Skip to main content

Advertisement

Log in

Evaluation and comparison of morphometric parameters of Savitri watershed, India

  • Technical paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

The morphometric assessment has proved to be effective in recognizing and analyzing the neotectonic signatures governing a particular drainage basin. Studies on morphometric properties involving the linear, areal, and relief aspects are vital as it aids in evaluating the hydrological response and prioritization of watersheds. The present research attempts to investigate and compare the morphometric parameters of the Savitri watershed considering two datasets, i.e., topographical sheet and digital elevation model over two time periods. The Savitri is designated as a seventh-order basin with a dendritic pattern covering a total area of 1966.34 km2. The average bifurcation ratio is 3.8 which confirms that the network of the drainage in the basin is not regulated by the underlying rock structure. Moreover, the drainage density and stream frequency values have shown marked changes that might be attributed to both natural and injudicious human activities, thus affecting the nature of the basin. The relief analysis of the basin indicates that most of the areas of the basin have gentle to flat gradient favoring frequent flood events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Abdoun T, El-Sekelly W (2017) Recent advances in physical modeling and remote sensing of civil infrastructure systems. Innov Infrastruct Solut 2(1):44. https://doi.org/10.1007/s41062-017-0078-3

    Article  Google Scholar 

  2. Abdulkareem JH, Pradhan B, Sulaiman WNA, Jamil NR (2018) Quantification of runoff as influenced by Morphometric characteristics in a rural complex catchment. Earth Syst Environ 2(1):145–162. https://doi.org/10.1007/s41748-018-0043-0

    Article  Google Scholar 

  3. Agaiby SW, Salem AM, Ahmed SM (2017) The first William Selim Hanna honor lecture from failure to success: lessons from geotechnical failures. Innov Infrastruct Solut 2(1):35. https://doi.org/10.1007/s41062-017-0091-6

    Article  Google Scholar 

  4. Agidew AMA, Singh KN (2018) Factors affecting farmers’ participation in watershed management programs in the Northeastern highlands of Ethiopia: a case study in the Teleyayen sub-watershed. Ecolog Processes 7(1):15. https://doi.org/10.1186/s13717-018-0128-6

    Article  Google Scholar 

  5. Arulbalaji P, Padmalal D (2020) Sub-watershed prioritization based on drainage morphometric analysis: a case study of Cauvery River Basin in South India. J Geolog Soc India 95(1):25–35. https://doi.org/10.1007/s12594-020-1383-6

    Article  Google Scholar 

  6. Asfaw D, Workineh G (2019) Quantitative analysis of morphometry on Ribb and Gumara watersheds: implications for soil and water conservation. Int Soil Water Conserv Res 7(2):150–157. https://doi.org/10.1016/j.iswcr.2019.02.003

    Article  Google Scholar 

  7. Balasubramanian A, Duraisamy K, Thirumalaisamy S, Krishnaraj S, Yatheendradasan RK (2017) Prioritization of subwatersheds based on quantitative morphometric analysis in lower Bhavani basin, Tamil Nadu, India using DEM and GIS techniques. Arab J Geosci 10(24):552. https://doi.org/10.1007/s12517-017-3312-6

    Article  Google Scholar 

  8. Bellas M, Voulgaridis G (2018) Study of the major landslide at the community of Ropoto, Central Greece mitigation and FBG early warning system design. Innov Infrastruct Solut 3(1):30. https://doi.org/10.1007/s41062-018-0133-8

    Article  Google Scholar 

  9. Chandrashekar H, Lokesh KV, Sameena M, Ranganna G (2015) GIS–based Morphometric analysis of two reservoir catchments of Arkavati River, Ramanagaram District, Karnataka. Aquatic Procedia 4:1345–1353. https://doi.org/10.1016/j.aqpro.2015.02.175

