Skip to main content
Log in

Implanting Half-Pearl Nuclei in Different Positions in Mabe Pearls (Pteria penguin, Roding, 1798)

  • Published:
Thalassas: An International Journal of Marine Sciences Aims and scope Submit manuscript

Abstract

A study was made comparing the success rate and nacre growth on half-pearl implantations in the Mabe pearl oyster (Pteria penguin, Roding, 1798). Implantations were made near the adductor muscle (#2), mantle edge (#3) and at an intermediate Position (#1). The rejection rate at Positions #1 and #2 (14.5 ± 4.9% and 14.0 ± 4.8% respectively), after 10 months were significantly lower (p < 0.05) than at Position #3 (19.0 ± 5.5%) (means ±95% conf. limits). The lowest mortality was found for oysters with an implant at Position #3 (26.0%) but this was also the position from which the oysters were most successful in rejecting the implant (19.0%). Oysters implanted at Positions #1 and #2 had higher final total mortalities that were not significantly different (35.0 ± 6.7% and 32.0 ± 6.5% respectively). Position #1 had the overall 10 month worst success rate (26.0 ± 6.1%), taking both rejection and mortality into account. About 15–20% of total losses were due to implantation failure and mortality in the first month: the average rate of loss of half-pearls was 3.33 ± 0.27% per month (n = 30). There is a trade-off between growth into larger half-pearls, overgrowth into heteromorphic pearls of no commercial value and relentlessly decreasing overall survival. A Profitability Index model shows that the best harvesting times are 8 to 10 months: losses of half-pearls offsets any gains from extra growth over this time. The Pearl farm was located in Sapum Bay, Muang, Phuket which is a well mixed bay on the east coast of Phuket island: the overall mean Secchi depth was 98.4 ± 2.8 cm, the air temperature was 28.3 ± 0.7 °C, the water temperature was 27.9 ± 0.9 °C and the salinity was 29.7 ± 0.2 ppt. Chlorophyll (Chl) content of the plankton (average total Chl a ≈ 2.23 ± 0.19 μg/l) tended to be higher during the Dry season (Dec–Mar) than in the Wet season (Apr–Nov) with no large changes in Chl ratios over the course of the study. One month had unusually high Chl values but this had no obvious effects on the oysters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • APHA (1989) Standard methods for the examination of water and wastewater. 20th edition. Eds: L.S. Cleseri, A.E. Greenberg and A.D. Eaton. American Public Health Association, Washington

  • Carpenter KE, Niem VH (1998) The living marine resources of the western Central Pacific: 1. Seaweeds, corals, bivalves and gastropods. FAO Species Identification Guide for Fishery Purposes. FAO: Rome

  • Fougerouse A, Rousseau M, Lucas JS (2008) Soft tissue, anatomy and shell structure and biomineralisation. In: Southgate PC, Lucas JS (eds) The pearl oyster, Chapter 3. Elsevier Publ., Oxford and Amsterdam, pp 77-102

  • Gervis MH, Sims NA (1992) The Biology and culture of pearl oysters. Overseas Development Administration (ODA) of the United Kingdom, London, UK & International Center for Living Aquatic resources management, Manila, Philippines, 40p

  • Guenther J, Southgate PC, De Nys R (2006) The effect of age and shell size on accumulation of fouling organisms on the Akoya pearl oyster Pinctada fucata (Gould). Aquaculture 253(1):366–373

    Article  Google Scholar 

  • Jin W, Bai Z, Fu L, Zhang G, Li J (2012) Genetic analysis of early growth traits of the triangle shell mussel, Hyriopsis cumingii, as an insight for potential genetic improvement to pearl quality and yield. Aquac Int 20(5):927–933

    Article  Google Scholar 

  • Kanjanachatree K, Piyathamrongrut K, Inthonjaroen N (2003) Effects of sea depths and sizes of winged pearl oysters (Pteria penguin) on pearl culture. Songklanakarin Journal of Science and Technology 25(5):659–671

    Google Scholar 

  • Kanjanachatree K, Piyathamrongrut K, Rativat C (2005) The culture of pearl oysters, Pinctada fucata (Gould, 1850) in Phuket with temperature shock method and survival rates on various feeds. Songklanakarin Journal of Science and Technology 27(Suppl. 1):1–16

