Skip to main content

Advertisement

Log in

Durability Evaluation of Clayey Sandy Soil Stabilized with Copper-Slag-Based Geopolymer Under Freezing–Thawing Cycles

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

In the current study, the durability of a clayey-sand stabilized with copper-slag (CS)-based geopolymer and alkaline activator solution (AAS) is investigated in freezing–thawing (F–T) cycles. For this purpose, tests including Atterberg limits, pH, standard Proctor compaction, unconfined compressive strength (UCS), accumulated loss of mass (ALM), swell and shrinkage, ultrasonic P-wave velocity, the toxicity characteristic leaching procedure (TCLP), and scanning electron microscopy (SEM) analysis were conducted. Various contents of CS (i.e., 0, 10%, and 15%) and 8 and 11 M NaOH were assessed in 0, 1, 3, 6, 9, and 12 cycles. The AAS contained 70% of Na2SiO3 and 30% of NaOH. Also, the weight ratio of CS to ASS was 1 (CS/ASS = 1). According to the TCLP test, the CS-based geopolymer stabilized samples have no environmental hazards. The results illustrated that the strength and stiffness of untreated soil increased with an increase in F–T cycles until cycle 3. For samples with 11 M NaOH concentration, loss of strength and stiffness were observed due to F–T cycles. Furthermore, the sample with 8 M NaOH showed hybrid behavior (i.e., an increase in strength and stiffness until cycle 3), similar to that of untreated soil, and then declined until cycle 9, similar to soil treated with 11 M NaOH. Based on the microstructural analysis, higher microcracks were observed in the 8 M sample compared with the 11 M sample due to soft-strain behavior. Furthermore, a higher microcrack formation resulted in a higher potential for swell mass and volume change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sahoo, S., & Singh, S. P. (2022). Strength and durability properties of expansive soil treated with geopolymer and conventional stabilizers. Construction and Building Materials, 328, 127078.

    Article  Google Scholar 

  2. Miraki, H., Shariatmadari, N., Ghadir, P., Jahandari, S., Tao, Z., & Siddique, R. (2022). Clayey soil stabilization using alkali-activated volcanic ash and slag. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2021.08.012

    Article  Google Scholar 

  3. Kamei, T., Ahmed, A., & Shibi, T. (2012). Effect of freeze-thaw cycles on durability and strength of very soft clay soil stabilised with recycled Bassanite. Cold Regions Science and Technology, 82, 124–129. https://doi.org/10.1016/j.coldregions.2012.05.016

    Article  Google Scholar 

  4. Liu, X., Liu, J., Tian, Y., Chang, D., & Hu, T. (2019). Influence of the freeze-thaw effect on the Duncan-Chang model parameter for lean clay. Transportation Geotechnics, 21, 100273. https://doi.org/10.1016/j.trgeo.2019.100273

    Article  Google Scholar 

  5. Chamberlain, E. J., & Gow, A. J. (1979). Effect of freezing and thawing on the permeability and structure of soils. Developments in Geotechnical Engineering, 26, 73–92.

    Article  Google Scholar 

  6. Kravchenko, E., Liu, J., Krainiukov, A., & Chang, D. (2019). Dynamic behavior of clay modified with polypropylene fiber under freeze-thaw cycles. Transportation Geotechnics, 21, 100282. https://doi.org/10.1016/j.trgeo.2019.100282

    Article  Google Scholar 

  7. Hotineanu, A., Bouasker, M., Aldaood, A., & Al-Mukhtar, M. (2015). Effect of freeze-thaw cycling on the mechanical properties of lime-stabilized expansive clays. Cold Regions Science and Technology, 119, 151–157. https://doi.org/10.1016/j.coldregions.2015.08.008

    Article  Google Scholar 

  8. Shi, C., Meyer, C., & Behnood, A. (2008). Utilization of copper slag in cement and concrete. Resources, Conservation and Recycling, 52, 1115–1120.

    Article  Google Scholar 

  9. Kutanaei, S. S., Choobbasti, A. J., Fakhrabadi, A., Ghadakpour, M., Vafaei, A., & Afrakoti, M. P. (2022). Application of LRBF-DQ and CVBFEM methods for evaluating saturated sand liquefaction around buried pipeline. Journal of Pipeline Systems Engineering and Practice, 13, 4021077.

