Skip to main content

Advertisement

Log in

Unlocking Diversity: From Simple to Cutting-Edge Synthetic Methodologies of Bis(indolyl)methanes

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

From a synthetic perspective, bis(indolyl)methanes have undergone extensive investigation over the past two to three decades owing to their remarkable pharmacological activities, encompassing anticancer, antimicrobial, antioxidant, and antiinflammatory properties. These highly desirable attributes have spurred significant interest within the scientific community, leading to the development of various synthetic strategies that are not only more efficient but also ecofriendly. This synthesis-based literature review delves into the advancements made in the past 5 years, focusing on the synthesis of symmetrical as well as unsymmetrical bis(indolyl)methanes. The review encompasses a wide array of methods, ranging from well-established techniques to more unconventional and innovative approaches. Furthermore, it highlights the exploration of various substrates, encompassing readily available chemicals such as indole, aldehydes/ketones, indolyl methanols, etc. as well as the use of some specific compounds as starting materials to achieve the synthesis of this invaluable molecule. By encapsulating the latest developments in this field, this review provides insights into the expanding horizons of bis(indolyl)methane synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65

Similar content being viewed by others

References

  1. Sundberg R (1996) Indoles. Academic, San Diego

    Google Scholar 

  2. Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH (2013) Molecules 18:6620–6662. https://doi.org/10.3390/molecules18066620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kumar S, Ritika (2020) Futur J Pharm Sci 6:121. https://doi.org/10.1186/s43094-020-00141-y

    Article  Google Scholar 

  4. Kumar D, Sharma S, Kalra S, Singh G, Monga V, Kumar B (2020) Curr Drug Targets 21:864–891. https://doi.org/10.2174/1389450121666200310115327

    Article  CAS  PubMed  Google Scholar 

  5. Chadha N, Silakari O (2017) Eur J Med Chem 134:159–184. https://doi.org/10.1016/j.ejmech.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  6. Kumari A, Singh RK (2019) Bioorg Chem 89:103021. https://doi.org/10.1016/j.bioorg.2019.103021

    Article  CAS  PubMed  Google Scholar 

  7. Singh TP, Singh OM (2018) Mini Rev Med Chem 18:9–25. https://doi.org/10.2174/1389557517666170807123201

    Article  CAS  PubMed  Google Scholar 

  8. Norwood VM IV, Huigens RW III (2019) ChemBioChem 20:2273–2297. https://doi.org/10.1002/cbic.201800768

    Article  CAS  PubMed  Google Scholar 

  9. Poornima J, Mirunalini S (2014) Mol Cell Biochem 385:7–15. https://doi.org/10.1007/s11010-013-1808-2

    Article  CAS  PubMed  Google Scholar 

  10. Grose KR, Bjeldanes LF (1992) Chem Res Toxicol 5:188–193. https://doi.org/10.1021/tx00026a007

    Article  CAS  PubMed  Google Scholar 

  11. Anderton MJ, Manson MM, Verschoyle RD, Gescher A, Lamb JH, Farmer PB, Steward WP, Williams ML (2004) Clin Cancer Res 10:5233–5241. https://doi.org/10.1158/1078-0432.Ccr-04-0163

    Article  CAS  PubMed  Google Scholar 

  12. Ahmad A, Sakr WA, Rahman KMW (2011) Cancers 3:2955–2974. https://doi.org/10.3390/cancers3032955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fan S, Meng Q, Saha T, Sarkar FH, Rosen EM (2009) Cancer Res 69:6083–6091. https://doi.org/10.1158/0008-5472.Can-08-3309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Preobrazhenskaya MN, Bukhman VM, Korolev AM, Efimov SA (1993) Pharmacol Ther 60:301–313. https://doi.org/10.1016/0163-7258(93)90012-3

    Article  CAS  PubMed  Google Scholar 

  15. Praveen PJ, Parameswaran PS, Majik MS (2015) Synthesis 47:1827–1837. https://doi.org/10.1055/s-0034-1380415

    Article  CAS  Google Scholar 

  16. Osawa T, Namiki M (1983) Tetrahedron Lett 24:4719–4722. https://doi.org/10.1016/S0040-4039(00)86237-1

    Article  CAS  Google Scholar 

  17. Bell R, Carmeli S, Sar N (1994) J Nat Prod 57:1587–1590. https://doi.org/10.1021/np50113a022

    Article  CAS  PubMed  Google Scholar 

  18. Kamal A, Ali Qureshi A (1963) Tetrahedron 19:513–520. https://doi.org/10.1016/S0040-4020(01)98540-0

    Article  CAS  Google Scholar 

  19. Zee SH, Chen CS (1974) J Chin Chem Soc 21:229–234. https://doi.org/10.1002/jccs.197400030

    Article  CAS  Google Scholar 

  20. Singh H, Singh K (1988) Tetrahedron 44:5897–5904. https://doi.org/10.1016/S0040-4020(01)81447-2

    Article  CAS  Google Scholar 

  21. Fang S-Y, Chen S-Y, Chen Y-Y, Kuo T-J, Wen Z-H, Chen Y-H, Hwang T-L, Sung P-J (2021) Nat Prod Commun 16:1934578X211033735. https://doi.org/10.1177/1934578X211033735

    Article  CAS  Google Scholar 

  22. Kobayashi M, Aoki S, Gato K, Matsunami K, Kurosu M, Kitagawa I (1994) Chem Pharm Bull 42:2449–2451. https://doi.org/10.1248/cpb.42.2449

    Article  CAS  Google Scholar 

  23. Fatima I, Ahmad I, Anis I, Malik A, Afza N (2007) Molecules 12:155–162. https://doi.org/10.3390/12020155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Veluri R, Oka I, Wagner-Döbler I, Laatsch H (2003) J Nat Prod 66:1520–1523. https://doi.org/10.1021/np030288g

    Article  CAS  PubMed  Google Scholar 

  25. Khuzhaev BU, Aripova SF, Shakirov RS (1994) Chem Nat Compd 30:635–636. https://doi.org/10.1007/BF00629885

    Article  Google Scholar 

  26. Cai S-X, Li D-H, Zhu T-J, Wang F-P, Xiao X, Gu Q-Q (2010) Helv Chim Acta 93:791–795. https://doi.org/10.1002/hlca.200900360

