Skip to main content
Log in

Functionalized Cellulose for Textile Organic Pollutant Treatment: a Comprehensive Review

  • Review
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

Most textile dyes are organic pollutants. Textile dyeing processes generate significant amounts of wastewater, often containing harmful and persistent dyes that severely affect the aquatic environment and can impact on human health. It is essential to remove these toxic textile dyes from wastewater to mitigate the detrimental effects of dye pollution. This review paper examines the literature on cellulose-based functionalized materials (cellulose fibers, cellulose nanocrystals, cellulose layered double hydroxide, cellulose-based hydrogels, and cellulose-based composites) and methods (membrane, photocatalytic, flocculation, and adsorption) for textile organic pollutant treatment. The review focuses on various strategies for modifying cellulose materials to enhance their dye-cleaning efficiencies, such as chemical modification, physical treatments, and the incorporation of functional groups. This article draws out the mechanisms of dye wastewater cleaning and factors that influence the cleaning efficiency, including pH, contact time, and dye concentration, to achieve maximum dye removal efficiency and unravels the current limitations and future scopes of cellulose-based material for wastewater treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Al-Tohamy R, Ali SS, Li F et al (2022) A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf 231:113160. https://doi.org/10.1016/j.ecoenv.2021.113160

    Article  CAS  PubMed  Google Scholar 

  2. Hanafi MF, Sapawe N (2020) A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater Today: Proc 31:A141–A150. https://doi.org/10.1016/j.matpr.2021.01.258

    Article  CAS  Google Scholar 

  3. Madhav S, Ahamad A, Singh P et al (2018) A review of textile industry: wet processing, environmental impacts, and effluent treatment methods. Environ Qual Manag 27:31–41. https://doi.org/10.1002/tqem.21538

    Article  Google Scholar 

  4. Bharathi K, Ramesh S (2013) Removal of dyes using agricultural waste as low-cost adsorbents: a review. Appl Water Sci 3:773–790. https://doi.org/10.1007/s13201-013-0117-y

    Article  ADS  Google Scholar 

  5. Zhang Z, Zhou K, Bu Y-q et al (2012) Determination of malachite green and crystal violet in environmental water using temperature-controlled ionic liquid dispersive liquid–liquid microextraction coupled with high performance liquid chromatography. Anal Methods 4:429–433. https://doi.org/10.1039/C2AY05665H

    Article  CAS  Google Scholar 

  6. Jin X-C, Liu G-Q, Xu Z-H et al (2007) Decolorization of a dye industry effluent by aspergillus fumigatus XC6. Appl Microbiol Biotechnol 74:239–243. https://doi.org/10.1007/s00253-006-0658-1

    Article  CAS  PubMed  Google Scholar 

  7. Robinson T, McMullan G, Marchant R et al (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255. https://doi.org/10.1016/S0960-8524(00)00080-8

    Article  CAS  PubMed  Google Scholar 

  8. Shedbalkar U, Dhanve R, Jadhav J (2008) Biodegradation of triphenylmethane dye cotton blue by Penicillium Ochrochloron MTCC 517. J Hazard Mater 157:472–479. https://doi.org/10.1016/j.jhazmat.2008.01.023

    Article  CAS  PubMed  Google Scholar 

  9. Firmino PIM, da Silva MER, Cervantes FJ et al (2010) Colour removal of dyes from synthetic and real textile wastewaters in one-and two-stage anaerobic systems. Bioresour Technol 101:7773–7779. https://doi.org/10.1016/j.biortech.2010.05.050

    Article  CAS  PubMed  Google Scholar 

  10. Chakravarty P, Bauddh K, Kumar M (2015) Remediation of dyes from aquatic ecosystems by biosorption method using algae. Algae Environ Sustain 97–106. https://doi.org/10.1007/978-81-322-2641-3_8

  11. Subramaniam MN, Goh PS, Kanakaraju D et al (2022) Photocatalytic membranes: a new perspective for persistent organic pollutants removal. Environ Sci Pollut Res 29:12506–12530. https://doi.org/10.1007/s11356-021-14676-x

    Article  CAS  Google Scholar 

  12. Prado AG, Bolzon LB, Pedroso CP et al (2008) Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Appl Catal B 82:219–224. https://doi.org/10.1016/j.apcatb.2008.01.024

    Article  CAS  Google Scholar 

  13. Lellis B, Fávaro-Polonio CZ, Pamphile JA et al (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275–290. https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  14. Sharma J, Sharma S, Soni V (2021) Classification and impact of synthetic textile dyes on Aquatic Flora: a review. Reg Stud Mar Sci 45:101802. https://doi.org/10.1016/j.rsma.2021.101802

    Article  Google Scholar 

  15. Moorthy AK, Rathi BG, Shukla SP et al (2021) Acute toxicity of textile dye Methylene blue on growth and metabolism of selected freshwater microalgae. Environ Toxicol Pharmacol 82:103552. https://doi.org/10.1016/j.etap.2020.103552

    Article  CAS  Google Scholar 

  16. Slama HB, Chenari Bouket A, Pourhassan Z et al (2021) Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl Sci 11:6255. https://doi.org/10.3390/app11146255