    Google Scholar 

  • Kanjanachatree K, Limsathapornkul N, Inthonjaroen A, Ritchie RJ (2018) Mabe pearls (Pteria penguin, Roding, 1798) grown from nuclei placed in different positions. Academics world international conference, Baiyoke Boutique Hotel, Bangkok, Thailand, 6th August 2018, p 24–29

  • Milione M, Southgate P (2012) Growth of winged pearl oyster, Pteria penquin, at dissimilar sites in northeastern Australia. J Shellfish Res 31:13–20. http://www.bioone.org/doi/full/10.2983/035.031.0102

    Article  Google Scholar 

  • Muhammad G, Atsumi T, Sunardi, Komaru A (2017) Nacre growth and thickness of Akoya pearls from Japanese and hybrid Pinctada fucata in response to the aquaculture temperature condition in Ago Bay, Japan. Aquaculture 477:35–42

    Article  Google Scholar 

  • Piyathamrongrut K, Kanjanachatree K, Thongboon L, Inthoncharoen J (2009) Reproductive cycle of the Akoya pearl oyster (Pinctada fucata) belong to nucleus insertion. In: Proceedings of the 47th Kasetsart University Annual Conference, Kasetsart, 17-20 March, 2009. Subject: Fisheries (pp. 311–319). Kasetsart University

  • Ruiz-Rubio H, Acosta-Salmón H, Olivera A, Southgate PC, Rangel-Dávalos C (2006) The influence of culture method and culture period on quality of half-pearls (‘mabe’) from the winged pearl oyster Pteria sterna. Aquaculture 254:269–274

    Article  Google Scholar 

  • Snedecor G, Cochran W (1989) Statistical methods, 8th edn. Iowa State University Press, Ames

    Google Scholar 

  • Snow MR, Pring A, Self P, Losic D (2004) The origin of the color of pearls in iridescence from nano-composite structures of the nacre. Am Mineral 89(10):1353–1358

    Article  Google Scholar 

  • Strack E (2008) Introduction. In: Southgate PC, Lucas JS (eds) The pearl oyster, Chapter 1. Elsevier Publ, Oxford and Amsterdam, pp 1–35

  • Strickland JDH, Parsons TR (1977) A practical handbook of seawater analysis. Fisheries Research Board of Canada, Bulletin No 167, 2nd edition, p185–192

  • Taylor J, Strack E (2008) Pearl production. In: Southgate PC, Lucas JS (eds) The pearl oyster, Chapter 8. Elsevier Publ, Oxford and Amsterdam, pp 273–302

  • Tomaru Y, Udaka N, Kawabata Z, Nakano S (2002a) Seasonal change of seston size distribution and phytoplankton composition in bivalve pearl oyster Pinctada fucata martensii culture farm. Hydrobiologia 481:181–185

    Article  Google Scholar 

  • Tomaru Y, Kumatabara Y, Kawabata Z, Nakano S (2002b) Effect of water temperature and chlorophyll abundance on shell growth of the Japanese pearl oyster, Pinctada fucata martensii, in suspended culture at different depths and site. Aquac Res 33:109–116

    Article  Google Scholar 

  • Tun T (2000) A review of mass mortalities in pearl oyster. SPC Pearl Oyster Information Bulletin 14:1–6

    Google Scholar 

  • Wada KT, Temkin I (2008) Taxonomy and phylogeny. In: Southgate PC, Lucas JS (eds) The pearl oyster, Chapter 2. Elsevier Publ, Oxford and Amsterdam, pp 37–75

  • Zhang C, Li S, Ma Z, Xie L, Zhang R (2006) A novel matrix protein p10 from the nacre of pearl oyster (Pinctada fucata) and its effects on both CaCO3 crystal formation and mineralogenic cells. Mar Biotechnol 8(6):624–633

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Phuket Pearl Industry, Co. Ltd., Phuket, Thailand for providing access to the pearl farm facilities. Prince of Songkla University - Phuket provided access to equipment for analyses done as part of the study. Elements of this paper were presented at a conference in Bangkok, Thailand (Kanjanachatree et al. 2018). Mabe Pearls (Pteria penguin, Roding, 1798) grown from nuclei placed in different positions.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Ritchie.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanjanachatree, K., Limsathapornkul, N., Inthonjaroen, A. et al. Implanting Half-Pearl Nuclei in Different Positions in Mabe Pearls (Pteria penguin, Roding, 1798). Thalassas 35, 167–175 (2019). https://doi.org/10.1007/s41208-018-0106-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41208-018-0106-x

Keywords

Navigation