    Article  CAS  Google Scholar 

  27. Bifulco G, Bruno I, Minale L, Riccio R, Calignano A, Debitus C (1994) J Nat Prod 57:1294–1299. https://doi.org/10.1021/np50111a020

    Article  CAS  PubMed  Google Scholar 

  28. Hong C, Firestone GL, Bjeldanes (2002) Biochem Pharmacol 63:1085–1097. https://doi.org/10.1016/S0006-2952(02)00856-0

    Article  CAS  PubMed  Google Scholar 

  29. Imran S, Taha M, Ismail NH (2015) Curr Med Chem 22:4412–4433. https://doi.org/10.2174/0929867322666151006093930

    Article  CAS  PubMed  Google Scholar 

  30. Sarva S, Harinath JS, Sthanikam SP, Ethiraj S, Vaithiyalingam M, Cirandur SR (2016) Chin Chem Lett 27:16–20. https://doi.org/10.1016/j.cclet.2015.08.012

    Article  CAS  Google Scholar 

  31. Kim SM (2016) Int J Mol Sci 17:1155. https://doi.org/10.3390/ijms17071155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Panov AA, Lavrenov SN, Mirchink EP, Isakova EB, Korolev AM, Trenin AS (2021) J Antibiot 74:219–224. https://doi.org/10.1038/s41429-020-00389-9

    Article  CAS  Google Scholar 

  33. Zeligs MA (1998) J Med Food 1:67–82. https://doi.org/10.1089/jmf.1998.1.67

    Article  CAS  Google Scholar 

  34. Michnovicz JJ, Bradlow HL (1991) Nutr Cancer 16:59–66. https://doi.org/10.1080/01635589109514141

    Article  CAS  PubMed  Google Scholar 

  35. Böhm H (1995) Food Nahrung 39:101. https://doi.org/10.1002/food.19950390116

    Article  Google Scholar 

  36. Bonnesen C, Eggleston IM, Hayes JD (2001) Cancer Res 61:6120–6130

    CAS  PubMed  Google Scholar 

  37. Bell MC, Crowley-Nowick P, Bradlow HL, Sepkovic DW, Schmidt-Grimminger D, Howell P, Mayeaux EJ, Tucker A, Turbat-Herrera EA, Mathis JM (2000) Gynecol Oncol 78:123–129. https://doi.org/10.1006/gyno.2000.5847

    Article  CAS  PubMed  Google Scholar 

  38. Inamoto T, Papineni S, Chintharlapalli S, Cho S-D, Safe S, Kamat AM (2008) Mol Cancer Ther 7:3825–3633. https://doi.org/10.1158/1535-7163.Mct-08-0730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang Y, Fang Y, Ye Y, Xu X, Wang B, Gu J, Aschner M, Chen J, Lu R (2019) Anti-cancer effects of 3, 3’-diindolylmethane on human hepatocellular carcinoma cells is enhanced by calcium ionophore: the role of cytosolic Ca2+ and p38 MAPK. Front Pharmacol. https://doi.org/10.3389/fphar.2019.01167

    Article  PubMed  PubMed Central  Google Scholar 

  40. York M, Abdelrahim M, Chintharlapalli S, Lucero SD, Safe S (2007) Clin Cancer Res 13:6743–6752. https://doi.org/10.1158/1078-0432.Ccr-07-0967

    Article  CAS  PubMed  Google Scholar 

  41. Ichite N, Chougule MB, Jackson T, Fulzele SV, Safe S, Singh M (2009) Clin Cancer Res 15:543–552. https://doi.org/10.1158/1078-0432.Ccr-08-1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cho SD, Yoon K, Chintharlapalli S, Abdelrahim M, Lei P, Hamilton S, Khan S, Ramaiah SK, Safe S (2007) Cancer Res 67:674–683. https://doi.org/10.1158/0008-5472.Can-06-2907

    Article  CAS  PubMed  Google Scholar 

  43. Chintharlapalli S, Papineni S, Baek SJ, Liu S, Safe S (2005) Mol Pharmacol 68:1782–1792. https://doi.org/10.1124/mol.105.017046

    Article  CAS  PubMed  Google Scholar 

  44. Abid O, Imran S, Taha M, Ismail NH, Jamil W, Kashif SM, Khan KM, Yusoff J (2021) Mol Divers 25:995–1009. https://doi.org/10.1007/s11030-020-10084-4

    Article  CAS  PubMed  Google Scholar 

  45. McDougal A, Gupta MS, Morrow D, Ramamoorthy K, Lee JE, Safe SH (2001) Breast Cancer Res Treat 66:147–157. https://doi.org/10.1023/A:1010608000074

    Article  CAS  PubMed  Google Scholar 

  46. McDougal A, Sethi Gupta M, Ramamoorthy K, Sun G, Safe SH (2000) Cancer Lett 151:169–179. https://doi.org/10.1016/S0304-3835(99)00406-1

    Article  CAS  PubMed  Google Scholar 

  47. Nachshon-Kedmi M, Yannai S, Fares FA (2004) Br J Cancer 91:1358–1363. https://doi.org/10.1038/sj.bjc.6602145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nachshon-Kedmi M, Fares FA, Yannai S (2004) Prostate 61:153–160. https://doi.org/10.1002/pros.20092

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Li X, Sarkar FH (2003) J Nutr 133:1011–1019. https://doi.org/10.1093/jn/133.4.1011

    Article  CAS  PubMed  Google Scholar 

  50. Kong D, Li Y, Wang Z, Banerjee S, Sarkar FH (2007) Cancer Res 67:3310–3319. https://doi.org/10.1158/0008-5472.Can-06-4277

    Article  CAS  PubMed  Google Scholar 

  51. Marrelli M, Cachet X, Conforti F, Sirianni R, Chimento A, Pezzi V, Michel S, Statti GA, Menichini F (2013) Nat Prod Res 27:2039–2045. https://doi.org/10.1080/14786419.2013.824440

