Skip to main content
Log in

Statistical Inference for Type-I Generalized Birnbaum–Saunders Distribution

  • Research Article
  • Published:
Journal of the Indian Society for Probability and Statistics Aims and scope Submit manuscript

A Correction to this article was published on 05 June 2018

This article has been updated

Abstract

A new generalized Birnbaum–Saunders distribution (Type-I GBS) was presented in Owen (IEEE Trans Reliab 55:475–479, 2006) to model a lifetime of a product under cyclic stresses by using a long memory process on the crack extensions. This highly flexible model includes the original BS distribution as a special case and can be widely applied in fatigue studies. In this article, we present the relevant properties, parameter estimation, and hypothesis testing for the distribution. We explore the traditional maximum likelihood estimation approach, and propose a new inference method for the GBS-I distribution. An extensive simulation study is carried out to assess performance of the methods, and a real data is analyzed where it is shown that the GBS-I model with the proposed method provides an efficient estimation and achieves a better fit than the classic likelihood-based procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 05 June 2018

    The funding information was missing in the original version of this article. The correct funding information is given.

References

  • Balakrishnan N, Leiva V, Sanhueza A, Cabrera E (2009) Mixture inverse Gaussian distribution and its transformations, moments and applications. Statistics 43:91–104

    Article  MathSciNet  Google Scholar 

  • Birnbaum ZW, Saunders SC (1969) A new family of life distributions. J Appl Probab 6:319–327

    Article  MathSciNet  Google Scholar 

  • Desmond AF (1986) On the relationship between two fatigue-life models. IEEE Trans Reliab 35:167–169

    Article  Google Scholar 

  • Díaz-García JA, Domínguez-Molina JR (2006) Some generalizations of Birnbaum-Saunders and sinh-normal distributions. Int Math Forum 1:1709–1727

    Article  MathSciNet  Google Scholar 

  • Díaz-García JA, Leiva V (2005) A new family of life distributions based on elliptically contoured distributions. J Stat Plan Inference 128:445–457 (Erratum: J Stat Plan Inference 137:512–1513)

    Article  MathSciNet  Google Scholar 

  • Leiva V, Riquelme M, Balakrishnan N, Sanhueza A (2008) Lifetime analysis based on the generalized Birnbaum-Saunders distribution. Comput Stat Data Anal 52:2079–2097

    Article  MathSciNet  Google Scholar 

  • Leiva V, Vilca-Labra F, Balakrishnan N, Sanhueza A (2010) A skewed sinh-normal distribution and its properties and application to air pollution. Commun Stat Theory Methods 39:426–443

    Article  MathSciNet  Google Scholar 

  • Meeker WQ, Escobar LA (1998) Statistical methods for reliability data. Wiley, New York

    MATH  Google Scholar 

  • Owen WJ (2006) A new three-parameter extension to the Birnbaum-Saunders distribution. IEEE Trans Reliab 55:475–479

    Article  Google Scholar 

  • Owen WJ, Ng HKT (2015) Revisit of relationships and models for the Birnbaum-Saunders and inverse-Gaussian distribution. J Stat Distrib Appl 2:11. https://doi.org/10.1186/s40488-015-0034-8

    Article  MATH  Google Scholar 

  • Sanhueza A, Leiva V, Balakrishnan N (2008) The generalized Birnbaum-Saunders and its theory, methodology, and application. Commun Stat Theory Methods 37:645–670

    Article  MathSciNet  Google Scholar 

  • Terrell GR (2002) The gradient statistic. Comput Sci Stat 34:206–215

    Google Scholar 

  • Wang L, Dai Z, Yang F, Zheng X (1995) Research and comments of mathematical analysis problems. Science Press, Beijing, pp 155–156

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor, the Associate Editor, and the referees for their constructive comments and suggestions for improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naijun Sha.