    Article  CAS  Google Scholar 

  17. Adomas B, Sikorski Ł, Bęś A et al (2020) Exposure of Lemna minor L. to gentian violet or Congo Red is associated with changes in the biosynthesis pathway of biogenic amines. Chemosphere 254:126752. https://doi.org/10.1016/j.chemosphere.2020.126752

    Article  CAS  PubMed  Google Scholar 

  18. Hocini I, Benabbas K, Khellaf N et al (2019) Can duckweed be used for the biomonitoring of textile effluents? Euro-Mediterr J Environ Integr 4:1–8. https://doi.org/10.1007/s41207-019-0126-9

    Article  Google Scholar 

  19. Mazur R, Szoszkiewicz K, Lewicki P et al (2018) The use of computer image analysis in a Lemna minor L. bioassay. Hydrobiologia 812:193–201. https://doi.org/10.1007/s10750-016-2972-7

    Article  CAS  Google Scholar 

  20. Sree KS, Keresztes Á, Mueller-Roeber B et al (2015) Phytotoxicity of cobalt ions on the duckweed Lemna minor–morphology, ion uptake, and starch accumulation. Chemosphere 131:149–156. https://doi.org/10.1016/j.chemosphere.2015.03.008

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Vafaei F, Movafeghi A, Khataee A (2013) Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediation of an anionic dye (CI acid Blue 92) by pennywort (Hydrocotyle vulgaris). Vulgaris) J Environ Sci (China) 25:2214–2222. https://doi.org/10.1016/S1001-0742(12)60306-4

    Article  CAS  PubMed  Google Scholar 

  22. Dadvar E, Kalantary RR, Ahmad Panahi H et al (2017) Efficiency of polymeric membrane graphene oxide-TiO2 for removal of azo dye. J Chem. https://doi.org/10.1155/2017/6217987

  23. Chung K-T (2016) Azo dyes and human health: a review. J Environ Sci Health C: Toxicol Carcinog 34:233–261. https://doi.org/10.1080/10590501.2016.1236602

    Article  ADS  CAS  Google Scholar 

  24. Suryavathi V, Sharma S, Sharma S et al (2005) Acute toxicity of textile dye wastewaters (untreated and treated) of Sanganer on male reproductive systems of albino rats and mice. Reprod Toxicol 19:547–556. https://doi.org/10.1016/j.reprotox.2004.09.011

    Article  CAS  PubMed  Google Scholar 

  25. Tounsadi H, Metarfi Y, Taleb M et al (2020) Impact of chemical substances used in textile industry on the employee’s health: epidemiological study. Ecotoxicol Environ Saf 197:110594. https://doi.org/10.1016/j.ecoenv.2020.110594

    Article  CAS  PubMed  Google Scholar 

  26. Hamad MT, Soliman MS (2020) Application of immobilized aspergillus Niger in alginate for decolourization of Congo red dye by using kinetics studies. J Polym Environ 28:3164–3180. https://doi.org/10.1007/s10924-020-01838-0

    Article  CAS  Google Scholar 

  27. Mohan D, Shukla SP (2022) Hazardous consequences of textile mill effluents on soil and their remediation approaches. Clean Eng Technol 100434. https://doi.org/10.1016/j.clet.2022.100434

  28. Tkaczyk A, Mitrowska K, Posyniak A (2020) Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Sci Total Environ 717:137222. https://doi.org/10.1016/j.scitotenv.2020.137222

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Sojobi AO, Zayed T (2022) Impact of sewer overflow on public health: a comprehensive scientometric analysis and systematic review. Environ Res 203:111609. https://doi.org/10.1016/j.envres.2021.111609

    Article  CAS  PubMed  Google Scholar 

  30. Copaciu F, Opriş O, Coman V et al (2013) Diffuse water pollution by anthraquinone and azo dyes in environment importantly alters foliage volatiles, carotenoids and physiology in wheat (Triticum aestivum). Water Air Soil Pollut 224:1–11. https://doi.org/10.1007/s11270-013-1478-4

    Article  CAS  Google Scholar 

  31. Sharma A, Kumar V, Shahzad B et al (2020) Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul 39:509–531. https://doi.org/10.1007/s00344-019-10018-x

    Article  CAS  Google Scholar 

  32. Ventura-Camargo BC, Maltempi PP, Marin-Morales MA (2011) The use of the cytogenetic to identify mechanisms of action of an azo dye in Allium cepa meristematic cells. J Environ Anal Toxicol 1:1–12. https://doi.org/10.4172/2161-0525.1000109

    Article  Google Scholar 

  33. Carpenter AW, de Lannoy C-F, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287. https://doi.org/10.1021/es506351r

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu Y, Liu H, Shen Z (2021) Nanocellulose based filtration membrane in industrial waste water treatment: a review. Materials 14:5398. https://doi.org/10.3390/ma14185398

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Panchal P, Ogunsona E, Mekonnen T (2018) Trends in advanced functional material applications of nanocellulose. Processes 7:10. https://doi.org/10.3390/pr7010010