    Article  CAS  PubMed  Google Scholar 

  52. Chen I, Safe S, Bjeldanes L (1996) Biochem Pharmacol 51:1069–1076. https://doi.org/10.1016/0006-2952(96)00060-3

    Article  CAS  PubMed  Google Scholar 

  53. Chang X, Tou JC, Hong C, Kim HA, Riby JE, Firestone GL, Bjeldanes LF (2005) Carcinogenesis 26:771–778. https://doi.org/10.1093/carcin/bgi018

    Article  CAS  PubMed  Google Scholar 

  54. Ge X, Fares FA, Yannai S (1999) Anticancer Res 19:3199–3203

    CAS  PubMed  Google Scholar 

  55. Ge X, Yannai S, Rennert G, Gruener N, Fares FA (1996) Biochem Biophys Res Commun 228:153–158. https://doi.org/10.1006/bbrc.1996.1631

    Article  CAS  PubMed  Google Scholar 

  56. Shilling AD, Carlson DB, Katchamart S, Williams DE (2001) Toxicol Appl Pharmacol 170:191–200. https://doi.org/10.1006/taap.2000.9100

    Article  CAS  PubMed  Google Scholar 

  57. Hong C, Kim H-A, Firestone GL, Bjeldanes LF (2002) Carcinogenesis 23:1297–1305. https://doi.org/10.1093/carcin/23.8.1297

    Article  CAS  PubMed  Google Scholar 

  58. Xue L, Firestone GL, Bjeldanes LF (2005) Oncogene 24:2343–2353. https://doi.org/10.1038/sj.onc.1208434

    Article  CAS  PubMed  Google Scholar 

  59. Riby JE, Xue L, Chatterji U, Bjeldanes EL, Firestone GL, Bjeldanes LF (2006) Mol Pharmacol 69:430–439. https://doi.org/10.1124/mol.105.017053

    Article  CAS  PubMed  Google Scholar 

  60. Qin C, Morrow D, Stewart J, Spencer K, Porter W, Smith R III, Phillips T, Abdelrahim M, Samudio I, Safe S (2004) Mol Cancer Ther 3:247–260. https://doi.org/10.1158/1535-7163.247.3.3

    Article  CAS  PubMed  Google Scholar 

  61. Staub RE, Feng C, Onisko B, Bailey GS, Firestone GL, Bjeldanes LF (2002) Chem Res Toxicol 15:101–109. https://doi.org/10.1021/tx010056m

    Article  CAS  PubMed  Google Scholar 

  62. Lee J (2019) Nut Cancer 71:992–1006. https://doi.org/10.1080/01635581.2019.1577979

    Article  CAS  Google Scholar 

  63. Gong Y, Sohn H, Xue L, Firestone GL, Bjeldanes LF (2006) Cancer Res 66:4880–4887. https://doi.org/10.1158/0008-5472.Can-05-4162

    Article  CAS  PubMed  Google Scholar 

  64. Mulvey L, Chandrasekaran A, Liu K, Lombardi S, Wang X-P, Auborn KJ, Goodwin L (2007) Mol Med 13:69–78. https://doi.org/10.2119/2006-00038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rahman KW, Li Y, Wang Z, Sarkar SH, Sarkar FH (2006) Cancer Res 66:4952–4960. https://doi.org/10.1158/0008-5472.Can-05-3918

    Article  CAS  PubMed  Google Scholar 

  66. Wang TTY, Milner MJ, Milner JA, Kim YS (2006) J Nut Biochem 17:659–664. https://doi.org/10.1016/j.jnutbio.2005.10.012

    Article  CAS  Google Scholar 

  67. Mari M, Tassoni A, Lucarini S, Fanelli M, Piersanti G, Spadoni G (2014) Eur J Org Chem 2014:3822–3830. https://doi.org/10.1002/ejoc.201402055

    Article  CAS  Google Scholar 

  68. Jamsheena V, Shilpa G, Saranya J, Harry NA, Lankalapalli RS, Priya S (2016) Chem Biol Interact 247:11–21. https://doi.org/10.1016/j.cbi.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  69. Andreani A, Burnelli S, Granaiola M, Leoni A, Locatelli A, Morigi R, Rambaldi M, Varoli L, Landi L, Prata C, Berridge MV, Grasso C, Fiebig H-H, Kelter G, Burger AM, Kunkel MW (2008) J Med Chem 51:4563–4570. https://doi.org/10.1021/jm800194k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim JY, Le TAN, Lee SY, Song D-G, Hong S-C, Cha KH, Lee JW, Pan C-H, Kang K (2019) J Agric Food Chem 67:9277–9285. https://doi.org/10.1021/acs.jafc.9b03039

    Article  CAS  PubMed  Google Scholar 

  71. Wiatrak BJ (2003) Curr Opin Otolaryngol Head Neck Surg 11:433–441

    Article  PubMed  Google Scholar 

  72. Del Priore G, Gudipudi DK, Montemarano N, Restivo AM, Malanowska-Stega J, Arslan AA (2010) Gynecol Oncol 116:464–467. https://doi.org/10.1016/j.ygyno.2009.10.060

    Article  CAS  PubMed  Google Scholar 

  73. McGuire KP, Ngoubilly N, Neavyn M, Lanza-Jacoby S (2006) J Surg Res 132:208–213. https://doi.org/10.1016/j.jss.2006.02.008

    Article  CAS  PubMed  Google Scholar 

  74. Yin XF, Chen J, Mao W, Wang YH, Chen MH (2012) J Exp Clin Cancer Res 31:46. https://doi.org/10.1186/1756-9966-31-46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Busbee PB, Nagarkatti M, Nagarkatti PS (2014) Toxicol Appl Pharmacol 274:7–16. https://doi.org/10.1016/j.taap.2013.10.022

    Article  CAS  PubMed  Google Scholar 

  76. Takeda S, Yamamoto A, Okada T, Matsumura E, Nose E, Kogure K, Kojima S, Haga T (2003) Life Sci 74:367–377. https://doi.org/10.1016/j.lfs.2003.09.030

    Article  CAS  PubMed  Google Scholar 

  77. Pillaiyar T, Köse M, Sylvester K, Weighardt H, Thimm D, Borges G, Förster I, von Kügelgen I, Müller CE (2017) J Med Chem 60:3636–3655. https://doi.org/10.1021/acs.jmedchem.6b01593