    Article  Google Scholar 

  10. Mohammadinia, A., Arulrajah, A., Sanjayan, J., Disfani, M. M., Bo, M. W., & Darmawan, S. (2015). Stabilization of demolition materials for pavement base/subbase applications using fly ash and slag geopolymers. Laboratory Investigation. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001526

    Article  Google Scholar 

  11. Kim, Y., Dang, M. Q., & Do, T. M. (2016). Studies on compressive strength of sand stabilized by alkali—activated ground bottom ash and cured at the ambient conditions. International Journal of Geo-Engineering. https://doi.org/10.1186/s40703-016-0029-4

    Article  Google Scholar 

  12. Du, Y., Bo, Y., Jin, F., & Liu, C. (2015). Durability of reactive magnesia- activated slag-stabilized low plasticity clay subjected to drying—wetting cycle. European Journal of Environmental and Civil Engineering. https://doi.org/10.1080/19648189.2015.1030088

    Article  Google Scholar 

  13. Wu, Y., Qiao, X., Yu, X., Yu, J., & Deng, Y. (2021). Study on properties of expansive soil improved by steel slag powder and cement under freeze-thaw cycles. KSCE Journal of Civil Engineering, 25, 417–428. https://doi.org/10.1007/s12205-020-0341-6

    Article  Google Scholar 

  14. Yaghoubi, M., Arulrajah, A., Miri, M., Horpibulsuk, S., Darmawan, S., & Wang, J. (2018). Applied clay science impact of field conditions on the strength development of a geopolymer stabilized marine clay. Applied Clay Science. https://doi.org/10.1016/j.clay.2018.10.005

    Article  Google Scholar 

  15. Phoo-ngernkham, T., Maegawa, A., Mishima, N., Hatanaka, S., & Chindaprasirt, P. (2015). Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA—GBFS geopolymer. Construction and Building Materials, 91, 1–8. https://doi.org/10.1016/j.conbuildmat.2015.05.001

    Article  Google Scholar 

  16. Singhi, B., Islam, A., & Ali, L. M. (2016). Investigation on soil—geopolymer with slag, fly ash and their blending. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-015-1677-y

    Article  Google Scholar 

  17. Fakhrabadi, A., Ghadakpour, M., Choobbasti, A. J., & Kutanaei, S. S. (2021). Evaluating the durability, microstructure and mechanical properties of a clayey-sandy soil stabilized with copper slag-based geopolymer against wetting-drying cycles. Bulletin of Engineering Geology and the Environment, 80, 5031–5051.

    Article  Google Scholar 

  18. Liew, Y. M., Kamarudin, H., Al, A. M. M., Bnhussain, M., Luqman, M., Nizar, I. K., Ruzaidi, C. M., & Heah, C. Y. (2012). Optimization of solids-to-liquid and alkali activator ratios of calcined kaolin geopolymeric powder. Construction and Building Materials, 37, 440–451. https://doi.org/10.1016/j.conbuildmat.2012.07.075

    Article  Google Scholar 

  19. Davidovits, J., & Quentin, S. (1991). Geopolymers: inorganic polymerie new materials. Journal of Thermal Analysis and Calorimetry, 37, 1633–1656.

    Article  Google Scholar 

  20. Fakhrabadi, A., Ghadakpour, M., Choobbasti, A. J., & Kutanaei, S. S. (2021). Influence of the non-woven geotextile (NWG) on the engineering properties of clayey-sand treated with copper slag-based geopolymer. Construction and Building Materials, 306, 124830.

    Article  Google Scholar 

  21. Khale, D., & Chaudhary, Æ. R. (2007). Mechanism of geopolymerization and factors influencing its development: a review. Journal of Materials Science. https://doi.org/10.1007/s10853-006-0401-4

    Article  Google Scholar 

  22. Ghadakpour, M., Fakhrabadi, A., Janalizadeh Choobbasti, A., Soleimani Kutanaei, S., Vafaei, A., Taslimi Paein Afrakoti, M., & Eisazadeh, N. (2021). Effect of post-construction moisture condition on mechanical behaviour of fiber-reinforced-cemented-sand (FRCS). Geomechanics and Geoengineering. https://doi.org/10.1080/17486025.2021.1980230

