Skip to main content
Log in

Wetting–drying impact on geotechnical behavior of alkali-stabilized marl clay with glass powder

  • Technical Paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

This paper comprehensively focuses on the wetting–drying (W–D) behavior of carbonated marl soil, treated by a geopolymer utilizing alkali-activated milled recycled glass (MRG) and ordinary Portland cement. The effect of the stabilizer ratio (5%, 10%, 15%), curing times and temperature (24 h under 25 °C and 50 °C), sample preparation procedure (curing under a pressure of 200 kPa and in an oven), alkaline concentration (2, 4, 6 mol/L), pH, and different W–D cycles (1, 3, and 12 cycles) were assessed. Furthermore, this article explores the failure behavior of samples, a fact that has received limited attention in previous studies. Binding phases were examined using XRD, FTIR, and SEM–EDS techniques to analyze crystallinity and functional groups in stabilized specimens. The findings indicated greater efficiency in stabilization with lower alkaline activator concentration (2 mol/L), higher glass powder content (15%), and longer curing (90 days), which is abbreviated as 15S2M. Nonetheless, an excessive alkali content of 6 mol/L had adverse effects, leading to a decrease in the strength of the final product and a change in the failure pattern. Visual observations post UCS testing revealed four distinct failure modes, varying based on specific mixtures and curing times. In natural marl samples, irrespective of curing time, the failure surface and deformed shape exhibited a variation in cross-sectional area, with unclear failure planes resulting in a bulging or buckling failure mechanism. Notably, in low alkaline concentration scenarios and high MRG content, as well as in cement-stabilized samples, identifiable failure planes were observed, indicating shearing along a single plane or a sliding mode. The results also demonstrate the superior durability of cement-based samples during W–D cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Abdi MR, Ghalandarzadeh A, Chafi LS (2021) An investigation into the effects of lime on compressive and shear strength characteristics of fiber-reinforced clays. J Rock Mech Geotech Eng 13:885–898. https://doi.org/10.1016/j.jrmge.2020.11.008

    Article  Google Scholar 

  2. Afifipour M, Moarefvand P (2014) Failure patterns of geomaterials with block-in-matrix texture: experimental and numerical evaluation. Arab J Geosci 7:2781–2792

    Article  Google Scholar 

  3. Ahmed HU, Mohammed AS, Faraj RH, Abdalla AA, Qaidi SMA, Sor NH, Mohammed AA (2023) Innovative modeling techniques including MEP, ANN and FQ to forecast the compressive strength of geopolymer concrete modified with nanoparticles. Neural Comput Appl 35:12453–12479

    Article  Google Scholar 

  4. Ahmed HU, Mohammed AS, Qaidi SMA, Faraj RH, Hamah Sor N, Mohammed AA (2023) Compressive strength of geopolymer concrete composites: a systematic comprehensive review, analysis and modeling. Eur J Environ Civ Eng 27:1383–1428

    Article  Google Scholar 

  5. Alastair M, Andrew H, Pascaline P, Mark E, Pete W (2018) Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals. Appl Clay Sci 166:250–261

    Article  Google Scholar 

  6. Aldaood A (2020) Impact of fine materials on the saturated and unsaturated behavior of silty sand soil. Ain Shams Eng J 11:717–725. https://doi.org/10.1016/j.asej.2019.11.005

    Article  Google Scholar 

  7. Alonso S, Palomo A (2001) Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Mater Lett 47:55–62

    Article  CAS  Google Scholar 

  8. ASTM C150 (2020) ASTM C 150: standard specification for Portland Cement. ASTM Philadelphia

    Google Scholar 

  9. ASTM, D. 3-9 (2011) Standard test method for direct shear test of soils under consolidated drained conditions. D3080/D3080M3

  10. ASTM D 4972-19 (2019) Standard test method for pH of soils, ASTM International. American Society for Testing and Materials Philadelphia. https://doi.org/10.1520/D4972-19

  11. ASTM D422-63 (2007) ASTM D422-63 Standard test method for particle-size analysis of soils. ASTM Int. West Conshohocken

  12. ASTM D4318-17e1 (2017) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken. https://doi.org/10.1520/D4318-17E01

  13. ASTM D698 (2012) Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 Ft-lbf/ft3 (600 KN-m/m3)) 1. ASTM international. https://doi.org/10.1520/D0698-12E02

  14. ASTM D854 (2014) Standard test methods for specific gravity of soil solids by water pycnometer. https://doi.org/10.1520/D0854-14

