Article  Google Scholar 

  20. United States Geological Survey (USGS) (2019). Landsat 8 (L8) Data Users Handbook - AWS. https://prd-wret.s3-us-west-.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1574_L8_Data_Users_Handbook-v5.0.pdf. (Accessed 03 Sep. 20).

  21. Handayani, H. H., Estoque, R. C., & Murayama, Y. (2018). Estimation of built-up and green volume using geospatial techniques: A case study of Surabaya, Indonesia. Sustainable Cities and Society, 37, 581–593. https://doi.org/10.1016/j.scs.2017.10.017

    Article  Google Scholar 

  22. Sajedi-Hosseini, F., Choubin, B., Solaimani, K., Cerda, A., & Kavian, A. (2018). Spatial prediction of soil erosion susceptibility using FANP: Application of the fuzzy DEMATEL approach. Land Degradation and Development, 29, 3092–3103. https://doi.org/10.1002/ldr.3058

    Article  Google Scholar 

  23. Zhao-Liang, L., Hua, W., Ning, W., Qiu, S., Sobrino, J. A., Zhengming, W., Bo-Hui, T., & Guangjian, Y. (2013). Land surface emissivity retrieval from satellite data. International Journal of Remote Sensing, 34(9–10), 3084–3127. https://doi.org/10.1080/01431161.2012.716540

    Article  Google Scholar 

  24. Chander, G., & Markham, B. L. (2003). Revised Landsat-5 TM radiometric calibration procedures, and post-calibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing, 41(11), 2674–2677. https://doi.org/10.1109/TGRS.2003.818464

    Article  Google Scholar 

  25. Zhang, Y. (2006). Land surface temperature retrieval from CBERS-02 IRMSS thermal infrared data and its applications in quantitative analysis of urban heat island effect. Jouranl of Remote Sensing, 10, 789–797.

    Google Scholar 

  26. Alfraihat, R., Mulugeta, G., & Gala, T.S. (2016). Ecological evaluation of urban heat island in Chicago city, USA. J. Atmos. Pollut., 4(1), 23–29. http://pubs.sciepub.com/jap/4/1/3.

  27. Dos Santos, A. R., de Oliveira, F. S., da Silva, A. G., Gleriani, J. M., Gonçalves, W., Moreira, G. L., Silva, F. G., Branco, E. R. F., Moura, M. M., da Silva, G. R., Juvanhol, R. S., Barbosa de Souza, K., Ribeiro, C. A. A. S., Tebaldi de Queiroz, V., Costa, A. V., Lorenzon, A. S., Domingues, G. F., Marcatti, G. E., de Castro, N. L. M., … Mota, P. H. S. (2018). Spatial and temporal distribution of urban heat islands. Science of the Total Environment, 605–606, 946–956. https://doi.org/10.1016/j.scitotenv.2017.05.275

    Article  Google Scholar 

  28. Topić, M. (2016). Dance and cultural tourism in Croatia. International Journal of Religion and Society, 5(1), 47–48.

    Google Scholar 

  29. McCleary, K. W., Weaver, P. A., & Meng, F. (2005). Dance as a tourism activity: Demographics, demand characteristics, motivation, and segmentation. Tourism Analysis, 10(3), 277–290.

    Article  Google Scholar 

  30. Bochenek, M. (2013). Festival tourism of folk group dancers from selected countries of the world. Polish Journal of Sport & Tourism. https://doi.org/10.2478/pjst-2013-0009

    Article  Google Scholar 

  31. Magar, D. S., Magar, R. K. S., & Chidi, C. L. (2021). Assessment of urban heat island in Kathmandu valley (1999–2017). The Geographical Journal of Nepal, 14, 1–20.

    Article  Google Scholar 

  32. Alipur, H., Zare, M., & Shojaei, S. (2016). Assessing the degradation of vegetation of arid zones using FAO-UNIP model (case study: Kashan zone). Modeling Earth Systems and Environment, 2(4), 1–6.

    Article  Google Scholar 

  33. Ardakani, A. H. H., Shojaei, S., Siasar, H., & Ekhtesasi, M. R. (2020). Heuristic evaluation of groundwater in arid zones using remote sensing and geographic information system. International Journal of Environmental Science and Technology, 17(2), 633–644.

    Article  Google Scholar 

  34. Naim, M. N. H., & Kafy, A. A. (2021). Assessment of urban thermal field variance index and defining the relationship between land cover and surface temperature in Chattogram city: A remote sensing and statistical approach. Environmental Challenges, 4, 100107. https://doi.org/10.1016/j.envc.2021.100107

    Article  Google Scholar 

  35. Mensah, E. (2017). Land Cover, Land Surface Temperature, and Urban Heat Island Effects in Tropical Sub-Saharan City of Accra. In: 19th International Conference on Geomatics Engineering, Kuala Lumpur, Malaysia. https://doi.org/10.1999/1307-6892/73804.

  36. Nwaerema, P., Vincent, O., Amadou, C., & Morrison, A. (2019). Spatial assessment of land surface temperature and emissivity in the tropical littoral city of Port Harcourt, Nigeria. International Journal of Environment and Climate Change, 9(2), 88–103. https://doi.org/10.9734/ijecc/2019/v9i230099

    Article  Google Scholar 

  37. Aretouyap, Z., Domra Kana, J., & Kemgang Ghomsi, F. E. (2021). Appraisal of environment quality in the capital district of Cameroon using Landsat-8 images. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2021.102734

    Article  Google Scholar 

  38. Malamiri, H. R. G., Aliabad, F. A., Shojaei, S., Morad, M., & Band, S. S. (2021). A study on the use of UAV images to improve the separation accuracy of agricultural land areas. Computers and Electronics in Agriculture, 184, 106079.

    Article  Google Scholar 

  39. Mbaku, J. M. (2005). Culture and customs of Cameroon. Greenwood Press.

    Google Scholar 

  40. Mahamat Abba, O. (2017). Les industries culturelles à l’ère de la décentralisation dans la région de l’Extrême-Nord Cameroun: défis et enjeux. African Humanities, 1–3, 441–459.

    Google Scholar 

  41. Caccomo, J.L., & Solonandrasana, B. (2002). Reflections around the concept of tourist attraction: analysis and taximony. Téoros, 3, 68–71.

    Article  Google Scholar 

  42. Origet Du Cluzeau, C. (1998). Cultural tourism. Paris, Presse Universitaire de France: Paris.

    Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the anonymous reviewers who helped us improve the quality of this paper, to Dr. Patrick Endong (University of Dschang) and Dr. Tio Babena (University of Maroua) for proofreading and editing, and to the Editor-in-Chief, Prof. Jung-Sup Um, who diligently handled this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakari Aretouyap.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aretouyap, Z., Domra Kana, J., Ghomsi, F.E.K. et al. Evaluating ecotourism assets in the Cameroonian cities hosting the 33rd edition of the Africa Cup of Nations. Spat. Inf. Res. 30, 385–397 (2022). https://doi.org/10.1007/s41324-022-00437-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-022-00437-6

Keywords

Navigation