    Article  CAS  Google Scholar 

  36. Mohamed MA, Abd Mutalib M, Hir ZAM et al (2017) An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. Int J Biol Macromol 103:1232–1256. https://doi.org/10.1016/j.ijbiomac.2017.05.181

    Article  CAS  PubMed  Google Scholar 

  37. Chin KM, Sung Ting S, Ong HL et al (2018) Surface functionalized nanocellulose as a veritable inclusionary material in contemporary bioinspired applications: a review. J Appl Polym Sci 135:46065. https://doi.org/10.1002/app.46065

    Article  CAS  Google Scholar 

  38. Tavker N, Sharma M (2020) Designing of waste fruit peels extracted cellulose supported molybdenum sulfide nanostructures for photocatalytic degradation of RhB dye and industrial effluent. J Environ Manage 255:109906. https://doi.org/10.1016/j.jenvman.2019.109906

    Article  CAS  PubMed  Google Scholar 

  39. Lin Q, Huang Y, Yu W (2021) Effects of extraction methods on morphology, structure and properties of bamboo cellulose. Ind Crops Prod 169:113640. https://doi.org/10.1016/j.indcrop.2021.113640

    Article  CAS  Google Scholar 

  40. Saito T, Kimura S, Nishiyama Y et al (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. https://doi.org/10.1021/bm0703970

    Article  CAS  PubMed  Google Scholar 

  41. Oyewo OA, Elemike EE, Onwudiwe DC et al (2020) Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. Int J Biol Macromol 164:2477–2496. https://doi.org/10.1016/j.ijbiomac.2020.08.074

    Article  CAS  PubMed  Google Scholar 

  42. San NO, Celebioglu A, Tümtaş Y et al (2014) Reusable bacteria immobilized electrospun nanofibrous webs for decolorization of methylene blue dye in wastewater treatment. RSC Adv 4:32249–32255. https://doi.org/10.1039/C4RA04250F

    Article  ADS  CAS  Google Scholar 

  43. Choudhury RR, Sahoo SK, Gohil JM (2020) Potential of bioinspired cellulose nanomaterials and nanocomposite membranes thereof for water treatment and fuel cell applications. Cellulose 27:6719–6746. https://doi.org/10.1007/s10570-020-03253-z

    Article  CAS  Google Scholar 

  44. Sjahro N, Yunus R, Abdullah LC et al (2021) Recent advances in the application of cellulose derivatives for removal of contaminants from aquatic environments. Cellulose 28:7521–7557. https://doi.org/10.1007/s10570-021-03985-6

    Article  CAS  Google Scholar 

  45. Klemm D, Cranston ED, Fischer D et al (2018) Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater Today 21:720–748. https://doi.org/10.1016/j.mattod.2018.02.001

    Article  CAS  Google Scholar 

  46. Zamel D, Hassanin AH, Ellethy R et al (2019) Novel bacteria-immobilized cellulose acetate/poly (ethylene oxide) nanofibrous membrane for wastewater treatment. Sci Rep 9:18994. https://doi.org/10.1038/s41598-019-55265-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koshani R, Tavakolian M, van de Ven TG (2020) Cellulose-based dispersants and flocculants. J Mater Chem B 8:10502–10526. https://doi.org/10.1039/D0TB02021D

    Article  CAS  PubMed  Google Scholar 

  48. Vega-Negron AL, Alamo-Nole L, Perales-Perez O et al (2018) Simultaneous adsorption of cationic and anionic dyes by chitosan/cellulose beads for wastewaters treatment. Int J Environ Res 12:59–65. https://doi.org/10.1007/s41742-018-0066-2

    Article  CAS  Google Scholar 

  49. Yu Z, Hu C, Dichiara AB et al (2020) Cellulose nanofibril/carbon nanomaterial hybrid aerogels for adsorption removal of cationic and anionic organic dyes. Nanomaterials 10:169. https://doi.org/10.3390/nano10010169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jamshaid A, Hamid A, Muhammad N et al (2017) Cellulose-based materials for the removal of Heavy metals from wastewater–an overview. ChemBioEng Rev 4:240–256. https://doi.org/10.1002/cben.201700002

    Article  CAS  Google Scholar 

  51. Sohouli E, Irannejad N, Ziarati A et al (2022) Application of polysaccharide-based biopolymers as supports in photocatalytic treatment of water and wastewater: a review. Environ Chem Lett 1–21. https://doi.org/10.1007/s10311-022-01456-3

  52. Mbakop S, Nthunya LN, Onyango MS (2021) Recent advances in the synthesis of nanocellulose functionalized–hybrid membranes and application in water quality improvement. Processes 9:611. https://doi.org/10.3390/pr9040611

    Article  CAS  Google Scholar 

  53. Chen L, Zhu J, Baez C et al (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843. https://doi.org/10.1039/C6GC00687F

    Article  CAS  Google Scholar 

  54. Yang H, Alam M, van de Ven TG (2013) Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20:1865–1875. https://doi.org/10.1007/s10570-013-9966-7

    Article  CAS  Google Scholar 

  55. Li C, Ma H, Venkateswaran S et al (2020) Highly efficient and sustainable carboxylated cellulose filters for removal of cationic dyes/heavy metals ions. J Chem Eng 389:123458. https://doi.org/10.1016/j.cej.2019.123458