  15. Autef A, Joussein E, Poulesquen A, Gasgnier G, Pronier S, Sobrados I, Sanz J, Rossignol S (2013) Influence of metakaolin purities on potassium geopolymer formulation: the existence of several networks. J Colloid Interface Sci 408:43–53

    Article  CAS  Google Scholar 

  16. Barman D, Dash SK (2022) Stabilization of expansive soils using chemical additives: a review. J Rock Mech Geotech Eng 14:1319–1342. https://doi.org/10.1016/j.jrmge.2022.02.011

    Article  Google Scholar 

  17. Basu A, Mishra DA, Roychowdhury K (2013) Rock failure modes under uniaxial compression, Brazilian, and point load tests. Bull Eng Geol Environ 72:457–475

    Article  Google Scholar 

  18. Ben Haha M, Termkhajornkit P, Ouzia A, Uppalapati S, Huet B (2023) Low clinker systems—towards a rational use of SCMs for optimal performance. Cem Concr Res 174:107312. https://doi.org/10.1016/j.cemconres.2023.107312

    Article  CAS  Google Scholar 

  19. Bernal SA, Bílek V, Criado M, Fernández-Jiménez A, Kavalerova E, Krivenko PV, Palacios M, Palomo A, Provis JL, Puertas F (2014) Durability and testing–degradation via mass transport. In: Alkali activated materials. Springer, pp 223–276

  20. Bozyigit I, Zingil HO, Altun S (2023) Performance of eco-friendly polymers for soil stabilization and their resistance to freeze–thaw action. Constr Build Mater 379:131133. https://doi.org/10.1016/j.conbuildmat.2023.131133

    Article  CAS  Google Scholar 

  21. Brigatti MF, Mottana A (2011) Layered mineral structures and their application in advanced technologies. The Mineralogical Society of Great Britain and Ireland

  22. Canakci H, Güllü H, Alhashemy A (2019) Performances of using geopolymers made with various stabilizers for deep mixing. Materials (Basel) 12:2542

    Article  CAS  Google Scholar 

  23. Cano M, Tomás R, Riquelme A (2017) Relationship between monitored natural slaking behaviour, field degradation behaviour and slake durability test of marly flysch rocks: preliminary results. Proc Eng 191:609–617. https://doi.org/10.1016/j.proeng.2017.05.224

    Article  Google Scholar 

  24. Cardoso R, das Neves EM (2012) Hydro-mechanical characterization of lime-treated and untreated marls used in a motorway embankment. Eng Geol 133:76–84. https://doi.org/10.1016/j.enggeo.2012.02.014

    Article  Google Scholar 

  25. Díaz-López JL, Cabrera M, Agrela F, Rosales J (2023) Geotechnical and engineering properties of expansive clayey soil stabilized with biomass ash and nanomaterials for its application in structural road layers. Geomech Energy Environ 36:100496. https://doi.org/10.1016/j.gete.2023.100496

    Article  Google Scholar 

  26. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933

    Article  CAS  Google Scholar 

  27. El Howayek A, Santagata M, Bobet A, Zia-Siddiki N (2015) Engineering properties of marls. Joint Transportation Research Program, West Lafayette, IN. https://doi.org/10.5703/1288284315533

    Book  Google Scholar 

  28. Fernández-Jiménez A, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem Concr Res 35:1984–1992

    Article  Google Scholar 

  29. Fernández-Jiménez A, Puertas F, Sobrados I, Sanz J (2003) Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator. J Am Ceram Soc 86:1389–1394

    Article  Google Scholar 

  30. Günther C, Kauther R, Lempp C (2018) Evaluation of effective strength parameters in mudrocks. In: Geomechanics and geodynamics of rock masses, vol 2. CRC Press, pp 1179–1184

  31. Han Z, Vanapalli SK (2016) Stiffness and shear strength of unsaturated soils in relation to soil-water characteristic curve. Géotechnique 66:627–647

    Article  Google Scholar 

  32. Hariharan M, Varghese N, Cherian AB, Paul J (2014) Synthesis and characterisation of CaCO3 (Calcite) nano particles from cockle shells using chitosan as precursor

  33. Hoy M, Rachan R, Horpibulsuk S, Arulrajah A, Mirzababaei M (2017) Effect of wetting–drying cycles on compressive strength and microstructure of recycled asphalt pavement—fly ash geopolymer. Constr Build Mater 144:624–634. https://doi.org/10.1016/J.CONBUILDMAT.2017.03.243