    Article  Google Scholar 

  10. Clarke JI (1966) Morphometry from maps. Essays in geomorphology. Heinmann, London, pp 235–274

    Google Scholar 

  11. Das, S (2016) Applied Geomorphological Investigation for Sustainable Basin Management: A Study in Sali river basin, Bankura District, West Bengal, unpublished PhD thesis. http://hdl.handle.net/10603/240283

  12. Das S, Pardeshi SD (2018) Morphometric analysis of Vaitarna and Ulhas river basins, Maharashtra, India: using geospatial techniques. Appl Water Sci 8(6):158. https://doi.org/10.1007/s13201-018-0801-z

    Article  Google Scholar 

  13. Dikpal RL, Prasad TR, Satish K (2017) Evaluation of Morphometric parameters derived from Cartosat-1 DEM using remote sensing and GIS techniques for BudigereAmanikere watershed, DakshinaPinakini Basin, Karnataka India. Appl Water Sci 7(8):4399–4414. https://doi.org/10.1007/s13201-017-0585-6

    Article  Google Scholar 

  14. El-Kady MS, ElMesmary MA (2018) Creating spatial database of the foundation soil in Aljouf area using GIS. Innov Infrastruct Solut 3(1):52. https://doi.org/10.1007/s41062-018-0155-2

    Article  Google Scholar 

  15. Fenta AA, Yasuda H, Shimizu K, Haregeweyn N, Woldearegay K (2017) Quantitative analysis and implications of drainage morphometry of the Agula watershed in the semi-arid northern Ethiopia. Appl Water Sci 7(7):3825–3840. https://doi.org/10.1007/s13201-017-0534-4

    Article  Google Scholar 

  16. Gautam PK, Singh DS, Kumar D, Singh AK (2020) A GIS-based approach in drainage morphometric analysis of Sai River Basin, Uttar Pradesh, India. J Geolog Soc India 95:366–376. https://doi.org/10.1007/s12594-020-1445-9

    Article  Google Scholar 

  17. Ghareeb M, Seif AK (2020) Toward development of open-source models of decision support systems for water demand management in Egypt. Innov Infrastruct Solut 5(2):1–9. https://doi.org/10.1007/s41062-020-00293-z

    Article  Google Scholar 

  18. Harsha J, Ravikumar AS, Shivakumar BL (2020) Evaluation of morphometric parameters and hypsometric curve of Arkavathy river basin using RS and GIS techniques. Appl Water Sci 10(3):1–15. https://doi.org/10.1007/s13201-020-1164-9

    Article  Google Scholar 

  19. Horton RE (1932) Drainage basin characteristics. Trans Amer Geophys 14:350–361. https://doi.org/10.1029/TR013i001p00350

    Article  Google Scholar 

  20. Hussain G, Singh Y, Singh K, Bhat GM (2019) Landslide susceptibility mapping along national highway-1 in Jammu and Kashmir State (India). Innov Infrastruct Solut 4(1):59. https://doi.org/10.1007/s41062-019-0245-9

    Article  Google Scholar 

  21. Jahan CS, Rahaman MF, Arefin R, Ali S, Mazumder QH (2018) Morphometric analysis and hydrological inference for water resource management in Atrai-Sib River basin, NW Bangladesh using remote sensing and GIS technique. J Geolog Soc India 91(5):613–620. https://doi.org/10.1007/s12594-018-0912-z

    Article  Google Scholar 

  22. Jia N, Tassin B, Calon N, Deneele D, Koscielny M, Prévot F (2016) Scaling in railway infrastructural drainage devices: site study. Innov Infrastruct Solut 1(1):42. https://doi.org/10.1007/s41062-016-0042-7

    Article  Google Scholar 

  23. Kazmi D, Sadaf Qasim ISH, Harahap, Syed Baharom (2017) Landslide of Highland Towers 1993: a case study of Malaysia. Innov Infrastruct Solut 2(1):21. https://doi.org/10.1007/s41062-017-0069-4