    Article  CAS  PubMed  Google Scholar 

  78. Gong Y, Firestone GL, Bjeldanes LF (2006) Mol Pharmacol 69:1320–1327. https://doi.org/10.1124/mol.105.018978

    Article  CAS  PubMed  Google Scholar 

  79. Mahboobi S, Teller S, Pongratz H, Hufsky H, Sellmer A, Botzki A, Uecker A, Beckers T, Baasner S, Schächtele C, Überall F, Kassack MU, Dove S, Böhmer F-D (2002) J Med Chem 45:1002–1018. https://doi.org/10.1021/jm010988n

    Article  CAS  PubMed  Google Scholar 

  80. Sivaprasad G, Perumal PT, Prabavathy VR, Mathivanan N (2006) Bioorg Med Chem Lett 16:6302–6305. https://doi.org/10.1016/j.bmcl.2006.09.019

    Article  CAS  PubMed  Google Scholar 

  81. Kamal A, Khan MNA, Srinivasa Reddy K, Srikanth YVV, Kaleem Ahmed S, Pranay Kumar K, Murthy USN (2009) J Enzyme Inhib Med Chem 24:559–565. https://doi.org/10.1080/14756360802292974

    Article  CAS  PubMed  Google Scholar 

  82. Parkin DR, Lu Y, Bliss RL, Malejka-Giganti D (2008) Food Chem Toxicol 46:2451–2458. https://doi.org/10.1016/j.fct.2008.03.029

    Article  CAS  PubMed  Google Scholar 

  83. Pisano C, Kollar P, Gianní M, Kalac Y, Giordano V, Ferrara FF, Tancredi R, Devoto A, Rinaldi A, Rambaldi A, Penco S, Marzi M, Moretti G, Vesci L, Tinti O, Carminati P, Terao M, Garattini E (2002) Blood 100:3719–3730. https://doi.org/10.1182/blood-2002-03-0720

    Article  CAS  PubMed  Google Scholar 

  84. Giannini G, Marzi M, Tinti MO, Pisano C, International Patent WO0236597, 2000; Chem Abstr 136, 355230

  85. Benabadji SH, Wen R, Zheng JB, Dong XC, Yuan SG (2004) Acta Pharmacol Sin 25:666–671

    CAS  PubMed  Google Scholar 

  86. Pal C, Dey S, Mahato SK, Vinayagam J, Pradhan PK, Giri VS, Jaisankar P, Hossain T, Baruri S, Ray D, Biswas SM (2007) Bioorg Med Chem Lett 17:4924–4928. https://doi.org/10.1016/j.bmcl.2007.06.025

    Article  CAS  PubMed  Google Scholar 

  87. Sujatha K, Perumal PT, Muralidharan D, Rajendran M (2009) Ind J Chem 48B:267–272

    CAS  Google Scholar 

  88. Nagre TD, Mali NS, Thorat RB, Thorat AS, Chopade RA, Farooqui M, Agrawal B (2021) Curr Enzyme Inhib 17:127–143. https://doi.org/10.2174/1573408017666210203203735

    Article  CAS  Google Scholar 

  89. Kirkus M, Tsai M-H, Grazulevicius JV, Wu C-C, Chi L-C, Wong K-T (2009) Synth Met 159:729–734. https://doi.org/10.1016/j.synthmet.2008.12.027

    Article  CAS  Google Scholar 

  90. Majer JR (1960) Tetrahedron 9:106–110. https://doi.org/10.1016/0040-4020(60)80057-9

    Article  CAS  Google Scholar 

  91. Majer JR (1960) Tetrahedron 9:111–115. https://doi.org/10.1016/0040-4020(60)80058-0

    Article  CAS  Google Scholar 

  92. Budzikiewicz H, Eckau H, Ehrenberg M (1972) Tetrahedron Lett 13:3807–3810. https://doi.org/10.1016/S0040-4039(01)94167-X

    Article  Google Scholar 

  93. Novak TJ, Kramer DN, Klapper H, Daasch LW, Murr BL Jr (1976) J Org Chem 41:870–875. https://doi.org/10.1021/jo00867a025

    Article  CAS  Google Scholar 

  94. Stupnikova TV, Rybenko LA, Skorobogatova ZM, Sheinkman AK (1978) Chem Heterocycl Compd 14:345. https://doi.org/10.1007/BF00470574

    Article  Google Scholar 

  95. He X, Hu S, Liu K, Guo Y, Xu J, Shao S (2006) Org Lett 8:333–336. https://doi.org/10.1021/ol052770r

    Article  CAS  PubMed  Google Scholar 

  96. Martínez R, Espinosa A, Tárraga A, Molina P (2008) Tetrahedron 64:2184–2191. https://doi.org/10.1016/j.tet.2007.12.025

    Article  CAS  Google Scholar 

  97. Bedekovic D, Fletcher IJ (1986) U.S. patent 4587343, Chromogenic 3,3-Bisindolyl-4-azaphthalides.

  98. Fischer E (1924). In: Fischer E, Bergmann M (eds) Untersuchungen über Triphenylmethanfarbstoffe Hydrazine und Indole. Springer, Heidelberg, pp 597–599

    Chapter  Google Scholar 

  99. Fischer E (1924). In: Fischer E, Bergmann M (eds) Untersuchungen über Triphenylmethanfarbstoffe Hydrazine und Indole. Springer, Heidelberg, pp 666–674

    Chapter  Google Scholar 

  100. Hogan IT, Sainsbury M (1984) Synthesis 1984:872. https://doi.org/10.1055/s-1984-31004

    Article  Google Scholar 

  101. Chalaye-Mauger H, Denis J-N, Averbuch-Pouchot M-T, Vallée Y (2000) Tetrahedron 56:791–804. https://doi.org/10.1016/S0040-4020(99)01051-0

    Article  CAS  Google Scholar 

  102. Khanna L, Mansi, Yadav S, Misra N, Khanna P (2021) Synth Commun 51:2892–2923. https://doi.org/10.1080/00397911.2021.1957113