    Article  Google Scholar 

  23. Zhang, M., Guo, H., El-korchi, T., Zhang, G., & Tao, M. (2013). Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials, 47, 1468–1478. https://doi.org/10.1016/j.conbuildmat.2013.06.017

    Article  Google Scholar 

  24. Yaghoubi, M., Arulrajah, A., & Miri, M. (2018). Effects of industrial by-product based geopolymers on the strength development of a soft soil. Soils and Foundations. https://doi.org/10.1016/j.sandf.2018.03.005

    Article  Google Scholar 

  25. Behnood, A. (2018). Soil and clay stabilization with calcium- and non-calcium-based additives: a state-of-the-art review of challenges, approaches and techniques. Transportation Geotechnics. https://doi.org/10.1016/j.trgeo.2018.08.002

    Article  Google Scholar 

  26. Prasad, P. S., & Ramana, G. V. (2016). Feasibility study of copper slag as a structural fill in reinforced soil structures. Geotextiles and Geomembranes, 44, 623–640. https://doi.org/10.1016/j.geotexmem.2016.03.007

    Article  Google Scholar 

  27. Heah, C. Y., Kamarudin, H., Al, A. M. M., Bnhussain, M., Luqman, M., Nizar, I. K., Ruzaidi, C. M., & Liew, Y. M. (2012). Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Construction and Building Materials, 35, 912–922. https://doi.org/10.1016/j.conbuildmat.2012.04.102

    Article  Google Scholar 

  28. Lu, Y., Liu, S., Alonso, E., Wang, L., Xu, L., & Li, Z. (2019). Volume changes and mechanical degradation of a compacted expansive soil under freeze-thaw cycles. Cold Regions Science and Technology. https://doi.org/10.1016/j.coldregions.2018.10.008

    Article  Google Scholar 

  29. Hale, P. A., & Shakoor, A. (2003). A laboratory investigation of the effects of cyclic heating and cooling, wetting and drying, and freezing and thawing on the compressive strength of selected sandstones. Environmental and Engineering Geoscience, 9, 117–130. https://doi.org/10.2113/9.2.117

    Article  Google Scholar 

  30. Li, G., Ma, W., Wang, F., Mu, Y., Mao, Y., Hou, X., & Bing, H. (2015). Processes and mechanisms of multi-collapse of loess roads in seasonally frozen ground regions: a review. Sciences in Cold and Arid Regions, 7, 456–468.

    Google Scholar 

  31. Tebaldi, G., Orazi, M., & Orazi, U. S. (2016). Effect of freeze-thaw cycles on mechanical behavior of lime-stabilized soil. Journal of Materials in Civil Engineering, 28, 72–81. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001509

    Article  Google Scholar 

  32. Solanki, P., Zaman, M., & Khalife, R. (2013). Effect of freeze-thaw cycles on performance of stabilized subgrade. Geotechnical Special Publication. https://doi.org/10.1061/9780784412770.038

    Article  Google Scholar 

  33. Bandara, N., Binoy, T.H., Aboujrad, H.S. (2015). Freeze–thaw durability of subgrades stabilized with recycled materials, proceeding international conference cold regions engineering 135–145. https://doi.org/10.1061/9780784479315.013

  34. de Jesús Arrieta Baldovino, J., dos Santos Izzo, R. L., & Rose, J. L. (2021). Effects of freeze–thaw cycles and porosity/cement index on durability, strength and capillary rise of a stabilized silty soil under optimal compaction conditions. Geotechnical and Geological Engineering, 39, 481–498. https://doi.org/10.1007/s10706-020-01507-y

    Article  Google Scholar 

  35. D2487. (2006). Standard practice for classification of soils for engineering purposes (unified soil classification system), ASTM Stand. Guid. D5521-05, 1–5. https://doi.org/10.1520/D2487-11

  36. Ladd, R. S. (1978). Preparing test specimens using undercompaction. Geotechnical Testing Journal, 1, 16–23.

    Article  Google Scholar 

  37. Ghadakpour, M., Choobbasti, A. J., & Kutanaei, S. S. (2020). Investigation of the Kenaf fiber hybrid length on the properties of the cement-treated sandy soil. Transportation Geotechnics. https://doi.org/10.1016/j.trgeo.2019.100301

    Article  Google Scholar 

  38. Choobbasti, A. J., & Kutanaei, S. S. (2017). Microstructure characteristics of cement-stabilized sandy soil using nanosilica. Journal of Rock Mechanics and Geotechnical Engineering, 9, 981–988.