    Article  CAS  Google Scholar 

  56. Fan X-M, Yu H-Y, Wang D-C et al (2019) Facile and green synthesis of carboxylated cellulose nanocrystals as efficient adsorbents in wastewater treatments. ACS Sustain Chem Eng 7:18067–18075. https://doi.org/10.1021/acssuschemeng.9b05081

    Article  CAS  Google Scholar 

  57. Olivera S, Muralidhara HB, Venkatesh K et al (2016) Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: a review. Carbohydr Polym 153:600–618. https://doi.org/10.1016/j.carbpol.2016.08.017

    Article  CAS  PubMed  Google Scholar 

  58. Jin L, Li W, Xu Q et al (2015) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22:2443–2456. https://doi.org/10.1007/s10570-015-0649-4

    Article  CAS  Google Scholar 

  59. Swasy MI, Brummel BR, Narangoda C et al (2020) Degradation of pesticides using amine-functionalized cellulose nanocrystals. RSC Adv 10:44312–44322. https://doi.org/10.1039/D0RA08308A

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sirviö JA, Visanko M, Laitinen O et al (2016) Amino-modified cellulose nanocrystals with adjustable hydrophobicity from combined regioselective oxidation and reductive amination. Carbohydr Polym 136:581–587. https://doi.org/10.1016/j.carbpol.2015.09.089

    Article  CAS  PubMed  Google Scholar 

  61. Pei A, Butchosa N, Berglund LA et al (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055. https://doi.org/10.1039/C2SM27344F

    Article  ADS  CAS  Google Scholar 

  62. Jin L, Sun Q, Xu Q et al (2015) Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Bioresour Technol 197:348–355. https://doi.org/10.1016/j.biortech.2015.08.093

    Article  CAS  PubMed  Google Scholar 

  63. Zhu W, Liu L, Liao Q et al (2016) Functionalization of cellulose with hyperbranched polyethylenimine for selective dye adsorption and separation. Cellulose 23:3785–3797. https://doi.org/10.1007/s10570-016-1045-4

    Article  CAS  Google Scholar 

  64. Rahman NSA, Yhaya MF, Azahari B et al (2018) Utilisation of natural cellulose fibres in wastewater treatment. Cellulose 25:4887–4903. https://doi.org/10.1007/s10570-018-1935-8

    Article  CAS  Google Scholar 

  65. Musyoka SM, Mittal H, Mishra SB et al (2014) Effect of functionalization on the adsorption capacity of cellulose for the removal of methyl violet. Int J Biol Macromol 65:389–397. https://doi.org/10.1016/j.ijbiomac.2014.01.051

    Article  CAS  PubMed  Google Scholar 

  66. Maleš L, Fakin D, Bračič M et al (2020) Efficiency of differently processed membranes based on cellulose as cationic dye adsorbents. Nanomaterials 10:642. https://doi.org/10.3390/nano10040642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Emam HE, Shaheen TI (2019) Investigation into the role of surface modification of cellulose nanocrystals with succinic anhydride in dye removal. J Polym Environ 27:2419–2427. https://doi.org/10.1007/s10924-019-01533-9

    Article  CAS  Google Scholar 

  68. Singh M, Kaushik A, Ahuja D (2016) Surface functionalization of nanofibrillated cellulose extracted from wheat straw: effect of process parameters. Carbohydr Polym 150:48–56. https://doi.org/10.1016/j.carbpol.2016.04.109

    Article  CAS  PubMed  Google Scholar 

  69. Ashori A, Babaee M, Jonoobi M et al (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydr Polym 102:369–375. https://doi.org/10.1016/j.carbpol.2013.11.067

    Article  CAS  PubMed  Google Scholar 

  70. Goswami M, Das AM (2019) Synthesis and characterization of a biodegradable cellulose acetate-montmorillonite composite for effective adsorption of eosin Y. Carbohydr Polym 206:863–872. https://doi.org/10.1016/j.carbpol.2018.11.040

    Article  CAS  PubMed  Google Scholar 

  71. Collinson S, Thielemans W (2010) The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin. Coord Chem Rev 254:1854–1870. https://doi.org/10.1016/j.ccr.2010.04.007

    Article  CAS  Google Scholar 

  72. Kim U-J, Kuga S, Wada M et al (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488–492. https://doi.org/10.1021/bm0000337

    Article  CAS  PubMed  Google Scholar 

  73. Liimatainen H, Visanko M, Sirvio JA et al (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromolecules 13:1592–1597. https://doi.org/10.1021/bm300319m

    Article  CAS  PubMed  Google Scholar 

  74. Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 6:1696–1700. https://doi.org/10.1021/bm100214b

    Article  CAS  Google Scholar 

  75. Zhu H, Zhang Y, Yang X et al (2015) An eco-friendly one-step synthesis of dicarboxyl cellulose for potential application in flocculation. Ind Eng Chem Res 54:2825–2829. https://doi.org/10.1021/ie503020n