    Article  CAS  Google Scholar 

  34. Illampas R, Ioannou I, Charmpis DC (2014) Adobe bricks under compression: experimental investigation and derivation of stress–strain equation. Constr Build Mater 53:83–90

    Article  Google Scholar 

  35. Jamalimoghadam M, Ajalloeian R, Saffarzadeh A (2022) 23-Sustainable alkali-activated materials. In: Colangelo F, Cioffi R, Farina IB (eds) Woodhead Publishing series in civil and structural engineering. Woodhead Publishing, pp 489–508. https://doi.org/10.1016/B978-0-12-821730-6.00030-9

    Chapter  Google Scholar 

  36. Jamalimoghadam M, Bahmyari H (2023) Freeze-thaw characteristics of slaking marl clay stabilized with a binder based on alkali-activated recycled glass powder. J Mater Civ Eng 35:4023394. https://doi.org/10.1061/JMCEE7.MTENG-15432

    Article  CAS  Google Scholar 

  37. Jamshidi M, Mokhberi M, Hossein Vakili A, Nasehi A (2023) Effect of chitosan bio-polymer stabilization on the mechanical and dynamic characteristics of marl soils. Transp Geotech 42:101110. https://doi.org/10.1016/j.trgeo.2023.101110

    Article  Google Scholar 

  38. Karimiazar J, Sharifi Teshnizi E, O’Kelly B, Sadeghi S, Karimizad N, Yazdi A, Arjmandzadeh R (2023) Effect of nano-silica on engineering properties of lime-treated marl soil. Transp Geotech 10:1123. https://doi.org/10.1016/j.trgeo.2023.101123

    Article  Google Scholar 

  39. Khalifa AZ, Cizer Ö, Pontikes Y, Heath A, Patureau P, Bernal SA, Marsh ATM (2020) Advances in alkali-activation of clay minerals. Cem Concr Res 132:106050

    Article  CAS  Google Scholar 

  40. Khoshbakht EB, Vakili AH, Farhadi MS, Salimi M (2019) Reducing the negative impact of freezing and thawing cycles on marl by means of the electrokinetical injection of calcium chloride. Cold Reg Sci Technol 157:196–205

    Article  Google Scholar 

  41. Komnitsas K, Vathi D, Steiakakis E, Bartzas G, Perdikatsis V (2023) Insights on stabilization of marly soils through alkali activation with the use of slag and metakaolin as additives. Case Stud Chem Environ Eng 8:100400. https://doi.org/10.1016/j.cscee.2023.100400

    Article  CAS  Google Scholar 

  42. Kwon Y-M, Moon J-H, Cho G-C, Kim Y-U, Chang I (2023) Xanthan gum biopolymer-based soil treatment as a construction material to mitigate internal erosion of earthen embankment: a field-scale. Constr Build Mater 389:131716. https://doi.org/10.1016/j.conbuildmat.2023.131716

    Article  CAS  Google Scholar 

  43. Labrincha J, Pacheco-Torgal F, Palomo A, Chindaprasit P, Leonelli C (2014) Handbook of alkali-activated cements, mortars and concretes. Woodhead Publishing

    Google Scholar 

  44. Lamas F, Irigaray C, Oteo C, Chacon J (2005) Selection of the most appropriate method to determine the carbonate content for engineering purposes with particular regard to marls. Eng Geol 81:32–41. https://doi.org/10.1016/j.enggeo.2005.07.005

    Article  Google Scholar 

  45. Lamas F, Lamas-López F, Bravo R (2014) Influence of carbonate content of marls used in dams: geotechnical and statistical characterization. Eng Geol 177:32–39. https://doi.org/10.1016/j.enggeo.2014.05.007

    Article  Google Scholar 

  46. Lu N, Likos WJ (2006) Suction stress characteristic curve for unsaturated soil. J Geotech Geoenviron Eng 132:131–142

    Article  Google Scholar 

  47. Ma H, Zhu H, Yi C, Fan J, Chen H, Xu X, Wang T (2019) Preparation and reaction mechanism characterization of alkali-activated coal gangue-slag materials. Materials (Basel) 12:2250. https://doi.org/10.3390/ma12142250

    Article  CAS  Google Scholar 

  48. Mabroum S, Garcia-Lodeiro I, Blanco-Varela MT, Taha Y, Chhaiba S, Indris S, Benzaazoua M, Mansori M, Hakkou R (2023) Formation of CSH and MSH gels in alkali-activated materials based on marl by-products from phosphate mines. Constr Build Mater 365:130029. https://doi.org/10.1016/j.conbuildmat.2022.130029