    Article  Google Scholar 

  24. Khajevand R (2018) Geotechnical investigations for landslide hazard and risk analysis, a case study: the landslide in Kojour Region North of Iran. Innov Infrastruct Solut 3(1):54. https://doi.org/10.1007/s41062-018-0160-5

    Article  Google Scholar 

  25. Khanday MY, Javed A (2017) Hydrological investigations in the semi-arid Makhawan watershed, using morphometry. Appl Water Sci 7(7):3919–3936. https://doi.org/10.1007/s12594-018-0912-z

    Article  Google Scholar 

  26. Kumar A, Sharma RK, Bansal VK (2019) GIS-based comparative study of information value and frequency ratio method for landslide hazard zonation in a part of mid-Himalaya in Himachal Pradesh . Innov Infrastruct Solut 4(1):28. https://doi.org/10.1007/s41062-019-0215-2

    Article  Google Scholar 

  27. Mahala A (2020) The significance of Morphometric analysis to understand the hydrological and morphological characteristics in two different morpho-climatic settings. Appl Water Sci 10(1):1–16. https://doi.org/10.1007/s13201-019-1118-2

    Article  Google Scholar 

  28. Mangan P, Haq MA, Baral P (2019) Morphometric analysis of watershed using remote sensing and GIS—a case study of Nanganji River Basin in Tamil Nadu India. Arab J Geosci 12(6):202. https://doi.org/10.1007/s12517-019-4382-4

    Article  Google Scholar 

  29. Masria A, El-Adawy AA, Sarhan T (2020) A holistic evaluation of human-induced LULCC and shoreline dynamics of El-Burullus Lagoon through remote sensing techniques. Innov Infrastruct Solut 5(3):1–10. https://doi.org/10.1007/s41062-020-00331-w

    Article  Google Scholar 

  30. Meshram SG, Sharma SK (2017) Prioritization of watershed through Morphometric parameters: a PCA-based approach. Appl Water Sci 7(3):1505–1519. https://doi.org/10.1007/s13201-015-0332-9

    Article  Google Scholar 

  31. Miller, V. C. (1953). Quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee. Technical report (Columbia University. Department of Geology); no. 3. https://doi.org/10.1086/626413

  32. Oruonye ED, Ezekiel BB, Atiku HG, Baba E, Musa NI (2016) Drainage basin Morphometric parameters of River Lamurde: implication for hydrologic and geomorphic processes. J Agricult Ecol Res Int. https://doi.org/10.9734/JAERI/2016/22149

    Article  Google Scholar 

  33. Pal R, Pani P (2019) Remote sensing and GIS-based analysis of evolving planform morphology of the middle-lower part of the Ganga River, India. Egypt J Remote Sens Space Sci 22(1):1–10. https://doi.org/10.1016/j.ejrs.2018.01.007

    Article  Google Scholar 

  34. Pandey PK, Das SS (2016) Morphometric analysis of Usri River basin, Chhotanagpur Plateau, India, using remote sensing and GIS. Arab J Geosci 9(3):240. https://doi.org/10.1007/s12517-015-2287-4

    Article  Google Scholar 

  35. Pareta K, Pareta U (2011) Quantitative Morphometric analysis of a watershed of Yamuna basin, India using ASTER (DEM) data and GIS. Int J Geomat Geosci 2(1):248–269

    Google Scholar 

  36. Prabhakar AK, Singh KK, Lohani AK, Chandniha SK (2019) Study of Champua watershed for management of resources by using Morphometric analysis and satellite imagery. Appl Water Sci 9(5):127. https://doi.org/10.1007/s13201-019-1003-z

    Article  Google Scholar 

  37. Prabhakaran A, Raj NJ (2018) Drainage Morphometric analysis for assessing form and processes of the watersheds of Pachamalai hills and its adjoinings, Central Tamil Nadu India. Appl Water Sci 8(1):31. https://doi.org/10.1007/s13201-018-0646-5