    Article  CAS  Google Scholar 

  76. Hube S, Eskafi M, Hrafnkelsdóttir KF et al (2020) Direct membrane filtration for wastewater treatment and resource recovery: a review. Sci Total Environ 710:136375. https://doi.org/10.1016/j.scitotenv.2019.136375Get

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Voisin H, Bergström L, Liu P et al (2017) Nanocellulose-based materials for water purification. Nanomaterials 7:57. https://doi.org/10.3390/nano7030057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tan H-F, Ooi B, Leo C (2020) Future perspectives of nanocellulose-based membrane for water treatment. J Water Process Eng 37:101502. https://doi.org/10.1016/j.jwpe.2020.101502

    Article  Google Scholar 

  79. Rathod M, Haldar S, Basha S (2015) Nanocrystalline cellulose for removal of tetracycline hydrochloride from water via biosorption: equilibrium, kinetic and thermodynamic studies. Ecol Eng 84:240–249. https://doi.org/10.1016/j.ecoleng.2015.09.031

    Article  Google Scholar 

  80. Mautner A, Lee K-Y, Tammelin T et al (2015) Cellulose nanopapers as tight aqueous ultra-filtration membranes. React Funct Polym 86:209–214. https://doi.org/10.1016/j.reactfunctpolym.2014.09.014

    Article  CAS  Google Scholar 

  81. Karim Z, Mathew AP, Grahn M et al (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676. https://doi.org/10.1016/j.carbpol.2014.06.048

    Article  CAS  PubMed  Google Scholar 

  82. Liu P, Zhu C, Mathew AP (2019) Mechanically robust high flux graphene oxide-nanocellulose membranes for dye removal from water. J Hazard Mater 371:484–493. https://doi.org/10.1016/j.jhazmat.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  83. Georgouvelas D, Abdelhamid HN, Li J et al (2021) All-cellulose functional membranes for water treatment: adsorption of metal ions and catalytic decolorization of dyes. Carbohydr Polym 264:118044. https://doi.org/10.1016/j.carbpol.2021.118044

    Article  CAS  PubMed  Google Scholar 

  84. Puspasari T, Peinemann K-V (2016) Application of thin film cellulose composite membrane for dye wastewater reuse. J Water Process Eng 13:176–182. https://doi.org/10.1016/j.jwpe.2016.08.008

    Article  Google Scholar 

  85. Esfahani MR, Taylor A, Serwinowski N et al (2020) Sustainable novel bamboo-based membranes for water treatment fabricated by regeneration of bamboo waste fibers. ACS Sustain Chem Eng 8:4225–4235. https://doi.org/10.1021/acssuschemeng.9b07438

    Article  CAS  Google Scholar 

  86. Rajeswari A, Christy EJS, Mary GIC et al (2019) Cellulose acetate based biopolymeric mixed matrix membranes with various nanoparticles for environmental remediation-a comparative study. J Environ Chem Eng 7:103278. https://doi.org/10.1016/j.jece.2019.103278

    Article  CAS  Google Scholar 

  87. Ma H, Burger C, Hsiao BS et al (2012) Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromolecules 13:180–186. https://doi.org/10.1021/bm201421g

    Article  CAS  PubMed  Google Scholar 

  88. Ruiz-García A, Melián-Martel N, Nuez I (2017) Short review on predicting fouling in RO desalination. Membranes 7:62. https://doi.org/10.3390/membranes7040062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Saber-Samandari S, Saber-Samandari S, Heydaripour S et al (2016) Novel carboxymethyl cellulose based nanocomposite membrane: synthesis, characterization and application in water treatment. J Environ Manage 166:457–465. https://doi.org/10.1016/j.jenvman.2015.10.045

    Article  CAS  PubMed  Google Scholar 

  90. Wang Z, Huang W, Yang G et al (2019) Preparation of cellulose-base amphoteric flocculant and its application in the treatment of wastewater. Carbohydr Polym 215:179–188. https://doi.org/10.1016/j.carbpol.2019.03.097

    Article  CAS  PubMed  Google Scholar 

  91. Jumadi J, Kamari A, Hargreaves J et al (2020) A review of nano-based materials used as flocculants for water treatment. Int J Environ Sci Technol 17:3571–3594. https://doi.org/10.1007/s13762-020-02723-y

    Article  Google Scholar 

  92. Jiang X, Lou C, Hua F et al (2020) Cellulose nanocrystals-based flocculants for high-speed and high-efficiency decolorization of colored effluents. J Clean Prod 251:119749. https://doi.org/10.1016/j.jclepro.2019.119749

    Article  CAS  Google Scholar 

  93. Yang X, Chen K, Zhang Y et al (2017) Polyacrylamide grafted cellulose as an eco-friendly flocculant: efficient removal of organic dye from aqueous solution. Fibers Polym 18:1652–1659. https://doi.org/10.1007/s12221-017-1216-4

    Article  CAS  Google Scholar 

  94. Hogg R (2000) Flocculation and dewatering. Int J Min Process 58:223–236. https://doi.org/10.1016/S0301-7516(99)00023-X

    Article  CAS  Google Scholar 

  95. Jing G, Zhou Z, Zhuo J (2012) Quantitative structure–activity relationship (QSAR) study of toxicity of quaternary ammonium compounds on Chlorella pyrenoidosa and Scenedesmus quadricauda. Chemosphere 86:76–82. https://doi.org/10.1016/j.chemosphere.2011.09.021