    Article  Google Scholar 

  39. Horpibulsuk, S., Ph, D., Suksiripattanapong, C., Ph, D., Samingthong, W., Rachan, R., Ph, D., Arulrajah, A., & Ph, D. (2015). Durability against wetting—drying cycles of water treatment sludge—fly ash geopolymer and water treatment sludge—cement and silty clay—cement systems. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001351

    Article  Google Scholar 

  40. Shadnia, R., Zhang, L., Ph, D., & Asce, M. (2017). Experimental study of geopolymer synthesized with class F fly ash and low-calcium slag. Journal of Materials in Civil Engineering, 29, 1–10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002065

    Article  Google Scholar 

  41. Leong, H. Y., Ek, D., Ong, L., Asce, M., Sanjayan, J. G., Nazari, A., & Ash, F. (2018). Strength development of soil—fly ash geopolymer: Assessment of soil, fly ash, alkali activators, and water materials. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002363

    Article  Google Scholar 

  42. D4318. (2014). Standard test methods for liquid limit, plastic limit, and plasticity index of soils 1. https://doi.org/10.1520/D4318-10E01

  43. Amadi, A. (2010). Evaluation of changes in index properties of lateritic soil stabilized with fly ash. Leonardo Electronic Journal of Practices and Technologies, 9, 69–78.

    Google Scholar 

  44. D4972. (2013). Standard test method for pH of soils, ASTM Stand. Int. 1–4. https://doi.org/10.1520/D4972-13.2

  45. Aldaood, A., Bouasker, M., & Al-mukhtar, M. (2014). Impact of wetting—drying cycles on the microstructure and mechanical properties of lime-stabilized gypseous soils. Engineering Geology, 174, 11–21. https://doi.org/10.1016/j.enggeo.2014.03.002

    Article  Google Scholar 

  46. Cai, G., Liu, S., & Zheng, X. (2019). Influence of drying-wetting cycles on engineering properties of carbonated silt admixed with reactive MgO. Construction and Building Materials, 204, 84–93. https://doi.org/10.1016/j.conbuildmat.2019.01.125

    Article  Google Scholar 

  47. D698. (2003). Standard test methods for laboratory compaction characteristics of soil using, 3

  48. D2166. (2013). Standard test method for unconfined compressive strength of cohesive soil 1, ASTM Int. i, 1–7. https://doi.org/10.1520/D2166

  49. D560-96. (2012). ASTM D560-96 standard test methods for freezing and thawing compacted soil-cement mixtures, i, 1–6. https://doi.org/10.1520/D0560

  50. Ahmed, A., & Ugai, K. (2011). Environmental effects on durability of soil stabilized with recycled gypsum. Cold Regions Science and Technology, 66, 84–92. https://doi.org/10.1016/j.coldregions.2010.12.004

    Article  Google Scholar 

  51. Roshan, K., Choobbasti, A. J., Kutanaei, S. S., & Fakhrabadi, A. (2021). The effect of adding polypropylene fibers on the freeze–thaw cycle durability of lignosulfonate stabilised clayey sand. Cold Regions Science and Technology, 193, 103418.

    Article  Google Scholar 

  52. Yesiller, N., Hanson, J. L., & Usmen, M. A. (2001). Ultrasonic assessment of stabilized soils. In Soft Ground Technology, pp. 170–181.

