Skip to main content
Log in

Quantitative Morphometric and Morphotectonic Analysis of Pahuj Catchment Basin, Central India

  • Research Article
  • Published:
Journal of the Geological Society of India

Abstract

In the present work, the morphometric and morphotectonic analysis of the Pahuj basin catchment of the Bundelkhand region of Central India was carried by using remote sensing and GIS techniques. The drainage map, Digital Elevation Model (DEM), density, contour, aspect, and other thematic maps were extracted from ASTER-DEM (30m resolution) data by using geographical information system (GIS) tool. Five order streams have been validated in the study area and an inverse relationship between the stream order and stream number has been established. The high mean bifurcation ratio (Rb=5.12) indicates that the drainage pattern is controlled by geological structures in the impermeable granitic terrain. The stream frequency (2.69) is indicative of the increment of stream population for drainage density. Contrary to this the drainage density (2.08) is suggestive of low to moderate infiltration rate and is showing the thin vegetal cover on the impermeable rocky terrain. The elongation ratio (0.61) and form factor (0.29) infer that the catchment basin is elongated and shows low peak flows. The value of ruggedness and Melton ruggedness number implies that the basin is moderately rugged and debris watershed and is less susceptible to soil erosion.

The drainage pattern of basin catchment flowing in diverse lithological and structural terrain (Archean and Palaeoproterozoic age) is exhibiting less influence of active tectonics. The NW-SE, E-W and NNE-SSW trending lineaments resembling the orientation of lower-order streams are suggestive of structural control. The NE-SW trending high order streams flowing in an elongated Pahuj basin catchment and coinciding with the orientation of major NE-SW lineaments are indicative of major tectonic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, C.S. (1998) Study of drainage pattern through aerial data in Naugarh area of Varanasi district, U.P. Jour. Indian Soc. Remote Sensing, v.26, pp.169–175.

    Article  Google Scholar 

  • Agarwal, K., Singh, I., Sharma, M. (2002) Extensional tectonic activity in the cratonward parts (peripheral bulge) of the Ganga Plain foreland basin, India. Internat. Jour. Earth Sci. (Geol Rundsch), v.91, pp.897–905.

    Article  Google Scholar 

  • Basu, A.K. (1986) Geology of parts of the Bundelkhand granite massif, Central India: Rec. Geol. Surv. India, v.117, pp.61–124.

    Google Scholar 

  • Bhatt, S.C. and Husain, A. (2008) Structural History and fold Analysis of Basement Rocks around Kuraicha and Adjoining Areas, Bundelkhand Massif Central India Jour. Geol. Soc. India, v.72, pp.331–347.

    Google Scholar 

  • Bhatt, S.C. and Gupta, M. K. (2009) Tectonic Significance of Shear indicator in the evolution of Dinara-Garhmau shear zone, Bundelkhand Massif, Central India, MTM, Macmillan Publishers India Ltd, New Delhi, India, pp.122–132.

    Google Scholar 

  • Bhatt, S.C., Singh, V.K. and Hussain, A. (2011) Implications of shear indicators for the tectonic evolution of Mauranipur shear zone, Bundelkhand craton, central India. In: Singh, V.K. and Chandra, R. (Eds.), 2nd Proc. Precambrian Continental Growth and Tectonism, Angel Publication, New Delhi, pp.36-49.

  • Bhatt, S.C. and Mahmood, K. (2012) Deformation pattern and microstructural analysis of sheared gneissic complex and mylonitic metavolcanics of Babina-Prithvipur sector, Bundelkhand Massif, Central India. Indian Jour. Geosci., v.66, pp.79–90.

    Google Scholar 

  • Bhatt, S.C. and Gupta, M.K. (2014) Microstructural Analysis and Strain Pattern in Mylonites and Implications of Shear Sense Indicators in Evolution of Dinara- Garhmau Shear Zone, Bundelkhand Massif, Central India, The Indian Mineralogist, (Journal of Mineralogical Society of India), Volume 48(2), pp. 186–206.

    Google Scholar 

  • Bhatt, S.C. Suresh M. and Gupta M. K. (2014) Structural Control on Drainage Pattern of Upper-Middle Pahuj River Basin and Implication of Remote Sensing in Watershed Management, Bundelkhand Craton, Central India. Jour. Multidisciplinary Scientific Res., v.2(4), pp.9–14.