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Cai T, Li H, Yang R et al (2015) Efficient flocculation of an anionic dye from aqueous solutions using a cellulose-based flocculant. Cellulose 22:1439–1449. https://doi.org/10.1007/s10570-015-0571-9

    Article  CAS  Google Scholar 

  97. Blanco A, Monte MC, Campano C et al (2018) Nanocellulose for industrial use: cellulose nanofibers (CNF), cellulose nanocrystals (CNC), and bacterial cellulose (BC). Handbook of nanomaterials for industrial applications. Elsevier, pp 74–126

  98. Zhu H, Zhang Y, Yang X et al (2015) One-step green synthesis of non-hazardous dicarboxyl cellulose flocculant and its flocculation activity evaluation. J Hazard Mater 296:1–8. https://doi.org/10.1016/j.jhazmat.2015.04.029

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Song Y, Gan W, Li Q et al (2011) Alkaline hydrolysis and flocculation properties of acrylamide-modified cellulose polyelectrolytes. Carbohydr Polym 86:171–176. https://doi.org/10.1016/j.carbpol.2011.04.025

    Article  CAS  Google Scholar 

  100. Cai T, Yang Z, Li H et al (2013) Effect of hydrolysis degree of hydrolyzed polyacrylamide grafted carboxymethyl cellulose on dye removal efficiency. Cellulose 20:2605–2614. https://doi.org/10.1007/s10570-013-9987-2

    Article  CAS  Google Scholar 

  101. Naciri Y, Ahsaine HA, Chennah A et al (2018) Facile synthesis, characterization and photocatalytic performance of Zn3 (PO4) 2 platelets toward photodegradation of rhodamine B dye. J Environ Chem Eng 6:1840–1847. https://doi.org/10.1016/j.jece.2018.02.009

    Article  CAS  Google Scholar 

  102. Sudhaik A, Raizada P, Singh P et al (2020) Highly effective degradation of imidacloprid by H2O2/fullerene decorated P-doped g-C3N4 photocatalyst. J Environ Chem Eng 8:104483. https://doi.org/10.1016/j.jece.2020.104483

    Article  CAS  Google Scholar 

  103. Xu C, Anusuyadevi PR, Aymonier C et al (2019) Nanostructured materials for photocatalysis. Chem Soc Rev 48:3868–3902. https://doi.org/10.1039/C9CS00102F

    Article  CAS  PubMed  Google Scholar 

  104. Malato S, Fernández-Ibáñez P, Maldonado MI et al (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59. https://doi.org/10.1016/j.cattod.2009.06.018

    Article  CAS  Google Scholar 

  105. Wang S, Zhou S (2011) Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2 under UV and visible-light irradiation. J Hazard Mater 185:77–85. https://doi.org/10.1016/j.jhazmat.2010.08.125

    Article  CAS  PubMed  Google Scholar 

  106. Liu S, Tao D, Bai H et al (2012) Cellulose-nanowhisker‐templated synthesis of titanium dioxide/cellulose nanomaterials with promising photocatalytic abilities. J Appl Polym Sci 126:E282–E290. https://doi.org/10.1002/app.36637

    Article  CAS  Google Scholar 

  107. Naciri Y, Hsini A, Ajmal Z et al (2020) Influence of Sr-doping on structural, optical and photocatalytic properties of synthesized Ca3 (PO4) 2. J Colloid Interface Sci 572:269–280. https://doi.org/10.1016/j.jcis.2020.03.105

    Article  ADS  CAS  PubMed  Google Scholar 

  108. Zeng J, Liu S, Cai J et al (2010) TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation. J Phys Chem C 114:7806–7811. https://doi.org/10.1021/jp1005617

    Article  CAS  Google Scholar 

  109. Jouali A, Salhi A, Aguedach A et al (2019) Photo-catalytic degradation of methylene blue and reactive blue 21 dyes in dynamic mode using TiO2 particles immobilized on cellulosic fibers. J Photochem Photobiol A 383:112013. https://doi.org/10.1016/j.jphotochem.2019.112013

    Article  CAS  Google Scholar 

  110. Wang B, Karthikeyan R, Lu X-Y et al (2013) High photocatalytic activity of immobilized TiO2 nanorods on carbonized cotton fibers. J Hazard Mater 263:659–669. https://doi.org/10.1016/j.jhazmat.2013.10.029

    Article  CAS  PubMed  Google Scholar 

  111. Mohd Adnan M, Muhd Julkapli N, Amir M et al (2019) Effect on different TiO 2 photocatalyst supports on photodecolorization of synthetic dyes: a review. Int j sci Environ Technol 16:547–566. https://doi.org/10.1007/s13762-018-1857-x

    Article  CAS  Google Scholar 

  112. Tu K, Wang Q, Lu A et al (2014) Portable visible-light photocatalysts constructed from Cu2O nanoparticles and graphene oxide in cellulose matrix. J Phys Chem C 118:7202–7210. https://doi.org/10.1021/jp412802h