Appendices

Appendix A: Fisher Information for the GBS-I

From the expressions in (7)–(9), and the following facts

$$\begin{aligned} \frac{\partial \delta (t)}{\partial \kappa }= & {} -\delta (t)\log t, ~\frac{\partial \delta (t)}{\partial \beta } = -\frac{\varepsilon (t)}{2\beta }, \\ \frac{\partial \varepsilon _1(t)}{\partial \kappa }= & {} -\delta (t)-\varepsilon _1(t)\log t, ~\frac{\partial \varepsilon _1(t)}{\partial \beta } = -\frac{\delta _1(t)}{2\beta }, \\ \frac{\partial \left( \varepsilon (t)\delta (t)\right) }{\partial \kappa }= & {} -2\varepsilon (t)\delta (t)\log t, \frac{\partial \left( \varepsilon (t)\delta (t)\right) }{\partial \beta } = -\frac{1}{2\beta }[\varepsilon ^2(t)+\delta ^2(t)], \\ \frac{\partial \left( \frac{\varepsilon (t)}{\delta _1(t)}\right) }{\partial \kappa }= & {} \frac{\varepsilon ^2(t)}{\delta _1^2(t)}, ~\frac{\partial \left( \frac{\varepsilon (t)}{\delta _1(t)}\right) }{\partial \beta } = -\frac{t^{1-2\kappa }}{\beta \delta _1^2(t)}, \\ \frac{\partial \left( \frac{\varepsilon _1(t)}{\delta _1(t)}\right) }{\partial \kappa }= & {} \frac{\varepsilon (t)\varepsilon _1(t)-\delta (t)\delta _1(t)}{\delta _1^2(t)} = -\frac{2t^{1-2\kappa }}{\delta _1^2(t)}, \\ \frac{\partial \left( \frac{\varepsilon _1(t)}{\delta _1(t)}\right) }{\partial \beta }= & {} \frac{\varepsilon _1^2(t)-\delta _1^2(t)}{2\beta \delta _1^2(t)} = -\frac{2\kappa (1-\kappa )t^{1-2\kappa }}{\beta \delta _1^2(t)}, \end{aligned}$$

the second partial derivatives are given by

$$\begin{aligned} \frac{\partial ^2 \ell }{\partial \alpha ^2}= & {} \frac{n}{\alpha ^2} - \frac{3}{\alpha ^4}\sum _{i=1}^n \varepsilon ^2(t_i), ~\frac{\partial ^2 \ell }{\partial \alpha \partial \kappa } = -\frac{2}{\alpha ^3}\sum _{i=1}^n \varepsilon ^2(t_i)\log t_i, \end{aligned}$$
(30)
$$\begin{aligned} \frac{\partial ^2 \ell }{\partial \alpha \partial \beta }= & {} -\frac{1}{\alpha ^3\beta }\sum _{i=1}^n \varepsilon (t_i)\delta (t_i), ~\frac{\partial ^2 \ell }{\partial \kappa ^2} = -\sum _{i=1}^n \frac{\varepsilon ^2(t_i)}{\delta _1^2(t_i)} -\frac{2}{\alpha ^2}\sum _{i=1}^n \varepsilon ^2(t_i)\log ^2(t_i), \nonumber \\\end{aligned}$$
(31)
$$\begin{aligned} \frac{\partial ^2 \ell }{\partial \kappa \partial \beta }= & {} \frac{1}{\beta }\sum _{i=1}^n \frac{t_i^{1-2\kappa }}{\delta _1^2(t_i)} -\frac{1}{\alpha ^2\beta }\sum _{i=1}^n \varepsilon (t_i)\delta (t_i)\log (t_i), \qquad \end{aligned}$$
(32)
$$\begin{aligned} \frac{\partial ^2 \ell }{\partial \beta ^2}= & {} \frac{n}{2\beta ^2}-\frac{\kappa ^2}{\beta }\sum _{i=1}^n \frac{t_i^{-2\kappa }}{\delta _1^2(t_i)} -\frac{1}{\alpha ^2\beta ^3}\sum _{i=1}^n t_i^{2(1-\kappa )}. \end{aligned}$$
(33)

So the Fisher’s information matrix is

$$\begin{aligned} I(\kappa ,\alpha ,\beta )=\left( \begin{array}{ccc} u_{\kappa \kappa } &{} u_{\kappa \alpha } &{} u_{\kappa \beta } \\ u_{\alpha \kappa } &{} u_{\alpha \alpha } &{} u_{\alpha \beta } \\ u_{\beta \kappa } &{} u_{\beta \alpha } &{} u_{\beta \beta } \end{array}\right) , \end{aligned}$$
(34)

where the elements are the expectations of the second partial derivatives in (30)–(33). Unfortunately, due to the complexity, there are no theoretical forms for the elements except \(u_{\alpha \alpha } = -E(\partial ^2 \ell /\partial \alpha ^2) = 2n/\alpha ^2\) by using the fact that \(Z=\varepsilon (T)/\alpha \sim N(0,1)\). The observed \(I(\hat{\kappa },\hat{\alpha },\hat{\beta })\) is evaluated at MLEs \(\hat{\kappa },\hat{\alpha },\hat{\beta }\).

