Skip to main content

Advertisement

Log in

Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

(Sun)Light is an abundantly available sustainable source of energy that has been used in catalyzing chemical reactions for several decades now. In particular, studies related to the interaction of light with plasmonic nanostructures have been receiving increased attention. These structures display the unique property of localized surface plasmon resonance, which converts light of a specific wavelength range into hot charge carriers, along with strong local electromagnetic fields, and/or heat, which may all enhance the reaction efficiency in their own way. These unique properties of plasmonic nanoparticles can be conveniently tuned by varying the metal type, size, shape, and dielectric environment, thus prompting a research focus on rationally designed plasmonic hybrid nanostructures. In this review, the term “hybrid” implies nanomaterials that consist of multiple plasmonic or non-plasmonic materials, forming complex configurations in the geometry and/or at the atomic level. We discuss the synthetic techniques and evolution of such hybrid plasmonic nanostructures giving rise to a wide variety of material and geometric configurations. Bimetallic alloys, which result in a new set of opto-physical parameters, are compared with core–shell configurations. For the latter, the use of metal, semiconductor, and polymer shells is reviewed. Also, more complex structures such as Janus and antenna reactor composites are discussed. This review further summarizes the studies exploiting plasmonic hybrids to elucidate the plasmonic-photocatalytic mechanism. Finally, we review the implementation of these plasmonic hybrids in different photocatalytic application domains such as H2 generation, CO2 reduction, water purification, air purification, and disinfection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2016 Elsevier, d [60]. Copyright (2013), American Chemical Society and e [61] CC BY 4.0

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Copyright Clearance Center, Inc., d, e [178]. Copyright 2013 American Chemical Society

Fig. 7

Copyright 2017 American Chemical Society

Fig. 8

Copyright 2008 American Chemical Society, b [21]. Copyright 2017 Elsevier

Fig. 9

Copyright 2013 John Wiley and Sons, Royal Society of Chemistry [237]; Permission conveyed through Copyright Clearance Center, Inc. and [238]

Fig. 10

Copyright 2021 Elsevier

Fig. 11
Fig. 12

Copyright Clearance Center, Inc

Similar content being viewed by others

References

  1. Artioli G, Angelini I, Polla A (2008) Crystals and phase transitions in protohistoric glass materials. Phase Trans 81:233–252. https://doi.org/10.1080/01411590701514409

    Article  CAS  Google Scholar 

  2. Bobin O, Schvoerer M, Ney C et al (2003) The role of copper and silver in the colouration of metallic luster decorations (Tunisia, 9th century; Mesopotamia, 10th century; Sicily, 16th century): a first approach. Color Res Appl 28:352–359. https://doi.org/10.1002/col.10183

    Article  Google Scholar 

  3. Freestone I, Meeks N, Sax M, Higgitt C (2007) The Lycurgus cup—a Roman nanotechnology. Gold Bull 40:270–277. https://doi.org/10.1007/BF03215599

    Article  CAS  Google Scholar 

  4. Verbruggen SW (2015) TiO2 photocatalysis for the degradation of pollutants in gas phase: from morphological design to plasmonic enhancement. J Photochem Photobiol C Photochem Rev 24:64–82. https://doi.org/10.1016/j.jphotochemrev.2015.07.001

    Article  CAS  Google Scholar 

  5. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

    Article  CAS  PubMed  Google Scholar 

  6. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205

    Article  CAS  PubMed  Google Scholar 

  7. Anker JN, Hall WP, Lyandres O et al (2009) Biosensing with plasmonic nanosensors. Nanoscience and technology. Co-Published with Macmillan Publishers Ltd, UK, pp 308–319

    Chapter  Google Scholar 

  8. Barbillon G (2020) Latest novelties on plasmonic and non-plasmonic nanomaterials for SERS sensing. Nanomater 10:25

    Google Scholar 

  9. Wang D, Pillai SC, Ho S-H et al (2018) Plasmonic-based nanomaterials for environmental remediation. Appl Catal B Environ 237:721–741. https://doi.org/10.1016/j.apcatb.2018.05.094

    Article  CAS  Google Scholar 

  10. Statista (2021) Annual global CO2 emissions from 2000 to 2019. https://www.statista.com/statistics/276629/global-co2-emissions/. Accessed 21 Sep 2021

  11. Fuel Cells and Hydrogen Joint Undertaking (FCH) (2019) Hydrogen roadmap Europe—a sustainable pathway for the European energy transition

  12. Sharma G, Kumar A, Sharma S et al (2019) Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J King Saud Univ Sci 31:257–269. https://doi.org/10.1016/j.jksus.2017.06.012