    Article  CAS  Google Scholar 

  113. Ullah S, Acuña JJS, Pasa AA et al (2013) Photoactive layer-by-layer films of cellulose phosphate and titanium dioxide containing phosphotungstic acid. Appl Surf Sci 277:111–120. https://doi.org/10.1016/j.apsusc.2013.04.011

    Article  ADS  CAS  Google Scholar 

  114. Linda T, Muthupoongodi S, Shajan XS et al (2016) Photocatalytic degradation of Congo red and crystal violet dyes on cellulose/PVC/ZnO composites under UV light irradiation. Mater Today Proc 3:2035–2041. https://doi.org/10.1016/j.matpr.2016.04.106

    Article  Google Scholar 

  115. Wang Q, Cai J, Zhang L (2014) In situ synthesis of Ag3PO4/cellulose nanocomposites with photocatalytic activities under sunlight. Cellulose 21:3371–3382. https://doi.org/10.1007/s10570-014-0340-1

    Article  CAS  Google Scholar 

  116. Elfeky AS, Salem SS, Elzaref AS et al (2020) Multifunctional cellulose nanocrystal/metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities. Carbohydr Polym 230:115711. https://doi.org/10.1016/j.carbpol.2019.115711

    Article  CAS  PubMed  Google Scholar 

  117. Ye S, Zhang D, Liu H et al (2011) ZnO nanocrystallites/cellulose hybrid nanofibers fabricated by electrospinning and solvothermal techniques and their photocatalytic activity. J Appl Polym Sci 121:1757–1764. https://doi.org/10.1002/app.33822

    Article  CAS  Google Scholar 

  118. Sharma D, Kumari M, Dhayal V (2021) Fabrication and characterization of cellulose/PVA/TiO2 nanocomposite thin film as a photocatalyst. Mater Today Proc 43:2970–2974. https://doi.org/10.1016/j.matpr.2021.01.323

    Article  CAS  Google Scholar 

  119. Virkutyte J, Jegatheesan V, Varma RS (2012) Visible light activated TiO2/microcrystalline cellulose nanocatalyst to destroy organic contaminants in water. Bioresour Technol 113:288–293. https://doi.org/10.1016/j.biortech.2011.12.090

    Article  CAS  PubMed  Google Scholar 

  120. Xia J, Hsu CT, Qin D (2012) Cotton fibers nano-TiO2 composites prepared by as-assembly process and the photocatalytic activities. Mater Res Bull 47:3943–3946. https://doi.org/10.1016/j.materresbull.2012.07.022

    Article  CAS  Google Scholar 

  121. Oliveira LV, Bennici S, Josien L et al (2020) Free-standing cellulose film containing manganese dioxide nanoparticles and its use in discoloration of indigo carmine dye. Carbohydr Polym 230:115621. https://doi.org/10.1016/j.carbpol.2019.115621

    Article  CAS  PubMed  Google Scholar 

  122. Li G, Nandgaonkar AG, Wang Q et al (2017) Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: evaluation for photo-and bio-catalytic dye degradation. J Membr Sci 525:89–98. https://doi.org/10.1016/j.memsci.2016.10.033

    Article  CAS  Google Scholar 

  123. Yang L, Chen C, Hu Y et al (2020) Three-dimensional bacterial cellulose/polydopamine/TiO2 nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet-visible irradiation. J Colloid Interface Sci 562:21–28. https://doi.org/10.1016/j.jcis.2019.12.013

    Article  ADS  CAS  PubMed  Google Scholar 

  124. Li S, Hao X, Dai X et al (2018) Rapid photocatalytic degradation of pollutant from water under UV and sunlight via cellulose nanofiber aerogel wrapped by TiO2. J Nanomater. https://doi.org/10.1155/2018/8752015

  125. Chen D, Cheng Y, Zhou N et al (2020) Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J Clean Prod 268:121725. https://doi.org/10.1016/j.jclepro.2020.121725

    Article  CAS  Google Scholar 

  126. Mohammed N, Grishkewich N, Tam KC (2018) Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ Sci Nano 5:623–658. https://doi.org/10.1039/C7EN01029J

    Article  CAS  Google Scholar 

  127. Salama A (2017) New sustainable hybrid material as adsorbent for dye removal from aqueous solutions. J Colloid Interface Sci 487:348–353. https://doi.org/10.1016/j.jcis.2016.10.034

    Article  ADS  CAS  PubMed  Google Scholar 

  128. Mittal A, Mittal J, Malviya A et al (2010) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interface Sci 343:463–473. https://doi.org/10.1016/j.jcis.2009.11.060

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24:1171–1197. https://doi.org/10.1007/s10570-017-1194-0

    Article  CAS  Google Scholar 

  130. Kyzas GZ, Kostoglou M (2014) Green adsorbents for wastewaters: a critical review. Materials 7:333–364. https://doi.org/10.3390/ma7010333

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Peng N, Hu D, Zeng J et al (2016) Superabsorbent cellulose–clay nanocomposite hydrogels for highly efficient removal of dye in water. ACS Sustain Chem Eng 4:7217–7224. https://doi.org/10.1021/acssuschemeng.6b02178