    Article  CAS  Google Scholar 

  103. Singh A, Kaur G, Banerjee B (2020) Curr Org Chem 24:583–621. https://doi.org/10.2174/1385272824666200228092752

    Article  CAS  Google Scholar 

  104. Nam SM, Jang YS, Son GE, Song CH, In I, Park CP (2020) Tetrahedron Lett 61:152178. https://doi.org/10.1016/j.tetlet.2020.152178

    Article  CAS  Google Scholar 

  105. Soltani S, Montazeri N, Zeydi MM, Heravi MM (2020) Pharm Chem J 53:947–952. https://doi.org/10.1007/s11094-020-02103-3

    Article  CAS  Google Scholar 

  106. Rani M, Utreja D, Dhillon NK, Kaur K (2022) Russ J Org Chem 58:1527–1533. https://doi.org/10.1134/S1070428022100219

    Article  CAS  Google Scholar 

  107. Lee SO, Choi J, Kook S, Lee SY (2020) Org Biomol Chem 18:9060–9064. https://doi.org/10.1039/D0OB01916J

    Article  CAS  PubMed  Google Scholar 

  108. Tornquist BL, de Paula-Bueno G, Manzano-Willig JC, de Oliveira IM, Stefani HA, Rafique J, Saba S, Almeida-Iglesias B, Botteselle GV, Manarin F (2018) Chem Select 3:6358–6363. https://doi.org/10.1002/slct.201800673

    Article  CAS  Google Scholar 

  109. Basu D, Nayek HP (2022) Dalton Trans 51:10587–10594. https://doi.org/10.1039/D2DT01721K

    Article  CAS  PubMed  Google Scholar 

  110. Kaur R, Mandal SK (2022) ACS Appl Nano Mater 5:18276–18287. https://doi.org/10.1021/acsanm.2c04145

    Article  CAS  Google Scholar 

  111. Kumar A, Patel C, Patil P, Vyas S, Sharma A (2019) Chem Pap 73:3095–3104. https://doi.org/10.1007/s11696-019-00846-2

    Article  CAS  Google Scholar 

  112. Norouzi M, Elhamifar D, Mirbagheri R (2018) Polyhedron 154:229–235. https://doi.org/10.1016/j.poly.2018.07.047

    Article  CAS  Google Scholar 

  113. Veisi H, Mohammadi P, Ozturk T (2020) J Mol Liq 303:112625. https://doi.org/10.1016/j.molliq.2020.112625

    Article  CAS  Google Scholar 

  114. Konwar D, Bora U (2020) ChemistrySelect 5:7460–7466. https://doi.org/10.1002/slct.202001776

    Article  CAS  Google Scholar 

  115. Yang T, Lu H, Shu Y, Ou Y, Hong L, Au C-T, Qiu R (2020) Org Lett 22:827–831

    Article  CAS  PubMed  Google Scholar 

  116. Wang X, Aldrich CC (2019) PLoS One 14:e0216008. https://doi.org/10.1371/journal.pone.0216008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Khaligh NG, Mihankhah T, Johan MR, Ching JJ (2018) J Mol Liq 259:260–273. https://doi.org/10.1016/j.molliq.2018.03.044

    Article  CAS  Google Scholar 

  118. Teli P, Sahiba N, Sethiya A, Soni J, Agarwal S (2023) Triethylammonium hydrogen sulfate ionic liquid-assisted highly efficient synthesis of bis(indoyl)methanes. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2023.2181829

    Article  Google Scholar 

  119. Sai Manoj Gorantla NVT, Guruprasad Reddy P, Abdul Shakoor SM, Mandal R, Roy S, Mondal KC (2019) ChemistrySelect 4:7722–7727. https://doi.org/10.1002/slct.201901215

    Article  CAS  Google Scholar 

  120. Qiao J, Gao S, Wang L, Wei J, Li N, Xu X (2020) J Organomet Chem 906:121039. https://doi.org/10.1016/j.jorganchem.2019.121039

    Article  CAS  Google Scholar 

  121. Ganure K, Shinde B, Mandle U, Dhale L, Tigote R, Lohar K (2021) Mater Today: Proc 47:1747–1754. https://doi.org/10.1016/j.matpr.2021.02.327

    Article  CAS  Google Scholar 

  122. Rawat V, Vigalok A, Sinha AK, Sachdeva G, Srivastava CM, Rao GK, Kumar A, Singh M, Rathi K, Verma VP, Yadav B, Pandey AK, Vats M (2022) ACS Omega 7:28471–28480. https://doi.org/10.1021/acsomega.2c03187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fan C, Li R, Duan J, Xu K, Liu Y, Wang D, He X (2022) Synth Commun 52:1155–1164. https://doi.org/10.1080/00397911.2022.2076245

    Article  CAS  Google Scholar 

  124. Deb B, Debnath S, Chakraborty A, Majumdar S (2021) RSC Adv 11:30827–30839. https://doi.org/10.1039/D1RA05679D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wu X, Peng WX (2020) J Chin Chem Soc 67:2129–2148. https://doi.org/10.1002/jccs.202000087

    Article  CAS  Google Scholar 

  126. Bavafa M, Vahdat SM, Khaksar S (2022) Int J Nano Dimens 13:227–234. https://doi.org/10.22034/IJND.2022.687824

    Article  CAS  Google Scholar 

  127. Sulak M (2021) Turk J Chem 45:1517–1532. https://doi.org/10.3906/kim-2105-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Baghernejad B, Zareie A (2021) Green Chem Asian J 5:343–350. https://doi.org/10.22034/ajgc.2021.288567.1304

    Article  CAS  Google Scholar 

  129. Lenz GF, Schneider R, Rossi de Aguiar KMF, Bini RA, Chaker JA, Hammer P, Botteselle GV, Felix JF, Schneider R (2019) RSC Adv 9:17157–17164. https://doi.org/10.1039/C9RA02927C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kumar G, Srivastava A, Singh VP (2023) Dalton Trans 52:3431–3437. https://doi.org/10.1039/D2DT04176F

    Article  CAS  PubMed  Google Scholar 

  131. Wu Z, Wang G, Yuan S, Wu D, Liu W, Ma B, Bi S, Zhan H, Chen X (2019) Green Chem 21:3542–3546. https://doi.org/10.1039/C9GC01073D