  53. Arrigoni, A., Pelosato, R., Dotelli, G., Beckett, C. T. S., & Ciancio, D. (2017). Weathering’s beneficial effect on waste-stabilised rammed earth: A chemical and microstructural investigation. Construction and Building Materials, 140, 157–166. https://doi.org/10.1016/j.conbuildmat.2017.02.009

    Article  Google Scholar 

  54. Zhou, Z., Cai, X., Ma, D., Chen, L., Wang, S., & Tan, L. (2018). Dynamic tensile properties of sandstone subjected to wetting and drying cycles. Construction and Building Materials, 182, 215–232. https://doi.org/10.1016/j.conbuildmat.2018.06.056

    Article  Google Scholar 

  55. Bin-Shafique, S., Rahman, K., & Azfar, I. (2011). Geo-frontiers 2011 © ASCE 2011 697, Geo-Frontiers. 697–706

  56. Sharma, L. K., Sirdesai, N. N., Sharma, K. M., & Singh, T. N. (2018). Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study. Applied Clay Science, 152, 183–195. https://doi.org/10.1016/j.clay.2017.11.012

    Article  Google Scholar 

  57. Saride, S., Puppala, A. J., & Chikyala, S. R. (2013). Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays. Applied Clay Science, 85, 39–45. https://doi.org/10.1016/j.clay.2013.09.008

    Article  Google Scholar 

  58. Ngo, T. P., Bui, Q. B., Phan, V. T. A., & Tran, H. B. (2022). Durability of geopolymer stabilised compacted earth exposed to wetting–drying cycles at different conditions of pH and salt. Construction and Building Materials, 329, 127168. https://doi.org/10.1016/j.conbuildmat.2022.127168

    Article  Google Scholar 

  59. Bian, X., Zeng, L., Ji, F., Xie, M., & Hong, Z. (2022). Plasticity role in strength behavior of cement-phosphogypsum stabilized soils. Journal of Rock Mechanics and Geotechnical Engineering, 14, 1977–1988. https://doi.org/10.1016/j.jrmge.2022.01.003

    Article  Google Scholar 

  60. Sukmak, P., De Silva, P., Horpibulsuk, S., & Chindaprasirt, P. (2015). Sulfate resistance of clay-Portland cement and clay high-calcium fly ash geopolymer. Journal of Materials in Civil Engineering, 27, 1–12. https://doi.org/10.1061/(asce)mt.1943-5533.0001112

    Article  Google Scholar 

  61. Du, Y. J., Wu, J., Bo, Y. L., & Jiang, N. J. (2020). Effects of acid rain on physical, mechanical and chemical properties of GGBS–MgO-solidified/stabilized Pb-contaminated clayey soil. Acta Geotechnica, 15, 923–932. https://doi.org/10.1007/s11440-019-00793-y

    Article  Google Scholar 

  62. Salimi, M., & Ghorbani, A. (2020). Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers. Applied Clay Science. https://doi.org/10.1016/j.clay.2019.105390

    Article  Google Scholar 

  63. Wang, Y., Liu, X., Zhang, W., Li, Z., Zhang, Y., Li, Y., & Ren, Y. (2020). Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer. Journal of Cleaner Production, 244, 118852.

    Article  Google Scholar 

  64. Hoy, M., Ph, D., Horpibulsuk, S., Ph, D., Arulrajah, A., Ph, D., Mohajerani, A., & Ph, D. (2018). Strength and microstructural study of recycled asphalt pavement: Slag geopolymer as a pavement base material. Journal of Materials in Civil Engineering, 30, 1–11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002393

    Article  Google Scholar 

  65. Lavanya, C., Rao, A. S., & Kumar, N. D. (2011). A review on utilization of copper slag in geotechnical applications, 14–17.

  66. Manjarrez, L., Zhang, L., & Asce, M. (2018). Utilization of copper mine tailings as road base construction material through geopolymerization. Journal of Materials in Civil Engineering, 30, 1–12. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002397

    Article  Google Scholar 

  67. Kaab, A. (2008). Remote sensing of rermafrost-related problems and hazards. Permafrost and Periglacial Processes, 136, 107–136. https://doi.org/10.1002/ppp

    Article  Google Scholar 

  68. Othman, M. A., & Benson, C. H. (1993). Effect of freeze-thaw on the hydraulic conductivity and morphology of compacted clay. Canadian Geotechnical Journal, 30, 236–246. https://doi.org/10.1139/t93-020

    Article  Google Scholar 

  69. Tebaldi, G., Orazi, M., & Orazi, U. S. (2016). Effect of freeze-thaw cycles on mechanical behavior of lime-stabilized soil. Journal of Materials in Civil Engineering, 28, 1–6. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001509