    Article  CAS  Google Scholar 

  49. MacKenzie KJD, Brew D, Fletcher R, Nicholson C, Vagana R, Schmücker M (2006) Advances in understanding the synthesis mechanisms of new geopolymeric materials. Nov Process Ceram Compos Ceram Trans Ser 195:185–199

    Article  Google Scholar 

  50. Madejová J (2001) Baseline studies of the clay minerals society source clays: infrared methods. Clays Clay Miner 49:410–432. https://doi.org/10.1346/CCMN.2001.0490508

    Article  Google Scholar 

  51. Magalhães VMA, Mendes GP, Costa-Filho JDB, Cohen R, Partiti CSM, Vianna MMGR, Chiavone-Filho O (2020) Clay-based catalyst synthesized for chemical oxidation of phenanthrene contaminated soil using hydrogen peroxide and persulfate. J Environ Chem Eng 8:103568. https://doi.org/10.1016/j.jece.2019.103568

    Article  CAS  Google Scholar 

  52. Mansour ZM, Chik Z, Taha MR (2008) On the procedures of soil collapse potential evaluation. J Appl Sci 8:4434–4439

    Article  Google Scholar 

  53. Miraki H, Shariatmadari N, Ghadir P, Jahandari S, Tao Z, Siddique R (2022) Clayey soil stabilization using alkali-activated volcanic ash and slag. J Rock Mech Geotech Eng 14:576–591. https://doi.org/10.1016/j.jrmge.2021.08.012

    Article  Google Scholar 

  54. Moghadam MJ, Ajalloeian R, Hajiannia A (2019) Preparation and application of alkali-activated materials based on waste glass and coal gangue: a review. Constr Build Mater 221:84–98. https://doi.org/10.1016/j.conbuildmat.2019.06.071

    Article  CAS  Google Scholar 

  55. Mohamed AAMS, Yuan J, Al-Ajamee M, Dong Y, Ren Y, Hakuzweyezu T (2023) Improvement of expansive soil characteristics stabilized with sawdust ash, high calcium fly ash and cement. Case Stud Constr Mater 18:e01894. https://doi.org/10.1016/j.cscm.2023.e01894

    Article  Google Scholar 

  56. Mouih K, Hakkou R, Taha Y, Benzaazoua M (2023) Performances of compressed stabilized bricks using phosphate waste rock for sustainable construction. Constr Build Mater 388:131577. https://doi.org/10.1016/j.conbuildmat.2023.131577

    Article  CAS  Google Scholar 

  57. Olufowobi J, Ogundoju A, Michael B, Aderinlewo O (2014) Clay soil stabilisation using powdered glass. J Eng Sci Technol 9:541–558

    Google Scholar 

  58. Pakand M, Toufigh V (2017) A multi-criteria study on rammed earth for low carbon buildings using a novel ANP-GA approach. Energy Build 150:466–476

    Article  Google Scholar 

  59. Pettijohn FJ (1975) Sedimentary rocks. Harper & Row, New York

    Google Scholar 

  60. Post JL, Crawford S (2007) Varied forms of palygorskite and sepiolite from different geologic systems. Appl Clay Sci 36:232–244

    Article  CAS  Google Scholar 

  61. Qaidi S, Yahia A, Tayeh BA, Unis H, Faraj R, Mohammed A (2022) 3D printed geopolymer composites: a review. Mater Today Sustain 20:100240. https://doi.org/10.1016/j.mtsust.2022.100240

    Article  Google Scholar 

  62. Salehin S (2017) Investigation into engineering parameters of marls from Seydoon dam in Iran. J Rock Mech Geotech Eng 9:912–923. https://doi.org/10.1016/j.jrmge.2017.05.002

    Article  Google Scholar 

  63. Santha Kumar G, Saini PK, Deoliya R, Mishra AK, Negi SK (2022) Characterization of laterite soil and its use in construction applications: a review. Resour Conserv Recycl Adv 16:200120. https://doi.org/10.1016/j.rcradv.2022.200120

    Article  Google Scholar 

  64. Schoonheydt RA, Johnston CT, Brigatti MF, Mottana A (2011) The surface properties of clay minerals. Layer Struct Appl Adv Technol 11:337–373