    Article  CAS  Google Scholar 

  132. Wu Z, Wang G, Li Z, Feng E, Liang Y, Zhan H, Liu W (2021) Synth Commun 51:1206–1217. https://doi.org/10.1080/00397911.2021.1874016

    Article  CAS  Google Scholar 

  133. Kamble VT, Kadam KR, Waghmare AS, Murade VD (2020) Sustain Chem Pharm 18:100314. https://doi.org/10.1016/j.scp.2020.100314

    Article  Google Scholar 

  134. Chavan KA, Shukla M, Chauhan ANS, Maji S, Mali G, Bhattacharyya S, Erande RD (2022) ACS Omega 7:10438–10446. https://doi.org/10.1021/acsomega.1c07258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mitra B, Ghosh P (2021) ChemistrySelect 6:68–81. https://doi.org/10.1002/slct.202004245

    Article  CAS  Google Scholar 

  136. Nemallapudi BR, Zyryanov GV, Avula B, Guda MR, Gundala S (2019) J Heterocycl Chem 56:3324–3332. https://doi.org/10.1002/jhet.3729

    Article  CAS  Google Scholar 

  137. Fu Y, Lu Z, Fang K, He X, Xu H, Hu Y (2020) RSC Adv 10:10848–10853. https://doi.org/10.1039/C9RA10014H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Patil RC, Damate SA, Zambare DN, Patil SS (2021) New J Chem 45:9152–9162. https://doi.org/10.1039/D1NJ00382H

    Article  CAS  Google Scholar 

  139. Mathavan S, Kannan K, Yamajala RB (2019) Org Biomol Chem 17:9620–9626. https://doi.org/10.1039/C9OB02090J

    Article  CAS  PubMed  Google Scholar 

  140. Rivas-Loaiza JA, Reyes-Escobedo CE, Lopez Y, Rojas-Lima S, García-Merinos JP, López-Ruiz H (2019) Lett Org Chem 16:959–968. https://doi.org/10.2174/1570178616666190222150915

    Article  CAS  Google Scholar 

  141. Lafzi F, Kilic H, Saracoglu N (2019) J Org Chem 84:12120–12130. https://doi.org/10.1021/acs.joc.9b02124

    Article  CAS  PubMed  Google Scholar 

  142. Galathri EM, Di Terlizzi L, Fagnoni M, Protti S, Kokotos CG (2023) Org Biomol Chem 21:365–369. https://doi.org/10.1039/D2OB02214A

    Article  CAS  PubMed  Google Scholar 

  143. Liu X, Ma S, Toy PH (2019) Org Lett 21:9212–9216. https://doi.org/10.1021/acs.orglett.9b03578

    Article  CAS  PubMed  Google Scholar 

  144. Alegre-Requena JV, Valero-Tena A, Sonsona IG, Uriel S, Herrera RP (2020) Org Biomol Chem 18:1594–1601. https://doi.org/10.1039/C9OB02688F

    Article  CAS  PubMed  Google Scholar 

  145. Liang Y, Wang G, Wu Z, Liu W, Song M, Sun Y, Chen X, Zhan H, Bi S (2020) Catal Commun 147:106136. https://doi.org/10.1016/j.catcom.2020.106136

    Article  CAS  Google Scholar 

  146. Kalla RMN, Hong SC, Kim I (2018) ACS Omega 3:2242–2253. https://doi.org/10.1021/acsomega.7b01925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Indurthi HK, Virdi R, Koli P, Nageswara Rao D, Sharma DK (2021) Synth Commun 51:139–150. https://doi.org/10.1080/00397911.2020.1849724

    Article  CAS  Google Scholar 

  148. Matzkeit YH, Tornquist BL, Manarin F, Botteselle GV, Rafique J, Saba S, Braga AL, Felix JF, Schneider R (2018) J Non-Cryst Solids 498:153–159. https://doi.org/10.1016/j.jnoncrysol.2018.06.020

    Article  CAS  Google Scholar 

  149. Hote BS, Siddiqui TA, Pisal PM, Mandawad GG (2022) Polycycl Aromat Compd 42:1761–1769. https://doi.org/10.1080/10406638.2020.1804414

    Article  CAS  Google Scholar 

  150. Zhao Y-S, Ruan H-L, Wang X-Y, Chen C, Song P-F, Lü C-W, Zou L-W (2019) RSC Adv 9:40168–40175. https://doi.org/10.1039/C9RA08593A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mhaldar SN, Mandrekar KS, Gawde MK, Shet RV, Tilve SG (2019) Synth Commun 49:94–101. https://doi.org/10.1080/00397911.2018.1542732

    Article  CAS  Google Scholar 

  152. Jat PK, Dabaria KK, Bai R, Yadav L, Badsara SS (2022) J Org Chem 87:12975–12985. https://doi.org/10.1021/acs.joc.2c01524

    Article  CAS  PubMed  Google Scholar 

  153. Mohammadi H, Shaterian HR (2019) ChemistrySelect 4:8700–8704. https://doi.org/10.1002/slct.201901586

    Article  CAS  Google Scholar 

  154. Nguyen N-K, Ha M-T, Bui HY, Trinh QT, Tran BN, Hung TQ, Dang TT, Vu XH (2021) Catal Commun 149:106240. https://doi.org/10.1016/j.catcom.2020.106240

    Article  CAS  Google Scholar 

  155. Qiang W, Liu X, Loh T-P (2019) ACS Sustain Chem Eng 7:8429–8439. https://doi.org/10.1021/acssuschemeng.9b00094

    Article  CAS  Google Scholar 

  156. Santos AS, Ferro RD, Viduedo N, Maia LB, Silva AMS, Marques MMB (2023) ChemistryOpen 12:e202200265. https://doi.org/10.1002/open.202200265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mondal A, Sharma R, Dutta B, Pal D, Srimani D (2022) J Org Chem 87:3989–4000. https://doi.org/10.1021/acs.joc.1c02702

    Article  CAS  PubMed  Google Scholar 

  158. Devi A, Bharali MM, Biswas S, Bora TJ, Nath JK, Lee S, Park Y-B, Saikia L, Baruah MJ, Bania KK (2023) Green Chem 25:3443–3448. https://doi.org/10.1039/D3GC00440F