    Article  CAS  Google Scholar 

  132. Mohammed N, Grishkewich N, Berry RM et al (2015) Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose 22:3725–3738. https://doi.org/10.1007/s10570-015-0747-3

    Article  CAS  Google Scholar 

  133. Zhang X, Yu H, Yang H et al (2015) Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution. J Colloid Interface Sci 437:277–282. https://doi.org/10.1016/j.jcis.2014.09.048

    Article  ADS  CAS  PubMed  Google Scholar 

  134. Hu J, Liu W, Xia L et al (2021) Preparation of a cellulose-based adsorbent and its removal of disperse red 3B dye. Cellulose 28:7909–7924. https://doi.org/10.1007/s10570-021-04042-y

    Article  CAS  Google Scholar 

  135. Liu L, Gao ZY, Su XP et al (2015) Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustain Chem Eng 3:432–442. https://doi.org/10.1021/sc500848m

    Article  CAS  Google Scholar 

  136. Zheng X, Li X, Li J et al (2018) Efficient removal of anionic dye (Congo red) by dialdehyde microfibrillated cellulose/chitosan composite film with significantly improved stability in dye solution. Int J Biol Macromol 107:283–289. https://doi.org/10.1016/j.ijbiomac.2017.08.169

    Article  CAS  PubMed  Google Scholar 

  137. Rashid MM, Shen X, Islam SR et al (2022) Sono-synthesis of cellulose-TiO2 nanocomposite adsorbent for fast cleaning of anionic dyes containing wastewater. J Water Process Eng 47:102799. https://doi.org/10.1016/j.jwpe.2022.102799

    Article  Google Scholar 

  138. Zhu H-Y, Fu Y-Q, Jiang R et al (2011) Adsorption removal of Congo red onto magnetic cellulose/Fe3O4/activated carbon composite: equilibrium, kinetic and thermodynamic studies. Chem Eng J 173:494–502. https://doi.org/10.1016/j.cej.2011.08.020

    Article  CAS  Google Scholar 

  139. Zubair M, Aziz HA, Ihsanullah I et al (2022) Engineered biochar supported layered double hydroxide-cellulose nanocrystals composite-: synthesis, characterization and azo dye removal performance. Chemosphere 307:136054. https://doi.org/10.1016/j.chemosphere.2022.136054

    Article  CAS  PubMed  Google Scholar 

  140. Yagub MT, Sen TK, Afroze S et al (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184. https://doi.org/10.1016/j.cis.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  141. Yue X, Huang J, Jiang F et al (2019) Synthesis and characterization of cellulose-based adsorbent for removal of anionic and cationic dyes. J Eng Fibers Fabr 14:1558925019828194. https://doi.org/10.1177/1558925019828194

    Article  CAS  Google Scholar 

  142. Somsesta N, Sricharoenchaikul V, Aht-Ong D (2020) Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: equilibrium and kinetic studies. Mater Chem Phys 240:122221. https://doi.org/10.1016/j.matchemphys.2019.122221

    Article  CAS  Google Scholar 

  143. Bai Q, Xiong Q, Li C et al (2017) Hierarchical porous cellulose/activated carbon composite monolith for efficient adsorption of dyes. Cellulose 24:4275–4289. https://doi.org/10.1007/s10570-017-1410-y

    Article  CAS  Google Scholar 

  144. Li M, Wang Z, Li B (2016) Adsorption behaviour of Congo red by cellulose/chitosan hydrogel beads regenerated from ionic liquid. Desalin Water Treat 57:16970–16980. https://doi.org/10.1080/19443994.2015.1082945

    Article  CAS  Google Scholar 

  145. Guan Y, Yu H-Y, Abdalkarim SYH et al (2019) Green one-step synthesis of ZnO/cellulose nanocrystal hybrids with modulated morphologies and superfast absorption of cationic dyes. Int J Biol Macromol 132:51–62. https://doi.org/10.1016/j.ijbiomac.2019.03.104

    Article  CAS  PubMed  Google Scholar 

  146. Reshmy R, Thomas D, Philip E et al (2021) Potential of nanocellulose for wastewater treatment. Chemosphere 281:130738. https://doi.org/10.1016/j.chemosphere.2021.130738

    Article  CAS  Google Scholar 

  147. Rana A, Sudhaik A, Raizada P et al (2021) An overview on cellulose-supported semiconductor photocatalysts for water purification. Nanotechnol Environ Eng 6:1–38. https://doi.org/10.1007/s41204-021-00135-y

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Mohammad Mamunur Rashid, Nafis Abir, and Shafat Ahmed Bin Kamal wrote the manuscript text. Md. Al-Amin and Md. Ahasan Ahamed prepared figures.Mohammad Tajul Islam and Mohammad Irfan Iqbal prepared data table.

Corresponding author

Correspondence to Mohammad Mamunur Rashid.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, M.M., Abir, N., Kamal, S.A.B. et al. Functionalized Cellulose for Textile Organic Pollutant Treatment: a Comprehensive Review. Water Conserv Sci Eng 9, 11 (2024). https://doi.org/10.1007/s41101-024-00243-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41101-024-00243-1

Keywords

Navigation