    Article  Google Scholar 

  38. Prakash K, Mohanty T, Pati JK, Singh S, Chaubey K (2017) Morphotectonics of the Jamini River basin, Bundelkhand Craton, Central India; using remote sensing and GIS technique. Appl Water Sci 7(7):3767–3782. https://doi.org/10.1007/s13201-016-0524-y

    Article  Google Scholar 

  39. Rai PK, Singh P, Mishra VN, Singh A, Sajan B, Shahi AP (2019) Geospatial Approach for Quantitative Drainage Morphometric Analysis of Varuna River Basin India. J Landsc Ecol 12(2):1–25. https://doi.org/10.2478/jlecol-2019-0007

    Article  Google Scholar 

  40. Rajasekhar M, Raju GS, Raju RS, Ramachandra M, Kumar BP (2018) Data on comparative studies of lineaments extraction from ASTER DEM, SRTM, and Cartosat for Jilledubanderu River basin, Anantapur district, AP, India by using remote sensing and GIS. Data Brief 20:1676–1682. https://doi.org/10.1016/j.dib.2018.09.023

    Article  Google Scholar 

  41. Sakthivel R, Raj NJ, Sivasankar V, Akhila P, Omine K (2019) Geo-spatial technique-based approach on drainage Morphometric analysis at Kalrayan Hills, Tamil Nadu India. Appl Water Sci 9(1):24. https://doi.org/10.1007/s13201-019-0899-7

    Article  Google Scholar 

  42. Schumm SA (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geolog Soc Am Bull 67(5):597–646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2

    Article  Google Scholar 

  43. Soni S (2017) Assessment of Morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique. Appl Water Sci 7(5):2089–2102. https://doi.org/10.1007/s13201-016-0395-2

    Article  Google Scholar 

  44. Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38:913–920. https://doi.org/10.1029/TR038i006p00913

    Article  Google Scholar 

  45. Sukristiyanti, S., Maria, R., & Lestiana, H. (2018). Watershed-based Morphometric analysis: a review. In IOP conference series: earth and environmental science 118: 12–28 IOP Publishing. https://doi.org/10.1088/1755-1315/118/1/012028

  46. Talukdar P, Dey A (2019) Hydraulic failures of earthen dams and embankments. Innov Infrastruct Solut 4(1):42. https://doi.org/10.1007/s41062-019-0229-9

    Article  Google Scholar 

  47. Turner AK (2018) Social and environmental impacts of landslides. Innov Infrastruct Solut 3(1):70. https://doi.org/10.1007/s41062-018-0175-y

    Article  Google Scholar 

  48. Vincy MV, Rajan B, Pradeepkumar AP (2012) Geographic information system–based Morphometric characterization of sub-watersheds of Meenachil river basin, Kottayam district, Kerala India . Geocarto Int 27(8):661–684. https://doi.org/10.1080/10106049.2012.657694

    Article  Google Scholar 

  49. Wasowski J, Bovenga F, Nutricato R, Nitti DO, Chiaradia MT (2017) High resolution satellite multi-temporal interferometry for monitoring infrastructure instability hazards. Innov Infrastruct Solut 2(1):27. https://doi.org/10.1007/s41062-017-0077-4

    Article  Google Scholar 

  50. Wasowski J, Bovenga F, Nutricato R, Nitti DO, Chiaradia MT (2018) Advanced satellite radar interferometry for deformation monitoring and infrastructure control in open-cast mines and oil/gas fields. Innov Infrastruct Solut 3(1):68. https://doi.org/10.1007/s41062-018-0176-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Tapase.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobade, S., Dhawale, A., Garg, V. et al. Evaluation and comparison of morphometric parameters of Savitri watershed, India. Innov. Infrastruct. Solut. 6, 107 (2021). https://doi.org/10.1007/s41062-021-00482-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-021-00482-4

Keywords

Navigation