Skip to main content
Log in

On the Extended Birnbaum–Saunders Distribution Based on the Skew-t-Normal Distribution

  • Research paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

In this article, a generalized version of the univariate Birnbaum–Saunders distribution based on the skew-t-normal distribution is introduced and its characterizations, properties are studied. Maximum likelihood estimation of the parameters via the ECM algorithm evaluated by Monte Carlo simulations is also discussed. Finally, two real datasets are analyzed for illustrative purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Azzalini A (1985) A class of distribution which includes the normal ones. Scand J Stat 12:171–178

    MathSciNet  MATH  Google Scholar 

  • Azzalini A (1986) Further results on a class of distribution which includes the normal ones. Statistica 46:199–208

    MathSciNet  MATH  Google Scholar 

  • Barros M, Paula GA, Leiva V (2008) A new class of survival regression models with heavy tailed errors: robustness and diagnostics. Lifetime Data Anal 14:316–332

    Article  MathSciNet  MATH  Google Scholar 

  • Basford KE, Greenway DR, McLachlan GJ, Peel D (1997) Standard error of fitted means under normal mixture. Comput Stat 12:1–17

    MATH  Google Scholar 

  • Birnbaum ZW, Saunders SC (1969) A new family of life distribution. J Appl Probab 6:319–327

    Article  MathSciNet  MATH  Google Scholar 

  • Cabral CRB, Bolfarine H, Pereira JRG (2008) Bayesian density estimation using skew student-t-normal mixtures. Comput Stat Data Anal 52:5075–5090

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J R Stat Soc Ser B 39:1–38

    MATH  Google Scholar 

  • Desmond A (1985) Stochastic models of failure in random environments. Can J Stat 13:171–183

    Article  MathSciNet  MATH  Google Scholar 

  • Diaz-Garcia JA, Leiva-Sanchez V (2005) A new family of life distribution based on the elliptically contoured distributions. J Stat Plan Inference 128:445–457

    Article  MathSciNet  MATH  Google Scholar 

  • Gomez HW, Venegas O, Bolfarine H (2007) Skew-symmetric distributions generated by the distribution function of the normal distribution. Environmetrics 18:395–407

    Article  MathSciNet  Google Scholar 

  • Gomez HW, Olivares J, Bolfarine H (2009) An extension of the generalized Birnbaum–Saunders distribution. Stat Probab Lett 79:331–338

    Article  MathSciNet  MATH  Google Scholar 

  • Hashmi F, Amirzadeh V, Jamalizadeh A (2015) An extension of the Birnbaum-Saunders distribution based on skew-normal-t distribution. Stat Res Train Cent 12:1–37

    Google Scholar 

  • Ho HJ, Pyne S, Lin TI (2011) Maximum likelihood inference for mixture of skew Student-t-normal distributions through practical EM-type algorithms. Stat Comput 22:287–299

    Article  MathSciNet  MATH  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factor. J Am Stat Assoc 90:773–795

    Article  MathSciNet  MATH  Google Scholar 

  • Lachos VH, Dey D, Cancho VG, Louzada N (2017) Scale mixtures log-Birnbaum–Saunders regression models with censored data: a Bayesian approach. J Stat Comput Simul 87:2002–2022

    Article  MathSciNet  Google Scholar 

  • Leiva V, Barros M, Paula GA, Galea M (2007) Influence diagnostics in log-Birnbaum–Saunders regression models with censored data. Comput Stat Data Anal 51:5694–5707

    Article  MathSciNet  MATH  Google Scholar 

  • Leiva V, Riquelme M, Balakrishnan N, Sanhueza A (2008) Lifetime analysis based on the generalized Birnbaum–Saunders. Comput Stat Data Anal 52:2079–2097

    Article  MathSciNet  MATH  Google Scholar 

  • Leiva V, Vilca F, Balakrishnan N, Sanhueza A (2010) A skewed sinh-normal distribution and its properties and application to air pollution. Commun Stat Theory Methods 39:426–443

    Article  MathSciNet  MATH  Google Scholar 

  • McLachlan GJ, Krishnan T (2008) The EM algorithm and extensions, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Meng X-L, Rubin DB (1993) Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80:267–278

    Article  MathSciNet  MATH  Google Scholar 

  • Nadarajah S, Kotz S (2003) Skewed distributions generated by the normal kernel. Stat Probab Lett 65(3):269–277

    Article  MathSciNet  MATH  Google Scholar 

  • Podaski R (2008) Characterization of diameter data in near-natural forests using the Birnbaum–Saunders distribution. Can J For Res 38:518–527

    Article  Google Scholar 

  • Raftery AE (1995) Bayesian model selection in social research. Sociolog Methodol 25:111–163

    Article  Google Scholar 

  • R Development Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  • Sanhueza A, Leiva V, Balakrishnan N (2008) The generalized Birnbaum–Saunders distribution and its methodology and application. Commun Stat Theory Methods 37:645–670

    Article  MathSciNet  MATH  Google Scholar 

  • Vilca F, Santana L, Leiva V, Balakrishnan N (2011) Estimation of extreme percentiles in Birnbaum–Saunders disribution. Comput Stat Data Anal 55:1665–1678

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Nematollahi.