    Article  Google Scholar 

  70. Viklander, P. (1998). Permeability and volume changes in till due to cyclic freeze/thaw. Canadian Geotechnical Journal, 35, 471–477. https://doi.org/10.1139/t98-015

    Article  Google Scholar 

  71. Ghazavi, M., & Roustaie, M. (2010). The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced clay. Cold Regions Science and Technology, 61, 125–131. https://doi.org/10.1016/j.coldregions.2009.12.005

    Article  Google Scholar 

  72. Phasuphan, W., Praphairaksit, N., & Imyim, A. (2019). Removal of ibuprofen, diclofenac, and naproxen from water using chitosan-modified waste tire crumb rubber. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2019.111554

    Article  Google Scholar 

  73. Zhao, M., Zhang, G., Htet, K. W., Kwon, M., Liu, C., Xu, Y., & Tao, M. (2019). Freeze-thaw durability of red mud slurry-class F fly ash-based geopolymer: Effect of curing conditions. Construction and Building Materials, 215, 381–390. https://doi.org/10.1016/j.conbuildmat.2019.04.235

    Article  Google Scholar 

  74. Zhang, Y., Johnson, A. E., & White, D. J. (2019). Freeze-thaw performance of cement and fly ash stabilized loess. Transportation Geotechnics, 21, 100279. https://doi.org/10.1016/j.trgeo.2019.100279

    Article  Google Scholar 

  75. Ma, R., Jiang, Y., Liu, B., & Fan, H. (2021). Effects of pore structure characterized by synchrotron-based micro-computed tomography on aggregate stability of black soil under freeze-thaw cycles. Soil and Tillage Research, 207, 104855. https://doi.org/10.1016/j.still.2020.104855

    Article  Google Scholar 

  76. Yang, B., Ceylan, H., Gopalakrishnan, K., & Kim, S. (2017). Evaluation of the freeze and thaw durability of road soils stabilized with a biofuel co-product. Geotechnical Special Publication. https://doi.org/10.1061/9780784480441.014

    Article  Google Scholar 

  77. Yarbaşi, N., Kalkan, E., & Akbulut, S. (2007). Modification of the geotechnical properties, as influenced by freeze-thaw, of granular soils with waste additives. Cold Regions Science and Technology, 48, 44–54. https://doi.org/10.1016/j.coldregions.2006.09.009

    Article  Google Scholar 

  78. Wang, D. Y., Zhu, Y. L., Ma, W., & Niu, Y. H. (2006). Application of ultrasonic technology for physical-mechanical properties of frozen soils. Cold Regions Science and Technology, 44, 12–19. https://doi.org/10.1016/j.coldregions.2005.06.003

    Article  Google Scholar 

  79. Eskişar, T., Altun, S., & Kalipcilar, I. (2015). Assessment of strength development and freeze-thaw performance of cement treated clays at different water contents. Cold Regions Science and Technology, 111, 50–59. https://doi.org/10.1016/j.coldregions.2014.12.008

    Article  Google Scholar 

  80. Xu, H., Gong, W., Syltebo, L., Izzo, K., Lutze, W., & Pegg, I. L. (2014). Effect of blast furnace slag grades on fly ash based geopolymer waste forms. Fuel, 133, 332–340. https://doi.org/10.1016/j.fuel.2014.05.018

    Article  Google Scholar 

  81. Tome, S., Etoh, M. A., Etame, J., & Sanjay, K. (2018). Characterization and leachability behaviour of geopolymer cement synthesised from municipal solid waste incinerator fly ash and volcanic ash blends. Recycling. https://doi.org/10.3390/recycling3040050

    Article  Google Scholar 

  82. Nazari, A., Bagheri, A., & Riahi, S. (2011). Properties of geopolymer with seeded fly ash and rice husk bark ash. Materials Science and Engineering A, 528, 7395–7401. https://doi.org/10.1016/j.msea.2011.06.027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Soleimani Kutanaei.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhrabadi, A., Choobbasti, A.J. & Kutanaei, S.S. Durability Evaluation of Clayey Sandy Soil Stabilized with Copper-Slag-Based Geopolymer Under Freezing–Thawing Cycles. Int. J. Pavement Res. Technol. (2023). https://doi.org/10.1007/s42947-023-00341-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42947-023-00341-8

Keywords

Navigation