    Google Scholar 

  • Bhatt, S.C. (2014) Geological and Tectonic Aspects of Bundelkhand Craton, Central India. Angel Publication, Bhagwati Publishers and Distributors C-8/77-B, Keshav Puram, New Delhi, 190p.

  • Bhatt, S.C., Hussain A., Suresh M. and Balasooriya N.W.B. (2017) Geological structure control on Sukhnai Basin and Land Use/Land Cover Pattern in Mauranipur and adjoining areas, Bundelkhand craton, Central India. Jour. Geol. Soc. Sri Lanka, v.18(2), pp.53–61.

    Google Scholar 

  • Bhatt, S.C. and Singh, V.K. (2019) Neoarchean Crustal Shear Zones and Implications of Shear Indicators in Tectonic Evolution of Bundelkhand Craton, Central India Jour. Geosci., Engg., Environ. Tech., Spec. Vol.4(1–2), pp.11–17.

    Google Scholar 

  • Bhatt S.C., Sumit Mishra and Rubal Singh (2020) Morphometric Analysis of Rohni River Watershed, Tributary of Dhasan, Betwa River System, Bundelkhand Craton, Central India. Under review in Himalayan Geology.

  • Broscoe, A.J. (1959) Quantitative analysis of longitudinal stream profiles of small watersheds, Project N. 389-042, Tech. Bep. 18, Geology Department, Columbian University, ONR, Geography Branch, Newyork.

  • Clark, J.I. (1966) Morphometry from maps. Essays in geomorphology. Elsevier Publ. Co, New York.

    Google Scholar 

  • Cox, R.T. (1994) Analysis of drainage basins symmetry as rapid techniques to identify an area of possible Quaternary tilt block tectonics: an example from Mississippi Embayment. Geol. Soc. Amer. Bull., v.106, pp.571–581.

    Article  Google Scholar 

  • Cox, R.T., Van Arsdale, R.B. and Harris, J.B. (2001) Identification of possible Quaternary deformation in the northeastern Mississippi embayment using geomorphic analysis of drainage basin asymmetry, Geol. Soc. Amer. Bull., v.113, pp.615–624.

    Article  Google Scholar 

  • Faniran, A. (1968) The index of Drainage intensity, A provisional new drainage factor. Australian Jour. Sci., v.31, pp.328–330.

    Google Scholar 

  • Ghosh, R., Srivastava, P., Shukla, U.K., Sehgal, R.K. and Singh, I.B. (2019) 100 kyr sedimentary record of Marginal Gangetic Plain: Implications for forebulge tectonics. Palaeogeo., Palaeoclimat., Palaeoeco., v.520, pp.78–95.

    Article  Google Scholar 

  • Ghosh, R., Srivastava, P., Shukla, U.K., Singh, I., Ray, P.C. and Sehgal, R.K. (2017) Tectonic forcing of evolution and Holocene erosion rate of ravines in the Marginal Ganga Plain, India. Jour. Asian Earth Sci., v.162, pp.137–147.

    Article  Google Scholar 

  • Gregory, K.J. and Walling, D.E. (1973) Drainage basin form and process a geomorphological approach. London: Edward Arnold.

    Google Scholar 

  • Hadley, R. and Schumm, S. (1961) Sediment sources and drainage basin characteristics in upper Cheyenne River basin, USGS Water Supply Paper, 1531- B, W, 198. Washingaton DC.

  • Holbrook, J. and Schumm, S.A. (1990) Geomorphic and sedimentary response of rivers to tectonic deformation: A brief review and critique of tool for recognizing subtle epeirogenic deformation in modern and ancient setting. Tectonophysics, v.305, pp.287–306.

    Article  Google Scholar 

  • Horton R.E. (1932) Drainage basin characteristics. Trans. Amer. Geophys. Union, v.13, pp.350–361.

    Article  Google Scholar 

  • Horton R.E. (1945) Erosional Development of Streams and their Drainage Basins: A Hydrophysical Approach to Quantitative Morphology. Geol. Soc. Amer. Bull., v.56(3), pp.275–370.