Appendix

Appendix

This appendix presents the proof of Propositions 2.2 and 2.3.

Proof of Proposition 2.2

By using Eq.(5) the cdf of \(T \mid \left( \gamma ,\tau \right)\) is

$$\begin{aligned} F(T\le t\mid \gamma ,\tau )=P(Y\le a(t; \alpha ,\beta )\mid \gamma ,\tau )=P\left( Z_{2}\le \sqrt{\tau +\lambda ^{2}}a(t; \alpha ,\beta )-\frac{\lambda \gamma }{\sqrt{\tau +\lambda ^{2}}}\mid \gamma, \tau \right), \end{aligned}$$

then the pdf of T\(\mid \gamma ,\tau\) is

$$\begin{aligned} f(t\mid \gamma ,\tau )=\phi \left( \sqrt{\tau +\lambda ^{2}} a(t;\alpha ,\beta )-\frac{\lambda \gamma }{\sqrt{\tau +\lambda ^{2}}}\right) \sqrt{\tau +\lambda ^{2}}A(t;\alpha ,\beta ). \end{aligned}$$

The conditional distribution of \(\gamma \mid \tau\) can be easily obtained from the definitions. \(\square\)

Proof of Proposition 2.2

From Proposition 2.2, the joint pdf of \(T,\gamma\) and \(\tau\) is given by

$$\begin{aligned} f(t,\gamma ,\tau )=\frac{1}{\pi }\exp \left\{ -\frac{1}{2}\left( \left( \gamma -\frac{\lambda }{\alpha }\varepsilon (t;\beta )\right) ^{2}+\frac{\tau }{\alpha ^{2} }\varepsilon ^{2}(t;\beta )+\upsilon \tau \right) \right\} A(t;\alpha ,\beta )\frac{\left( \frac{\upsilon }{2} \right) ^{\frac{\upsilon }{2}}}{\Gamma \left( \frac{ \upsilon }{2}\right) }\tau ^{\frac{\upsilon -1}{2}}. \end{aligned}$$
(6)

where \(\varepsilon (t;\beta )=\sqrt{\frac{t}{\beta }}-\sqrt{\frac{\beta }{t}} .\)

By integrating on \(\gamma\) in (6), we get

$$\begin{aligned} f(t,\tau )=\sqrt{\frac{2}{\pi }}\frac{\left( \frac{\upsilon }{2}\right) ^{\frac{\upsilon }{2}}}{\Gamma \left( \frac{\upsilon }{2}\right) }\tau ^{\frac{\upsilon -1}{2}}A(t;\alpha ,\beta )\exp \left\{ \left( -\frac{\upsilon +\frac{\varepsilon ^{2}(t;\beta )}{\alpha ^{2}}}{2}\right) \tau \right\} \Phi \left( \lambda \frac{\varepsilon (t,\beta )}{\alpha }\right) . \end{aligned}$$
(7)

Dividing (7) by (3) gives

$$\begin{aligned} f(\tau \mid t)=\frac{\left( \frac{\upsilon +a^{2}(t;\alpha ,\beta )}{2}\right) ^{\frac{ \upsilon +1}{2}}}{\Gamma \left( \frac{\upsilon +1}{2}\right) }\tau ^{\frac{\upsilon +1}{2} -1}\exp \left( -\frac{\upsilon +a^{2}(t;\alpha ,\beta )}{2}\right) \tau , \end{aligned}$$

so

$$\begin{aligned} \tau \mid \left( T=t\right) \sim \Gamma \left( \frac{\upsilon +1}{ 2},\frac{\upsilon +a^{2}(t;\alpha ,\beta )}{2}\right) , \end{aligned}$$

which concludes parts (a) and (b),  and dividing (6) by (7), gives

$$\begin{aligned} f(\gamma \mid t,\tau )=\frac{1}{\Phi \left( \lambda \frac{\varepsilon (t; \beta )}{ \alpha }\right) }\frac{1}{\sqrt{2\pi }}\exp \left\{ -\frac{1}{2}\left( \gamma - \frac{\lambda }{\alpha }\varepsilon (t; \beta )\right) ^{2}\right\} I(0,+\infty )=f(\gamma \mid t), \end{aligned}$$

so \(\gamma\) and \(\tau\) are conditionally independent given \(T=t\) and the conditional distribution of \(\gamma\) given t is

$$\begin{aligned} \gamma \mid \left( T=t\right) \sim TN(\lambda a(t; \alpha , \beta ), 1, (0, \infty )), \end{aligned}$$

which concludes the part (c). \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poursadeghfard, T., Jamalizadeh, A. & Nematollahi, A. On the Extended Birnbaum–Saunders Distribution Based on the Skew-t-Normal Distribution. Iran J Sci Technol Trans Sci 43, 1689–1703 (2019). https://doi.org/10.1007/s40995-018-0614-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-018-0614-9

Keywords

Navigation