    Google Scholar 

  65. Škvára F (2007) Alkali activated materials or geopolymers. Ceramics Silikáty 51:173–177

    Google Scholar 

  66. Škvára F, Kopecký L, Myšková L, Šmilauer V, Alberovska L, Vinšová L (2009) Aluminosilicate polymers–influence of elevated temperatures, efflorescence. Ceramics Silikáty 53:276–282

    Google Scholar 

  67. Tavakkoli E, Rengasamy P, Smith E, McDonald GK (2015) The effect of cation–anion interactions on soil pH and solubility of organic carbon. Eur J Soil Sci 66:1054–1062

    Article  CAS  Google Scholar 

  68. Tonini de Araújo M, Tonatto Ferrazzo S, Mansur Chaves H, Gravina da Rocha C, Cesar Consoli N (2023) Mechanical behavior, mineralogy, and microstructure of alkali-activated wastes-based binder for a clayey soil stabilization. Constr Build Mater 362:129757. https://doi.org/10.1016/j.conbuildmat.2022.129757

    Article  CAS  Google Scholar 

  69. Torres-Carrasco M, Puertas F (2017) Alkaline activation of aluminosilicates as an alternative to Portland cement: a review. Rev Rom Mater J Mater 47:3–15

    CAS  Google Scholar 

  70. Vossberg C, Mason-Jones K (2014) An energetic life cycle assessment of C&D waste and container glass recycling in Cape Town, South Africa. Resour Conserv Recycl 88:39–49

    Article  Google Scholar 

  71. Vakili AH, Salimi M, Keskin İ, Jamalimoghadam M (2024) A systematic review of strategies for identifying and stabilizing dispersive clay soils for sustainable infrastructure. Soil Tillage Res 239:106036

    Article  Google Scholar 

  72. Vakili AH, Salimi M, Lu Y, Shamsi M, Nazari Z (2022) Strength and post-freeze-thaw behavior of a marl soil modified by lignosulfonate and polypropylene fiber: an environmentally friendly approach. Constr Build Mater 332:127364

    Article  CAS  Google Scholar 

  73. Vakili AH, Salimi M, Shamsi M (2021) Application of the dynamic cone penetrometer test for determining the geotechnical characteristics of marl soils treated by lime. Heliyon 7:e08062

    Article  Google Scholar 

  74. Vakili AH, Selamat MRB, Salimi M, Gararei SG (2021) Evaluation of pozzolanic Portland cement as geotechnical stabilizer of a dispersive clay. Int J Geotech Eng 15:504–511

    Article  CAS  Google Scholar 

  75. Yliniemi J, Walkley B, Provis JL, Kinnunen P, Illikainen M (2020) Nanostructural evolution of alkali-activated mineral wools. Cem Concr Compos 106:103472

    Article  CAS  Google Scholar 

  76. Yu T-T, Chen C-Y, Wu T-H, Chang Y-C (2023) Application of high-dimensional uniform manifold approximation and projection (UMAP) to cluster existing landfills on the basis of geographical and environmental features. Sci Total Environ 904:167013. https://doi.org/10.1016/j.scitotenv.2023.167013

    Article  CAS  Google Scholar 

  77. Yuan B, Yu QL, Brouwers HJH (2017) Phase modification induced drying shrinkage reduction on Na2CO3 activated slag by incorporating Na2SO4. Mater Struct 50:220. https://doi.org/10.1617/s11527-017-1088-5

    Article  CAS  Google Scholar 

  78. Zheng P, Li W, Ma Q, Xi L (2023) Mechanical properties of phosphogypsum-soil stabilized by lime activated ground granulated blast-furnace slag. Constr Build Mater 402:132994. https://doi.org/10.1016/j.conbuildmat.2023.132994

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We extend our heartfelt gratitude to Arash Totonchi from the Department of Civil Engineering, Marvdasht Branch, Azad Islamic University, Marvdasht, Iran, and to Hossein Bahmyari, Ph.D Fellow, PE, BC.GE, M.ASCE, Senior Lead Geotechnical Engineer at Twining, Inc., for their invaluable contributions and cooperation in the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jamalimoghadam.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article dose not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamalimoghadam, M., Vakili, A.H. & Ajalloeian, R. Wetting–drying impact on geotechnical behavior of alkali-stabilized marl clay with glass powder. Innov. Infrastruct. Solut. 9, 205 (2024). https://doi.org/10.1007/s41062-024-01515-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-024-01515-4

Keywords

Navigation