    Article  Google Scholar 

  • Magesh, N.S., Chandrasekar, N. and Kaliraj, S. (2012) A GIS based automated extracting tool for the analysis of basin Morphometry, Bonfring Inst. Jour Indian Engg. Managmt. Sci., v.2(1), pp.32–35.

    Google Scholar 

  • Marple, R.T. and Talwani, P. (1993) Evidence of possible tectonic upwarping along the southern Carolina coastal planes from an examination of river morphology and elevation data. Geology, v.21, pp.651–654.

    Article  Google Scholar 

  • Melton, M.A. (1957) An analysis of the relations among elements of climate, surface properties and geomorphology. issue 11, Columbia University, Technical Report, 102p.

  • Melton, M.A. (1965) The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona. Jour. Geol., v.73, pp.1–38.

    Article  Google Scholar 

  • Miller, V. C. (1953) A Quantitative Geomorphic Study of Drainage Basin Characteristics on the Clinch Mountain Area, Virginia and Tennessee, Proj., NR 389–402, Tech Rep 3, Columbia University, Department of Geology, ONR, New York.

  • Mohan, K., Srivastava, V. and Singh, C.K. (2007) Patterns and genesis of lineaments in and across Son-Narmada lineament, lineament zone in a part of Central India around Renukoot, District Sonbhadra U.P. Jour. Indian Soc. Remote Sensing, v.35(2), pp.181–187.

    Article  Google Scholar 

  • Nag, S.K. and Chakraborty, S. (2003) Influences of Rock Types and Structures in the Development of Drainage Network in Hard Rock Area. Jour. Indian Soc. Remote Sensing, v.31(1), pp.25–35.

    Article  Google Scholar 

  • Nautiyal, M.D. (1994) Morphometric analysis of a drainage basin, district Defraud, Uttar Pradesh. Jour. Indian Soc. Remote Sensing, v.22(4), pp.251–261

    Article  Google Scholar 

  • Nur, A. (1982) The origin of tensile fracture lineaments. Struct. Geol., v.4, pp.31–40.

    Article  Google Scholar 

  • Obi Reddy, G.E., Magi, A.K. and Gajbhiye, K.S. (2002) GIS for morphometric analysis of drainage basins. GIS India, v.4, pp.9–14.

    Google Scholar 

  • Ouchi, S. (1985) Response of alluvial rivers to slow action tectonic movement. Geol. Soc. Amer. Bull., v.96, pp.504–515.

    Article  Google Scholar 

  • Pareta, K. and Pareta, U. (2011) Quantitative morphometric analysis of watershed of Yamuna basin, India using ASTER (DEM) data and GIS. Indian Jour. Geomatics Geosci., v.2(1), pp.248–269.

    Google Scholar 

  • Pareta, K. and Pareta, U. (2012) Quantitative geomorphological analysis of watershed of Ravi River basin, HP, India. Internat. Jour. Remote Sensing GIS, v.1, pp.47–62.

    Google Scholar 

  • Patel, D. and Srivastava, P.K. (2013) Flood hazards mitigation analysis using remote sensing and GIS correspondence with the town planning scheme. Water Resour. Managmt., v.27, pp.2353–2368.

    Article  Google Scholar 

  • Pati, J.K., Raju, S., Mamgain, V.D. and Shankar, R. (1997) Record of gold mineralisation in parts of Bundelkhand granitoid complex (BGC). Jour. Geol. Soc. India, v.50, pp.601–606.

    Google Scholar 

  • Pati, J.K., Lal, J., Prakash, K. and Bhusan, R. (2008) Spatio-temporal shift of western bank of the Ganga River, Allahabad city and its implications. Jour. Indian Soc. Rem. Sens., v.36, pp.289–297.

    Article  Google Scholar 

  • Prakash, K, Mohanty, T., Singh, S., Chaubey, K. and Prakash, P. (2016) Drainage Morphometry of the Dhasan river basin, Bundelkhand craton, Central India using Remote Sensing and GIS techniques. Jour. Geomatics, v.10, pp.121–132.

    Google Scholar 

  • Prakash, K. Mohanty, T., Pati J.K., Singh, S. and Chaubey, K. (2017) Morphotectonics of Jamini River basin, Bundelkhand craton, Central India; using remote sensing and GIS Technique. Appld. Water Sci., v.7, pp.3767–3782.