    Article  CAS  Google Scholar 

  159. Indurthi HK, Das S, Kumari A, Sharma DK (2022) New J Chem 46:13924–13930. https://doi.org/10.1039/D2NJ02525F

    Article  CAS  Google Scholar 

  160. Li B, Qin H, Yan K, Ma J, Yang J, Wen J (2022) Org Chem Front 9:6861–6868. https://doi.org/10.1039/D2QO01498J

    Article  CAS  Google Scholar 

  161. Clinton SS, Ramesh R, Malecki JG (2023) Catal Sci Technol 13:3358–3365. https://doi.org/10.1039/D3CY00333G

    Article  CAS  Google Scholar 

  162. Kadu VD, Chandrudu SN, Hublikar MG, Raut DG, Bhosale RB (2020) RSC Adv 10:23254–23262. https://doi.org/10.1039/D0RA03221B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Saini P, Kumari P, Hazra S, Elias AJ (2019) Chem Asian J 14:4154–4159. https://doi.org/10.1002/asia.201901313

    Article  CAS  PubMed  Google Scholar 

  164. Muthukumar A, Rao GN, Sekar G (2019) Org Biomol Chem 17:3921–3933. https://doi.org/10.1039/C9OB00114J

    Article  CAS  PubMed  Google Scholar 

  165. Gambaro S, La Manna P, De Rosa M, Soriente A, Talotta C, Gaeta C, Neri P (2019) Front Chem 7:687. https://doi.org/10.3389/fchem.2019.00687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Paul D, Khatua S, Chatterjee PN (2019) New J Chem 43:10056–10065. https://doi.org/10.1039/C9NJ00149B

    Article  CAS  Google Scholar 

  167. Yan M, Hider RC, Ma Y (2019) Org Chem Front 6:1168–1172. https://doi.org/10.1039/C9QO00097F

    Article  CAS  Google Scholar 

  168. McLean EB, Cutolo FM, Cassidy OJ, Burns DJ, Lee A-L (2020) Org Lett 22:6977–6981. https://doi.org/10.1021/acs.orglett.0c02526

    Article  CAS  PubMed  Google Scholar 

  169. Cardoso AL, Lopes SM, Grosso C, Pineiro M, Lemos A, Pinho e Melo TM (2021) J Chem Educ 98:2661–2666. https://doi.org/10.1021/acs.jchemed.1c00184

    Article  CAS  Google Scholar 

  170. Zeng M, Xue J-W, Jiang H, Li K, Chen Y, Chen Z, Yin G (2021) J Org Chem 86:8333–8350. https://doi.org/10.1021/acs.joc.1c00762

    Article  CAS  PubMed  Google Scholar 

  171. Qi X, Ai H-J, Zhang N, Peng J-B, Ying J, Wu X-F (2018) J Catal 362:74–77. https://doi.org/10.1016/j.jcat.2018.03.028

    Article  CAS  Google Scholar 

  172. Yuan Z, Chen S, Weng Z (2020) Org Chem Front 7:482–486. https://doi.org/10.1039/C9QO01131E

    Article  CAS  Google Scholar 

  173. Dong K, Li J, Li R-P, Mao M, Liu J, Wang X, Tang S (2022) J Org Chem 87:14930–14939. https://doi.org/10.1021/acs.joc.2c01844

    Article  CAS  PubMed  Google Scholar 

  174. Jin J, Li Y, Xiang S, Fan W, Guo S, Huang D (2021) Org Biomol Chem 19:4076–4081. https://doi.org/10.1039/D1OB00120E

    Article  CAS  PubMed  Google Scholar 

  175. Takaishi K, Kosugi H, Nishimura R, Yamada Y, Ema T (2021) Chem Commun 57:8083–8086. https://doi.org/10.1039/D1CC03675K

    Article  CAS  Google Scholar 

  176. Murata T, Hiyoshi M, Maekawa S, Saiki Y, Ratanasak M, Hasegawa J, Ema T (2022) Green Chem 24:2385–2390. https://doi.org/10.1039/D1GC04599G

    Article  CAS  Google Scholar 

  177. Wu X-T, Ma F, Xiao E-K, Yin J, Sun F, Wang Q, Jiang Y-J, Chen P (2022) Org Biomol Chem 20:7491–7498. https://doi.org/10.1039/D2OB01281B

    Article  CAS  PubMed  Google Scholar 

  178. Yin Z-G, Liu X-W, Wang H-J, Zhang M, Liu X-L, Zhou Y (2022) New J Chem 46:1295–1307. https://doi.org/10.1039/D1NJ05170A

    Article  CAS  Google Scholar 

  179. Yuan X, Wu L, Xu C, Pan Z, Shi L, Yang G, Wang C, Fan S (2019) Tetrahedron Lett 60:151329. https://doi.org/10.1016/j.tetlet.2019.151329

    Article  CAS  Google Scholar 

  180. Silalai P, Saeeng R (2023) J Org Chem 88:4052–4065. https://doi.org/10.1021/acs.joc.2c02166

    Article  CAS  PubMed  Google Scholar 

  181. Czerwiński PJ, Grzeszczyk B, Furman B (2022) Org Lett 24:9269–9274. https://doi.org/10.1021/acs.orglett.2c03839

    Article  CAS  PubMed  Google Scholar 

  182. Ling Y, An D, Zhou Y, Rao W (2019) Organic Lett 21:3396–3401. https://doi.org/10.1021/acs.orglett.9b01135

    Article  CAS  Google Scholar 

  183. Chen K-W, Wang Z-S, Wu P, Yan X-Y, Zhang S, Zhang Y-C, Shi F (2020) J Org Chem 85:10152–10166. https://doi.org/10.1021/acs.joc.0c01528

    Article  CAS  PubMed  Google Scholar 

  184. Mao Yujia LY, Tianzhen L, Qiong W, Wei T, Feng S (2020) Chin J Org Chem 40:3895–3907. https://doi.org/10.6023/cjoc202005096