Appendix B: Proof of Uniqueness of \(\hat{\kappa }_N\)

First we show the function in the Eq. (20)

$$\begin{aligned} G(\kappa )=\frac{\sum _{i=1}^n T_i^{1-\kappa }}{\sum _{i=1}^n T_i^{-\kappa }} \end{aligned}$$

is decreasing for \(\kappa > 0\). Since

$$\begin{aligned} G'(\kappa ) = \frac{\left( \sum _{i=1}^n T_i^{1-\kappa }\right) \left( \sum _{i=1}^n T_i^{-\kappa }\log T_i\right) - \left( \sum _{i=1}^n T_i^{1-\kappa }\log T_i\right) \left( \sum _{i=1} T_i^{-\kappa }\right) }{\left( \sum _{i=1}^n T_i^{-\kappa }\right) ^2}. \end{aligned}$$

Let \(g(\kappa )\) be the numerate function of \(G'(\kappa )\). By switching the index of i and j in the summation, we have

$$\begin{aligned} 2g(\kappa )= & {} 2\left[ \sum _{i=1}^n\sum _{j=1}^n T_i^{1-\kappa }T_j^{-\kappa }\log T_j - \sum _{i=1}^n\sum _{j=1}^n T_i^{1-\kappa }T_j^{-\kappa }\log T_i \right] \nonumber \\= & {} \sum _{i=1}^n\sum _{j=1}^n T_i^{1-\kappa }T_j^{-\kappa }\log T_j + \sum _{i=1}^n\sum _{j=1}^n T_j^{1-\kappa }T_i^{-\kappa }\log T_i \\- & {} \sum _{i=1}^n\sum _{j=1}^n T_i^{1-\kappa }T_j^{-\kappa }\log T_i - \sum _{i=1}^n\sum _{j=1}^n T_j^{1-\kappa }T_i^{-\kappa }\log T_j \\= & {} \sum _{i=1}^n\sum _{j=1}^n T_i^{1-\kappa }T_j^{-\kappa }(\log T_j-\log T_i) + \sum _{i=1}^n\sum _{j=1}^n T_j^{1-\kappa }T_i^{-\kappa }(\log T_i-\log T_j) \nonumber \\= & {} - \sum _{i=1}^n\sum _{j=1}^n (T_i T_j)^{-\kappa }(T_i-T_j)(\log T_i-\log T_j). \end{aligned}$$

Since \((T_i-T_j)\) and \((\log T_i - \log T_j)\) have the same sign for any values of \(T_i\) and \(T_j\), it leads to \((T_i-T_j)(\log T_i - \log T_j) > 0\). Hence the function \(g(\kappa ) < 0\), and so \(G'(\kappa ) < 0\). Additionally, \(\lim _{\kappa \rightarrow 0} G(\kappa ) = \sum _{i=1}^n T_i/n\) and \(\lim _{\kappa \rightarrow 1} G(\kappa ) = n(\sum _{i=1}^n T_i^{-1})^{-1}\). It is known that \(n(\sum _{i=1}^n T_i^{-1})^{-1} \le (\prod _{i=1}^n T_i)^{1/n} \le (\sum _{i=1}^n T_i)/n\) for any positive values of \(T_i's\), and we conclude that there is a unique solution of \(\hat{\kappa }_N\) in Eq. (20). Figure 5 shows the plot of \(G(\kappa )\) for a sample data \(T_1,\ldots ,T_n\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Sha, N. & Xu, X. Statistical Inference for Type-I Generalized Birnbaum–Saunders Distribution. J Indian Soc Probab Stat 19, 469–487 (2018). https://doi.org/10.1007/s41096-018-0044-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41096-018-0044-1

Keywords

Navigation