    Article  Google Scholar 

  • Radhakrishna, B.P. (1992) Cauvery - Its geological past. Jour. Geol. Soc. India, v.40, pp.1–12.

    Google Scholar 

  • Ritter, D.F. (1986) Process geomorphology, 2nd ed Wm. C. Brown Publishers, Dubuque, 579p.

  • Schumm, S.A. (1954) The relation of drainage Basin Relief to Sediment loss. Internat. Assoc. Scientific Hydrol., v.36, pp.216–219.

    Google Scholar 

  • Schumm, S.A (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol. Soc. Amer. Bull., v.67, pp.597–646.

    Article  Google Scholar 

  • Schumm, S.A., Dumont, J.F. and Holbrook, J.M. (2000) Active Tectonic and Alluvial Rivers. Cambridge Univ. Press, London, 276p.

    Google Scholar 

  • Shukla, U.K., Srivastava, P. and Singh, I.B. (2012) Migration of Ganga river and development of cliffs in Varanasi Region during late Quaternary: role of active tectonics. Geomorphology, v.171–172, pp.101–113.

    Article  Google Scholar 

  • Singh, M. and Singh, I.B. (1992) The Ganga river valley: alluvial valley in an active foreland basin, In: 29th International Geological Conference; Kyoto, Japan, v.2, pp.30.

  • Singh, V.K. and Slabunov, A. (2015a) The Central Bundelkhand Archaean greenstone complex, Bundelkhand Craton, Central India: geology, composition, and geochronology of supracrustal rocks. Internat. Geol. Rev., v.57(11–12), pp.1349–1364.

    Article  Google Scholar 

  • Singh, C.K. and Srivastava, V. (2011) Morphotectonics of the area around Renukoot, district Sonbhadra, UP, using remote Sensing and GIS techniques. Jour Indian Soc. Remote Sensing, v.39(2), pp.235–240.

    Article  Google Scholar 

  • Singh, P., Gupta, A., Singh, M. (2014): Hydrological inferences from the watershed analysis of water resource management using remote sensing and GIS techniques, Egypt. Jour. Remote Sensing Space Sci., v.17, pp.111–121.

    Google Scholar 

  • Sinha, R., Kettanah, Y., Gibling, M.R., Tandon, S.K., Jain, M., Bhattacharjee, P.S., Dasgupta, A.S. and Ghazanfari, P (2009) Craton derived alluvium as a major sediment source from Himalayan Foreland basin of India. Geol. Soc. Amer. Bull., v.121(11/12), pp.1596–1610.

    Article  Google Scholar 

  • Sinha-Roy, S. (2001) Neotectonically controlled catchment capture: An example from the Banas and Chambal drainage basins Rajasthan. Curr. Sci., v.80, pp.293–298.

    Google Scholar 

  • Smith, K.G. (1950) Standards for grading texture of erosional topography. Amer. Jour. Sci., v.248, pp.655–668.

    Article  Google Scholar 

  • Sreedevi, P.D., Subrahmanyam, K. and Ahmad, S. (2004) The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environ. Geol., v.47, pp.412–420.

    Article  Google Scholar 

  • Strahler, A.N., (1952) Hypsometric Analysis of Erosional Topography. Bull. Geol. Soc. Amer., v.63, pp.1117–42.

    Article  Google Scholar 

  • Strahler, A.N. (1956) Quantitative Slope Analysis. Bull. Geol. Soc. Amer., v.67, pp.571–596.

    Article  Google Scholar 

  • Strahler, A.N. (1964) Quantitative Geomorphology of Drainage Basin and Channel Network. Handbook of Applied Hydrology, pp.39-76.

  • Wentworth, C.K. (1930) A simplified Method of Determining the Average Slope of Land Surface. Amer. Jour. Sci., v.21, pp.184–194.

    Article  Google Scholar 

Download references

Acknowledgements

We are extremely thankful to Head Department of Geology, Bundelkhand University Jhansi for providing necessary laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Bhatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, S.C., Singh, R., Ansari, M.A. et al. Quantitative Morphometric and Morphotectonic Analysis of Pahuj Catchment Basin, Central India. J Geol Soc India 96, 513–520 (2020). https://doi.org/10.1007/s12594-020-1590-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-020-1590-1

Navigation