    Article  CAS  Google Scholar 

  185. Pillaiyar T, Sedaghati M, Mahardhika AB, Wendt LL, Müller CE (2021) Beilstein J Org Chem 17:1464–1475. https://doi.org/10.3762/bjoc.17.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kundal S, Rana G, Kar A, Jana U (2022) Org Biomol Chem 20:5234–5238. https://doi.org/10.1039/D2OB00502F

    Article  CAS  PubMed  Google Scholar 

  187. Zhu W-R, Su Q, Deng X-Y, Liu J-S, Zhong T, Meng S-S, Yi J-T, Weng J, Lu G (2022) Chem Sci 13:170–177. https://doi.org/10.1039/D1SC05174A

    Article  CAS  Google Scholar 

  188. Guan X-K, Zhang H, Gao J-G, Sun D-Y, Qin X-S, Jiang G-F, Zhang G-L, Zhang S (2019) J Org Chem 84:12562–12572. https://doi.org/10.1021/acs.joc.9b02024

    Article  CAS  PubMed  Google Scholar 

  189. Flury P, Eppler O, Schollmeyer D, Laufer S, Pillaiyar T (2022) Arch Pharm 355:2100488. https://doi.org/10.1002/ardp.202100488

    Article  CAS  Google Scholar 

  190. Han Z, Wang W, Zhuang H, Wang J, Wang C, Wang J, Huang H, Sun J (2023) Org Lett 25:477–482. https://doi.org/10.1021/acs.orglett.2c04109

    Article  CAS  PubMed  Google Scholar 

  191. Azizian J, Mohammadi AA, Karimi N, Mohammadizadeh MR, Karimi AR (2006) Catal Commun 7:752–755. https://doi.org/10.1016/j.catcom.2006.01.026

    Article  CAS  Google Scholar 

  192. Makarem S, Fakhari AR, Mohammadi AA (2012) Monatsh Chem 143:1157–1160. https://doi.org/10.1007/s00706-011-0693-1

    Article  CAS  Google Scholar 

  193. Klumpp DA, Yeung KY, Prakash GKS, Olah GA (1998) J Org Chem 63:4481–4484. https://doi.org/10.1021/jo980588g

    Article  CAS  Google Scholar 

  194. Sato R, Tosaka T, Masu H, Arai T (2019) J Org Chem 84:14248–14257. https://doi.org/10.1021/acs.joc.9b02006

    Article  CAS  PubMed  Google Scholar 

  195. Gohain SB, Basumatary M, Boruah PK, Das MR, Thakur AJ (2020) Green Chem 22:170–179. https://doi.org/10.1039/C9GC02370D

    Article  CAS  Google Scholar 

  196. Pund GB, Wahul DB, Deshmukh TR, Dhumal ST, Mandave KR, Gaware SA, Farooqui M, Dobhal BS, Hebade MJ (2023) Synth Commun 53:1008–1019. https://doi.org/10.1080/00397911.2023.2205594

    Article  CAS  Google Scholar 

  197. Kamboj P, Dutt S, Chakroborty S, Tyagi V (2019) Tetrahedron Lett 60:151162. https://doi.org/10.1016/j.tetlet.2019.151162

    Article  CAS  Google Scholar 

  198. Shu B, Chen S-Y, Deng N-X, Zheng T, Xie H, Xie X-L, Wu J-Q, Cao H, Zhang S-S (2021) Org Chem Front 8:4445–4451. https://doi.org/10.1039/D1QO00462J

    Article  CAS  Google Scholar 

  199. Bag D, Sawant SD (2022) Org Lett 24:4930–4934. https://doi.org/10.1021/acs.orglett.2c01845

    Article  CAS  PubMed  Google Scholar 

  200. Pillaiyar T, Gorska E, Schnakenburg G, Müller CE (2018) J Org Chem 83:9902–9913. https://doi.org/10.1021/acs.joc.8b01349

    Article  CAS  PubMed  Google Scholar 

  201. Wu Y, Liu M-D, Wang Q, Tian H, Fan J-B, Zhou Y-J, Wang Y-J, Deng X (2023) Org Biomol Chem 21:639–643. https://doi.org/10.1039/D2OB02236B

    Article  CAS  PubMed  Google Scholar 

  202. Zhu W-J, Gong J-F, Song M-P (2020) J Org Chem 85:9525–9537. https://doi.org/10.1021/acs.joc.0c00336

    Article  CAS  PubMed  Google Scholar 

  203. Yimyaem J, Chantana C, Boonmee S, Jaratjaroonphong J (2022) Synlett 33:1363–1370. https://doi.org/10.1055/s-0040-1719915

    Article  CAS  Google Scholar 

  204. Chantana C, Jaratjaroonphong J (2021) J Org Chem 86:2312–2327. https://doi.org/10.1021/acs.joc.0c02466

    Article  CAS  PubMed  Google Scholar 

  205. Chantana C, Sirion U, Iawsipo P, Jaratjaroonphong J (2021) J Org Chem 86:13360–13370. https://doi.org/10.1021/acs.joc.1c01461

    Article  CAS  PubMed  Google Scholar 

  206. Guo S, Chen J, Yi M, Dong L, Lin A, Yao H (2021) Org Chem Front 8:1783–1788. https://doi.org/10.1039/D0QO01539C

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Chemistry, M.L.S.U. Udaipur, Rajasthan, India, for providing necessary library facilities. P. Teli is very grateful to the Council for Scientific and Industrial Research (CSIR) (file no. 09/172(0099)2019-EMR-I, New Delhi) for the award of a Senior Research Fellowship as financial support.

Author information

Authors and Affiliations

Authors

Contributions

P.T. searched and sorted the research articles and wrote the manuscript. S.S. and S.T. helped in editing and drawing the schemes. S.A. contributed to guiding, writing, revising, and overall literature review.

Corresponding author

Correspondence to Shikha Agarwal.

Ethics declarations

Conflict of Interest

The authors confirmed that this article has no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teli, P., Soni, S., Teli, S. et al. Unlocking Diversity: From Simple to Cutting-Edge Synthetic Methodologies of Bis(indolyl)methanes. Top Curr Chem (Z) 382, 8 (2024). https://doi.org/10.1007/s41061-024-00454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-024-00454-z

Keywords

Navigation