    Article  Google Scholar 

  13. Major KJ, De C, Obare SO (2009) Recent advances in the synthesis of plasmonic bimetallic nanoparticles. Plasmonics 4:61–78. https://doi.org/10.1007/s11468-008-9077-8

    Article  CAS  Google Scholar 

  14. Kavitha R, Kumar SG (2020) Review on bimetallic-deposited TiO2: preparation methods, charge carrier transfer pathways and photocatalytic applications. Chem Pap 74:717–756. https://doi.org/10.1007/s11696-019-00995-4

    Article  CAS  Google Scholar 

  15. Sytwu K, Vadai M, Dionne JA (2019) Bimetallic nanostructures: combining plasmonic and catalytic metals for photocatalysis. Adv Phys X 4:1619480. https://doi.org/10.1080/23746149.2019.1619480

    Article  CAS  Google Scholar 

  16. Srinoi P, Chen Y-T, Vittur V et al (2018) Bimetallic nanoparticles: enhanced magnetic and optical properties for emerging biological applications. Appl Sci 8:25

    Article  Google Scholar 

  17. Chen T, Rodionov VO (2016) Controllable catalysis with nanoparticles: bimetallic alloy systems and surface adsorbates. ACS Catal 6:4025–4033. https://doi.org/10.1021/acscatal.6b00714

    Article  CAS  Google Scholar 

  18. Ahn J, Kim J, Qin D (2020) Orthogonal deposition of Au on different facets of Ag cuboctahedra for the fabrication of nanoboxes with complementary surfaces. Nanoscale 12:372–379. https://doi.org/10.1039/C9NR08420G

    Article  CAS  PubMed  Google Scholar 

  19. Gloag L, Benedetti TM, Cheong S et al (2018) Three-dimensional branched and faceted gold-ruthenium nanoparticles: using nanostructure to improve stability in oxygen evolution electrocatalysis. Angew Chem Int Ed 57:10241–10245. https://doi.org/10.1002/anie.201806300

    Article  CAS  Google Scholar 

  20. Zhang Q, Kusada K, Wu D et al (2018) Selective control of fcc and hcp crystal structures in Au–Ru solid-solution alloy nanoparticles. Nat Commun 9:510. https://doi.org/10.1038/s41467-018-02933-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Asapu R, Claes N, Bals S et al (2017) Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis. Appl Catal B Environ 200:31–38. https://doi.org/10.1016/j.apcatb.2016.06.062

    Article  CAS  Google Scholar 

  22. Ni Y, Kan C, He L et al (2019) Alloyed Au-Ag nanorods with desired plasmonic properties and stability in harsh environments. Photon Res 7:558–565. https://doi.org/10.1364/PRJ.7.000558

    Article  CAS  Google Scholar 

  23. Blommaerts N, Vanrompay H, Nuti S et al (2019) Unraveling structural information of turkevich synthesized plasmonic gold-silver bimetallic nanoparticles. Small 15:1902791. https://doi.org/10.1002/smll.201902791

    Article  CAS  Google Scholar 

  24. Davey WP (1925) Precision measurements of the lattice constants of twelve common metals. Phys Rev 25:753–761. https://doi.org/10.1103/PhysRev.25.753

    Article  CAS  Google Scholar 

  25. Combettes S, Lam J, Benzo P et al (2020) How interface properties control the equilibrium shape of core–shell Fe–Au and Fe–Ag nanoparticles. Nanoscale 12:18079–18090. https://doi.org/10.1039/D0NR04425C

    Article  CAS  PubMed  Google Scholar 

  26. Lohse SE, Burrows ND, Scarabelli L et al (2014) Anisotropic noble metal nanocrystal growth: the role of halides. Chem Mater 26:34–43. https://doi.org/10.1021/cm402384j

    Article  CAS  Google Scholar 

  27. Jacobson CR, Solti D, Renard D et al (2020) Shining light on aluminum nanoparticle synthesis. Acc Chem Res 53:2020–2030. https://doi.org/10.1021/acs.accounts.0c00419

    Article  CAS  PubMed  Google Scholar 

  28. Ringe E (2020) Shapes, plasmonic properties, and reactivity of magnesium nanoparticles. J Phys Chem C 124:15665–15679. https://doi.org/10.1021/acs.jpcc.0c03871

    Article  CAS  Google Scholar 

  29. Thota S, Wang Y, Zhao J (2018) Colloidal Au–Cu alloy nanoparticles: synthesis, optical properties and applications. Mater Chem Front 2:1074–1089. https://doi.org/10.1039/C7QM00538E

    Article  CAS  Google Scholar 

  30. Zhang J, Yu Y, Zhang B (2020) Synthesis and characterization of size controlled alloy nanoparticles. Phys Sci Rev. https://doi.org/10.1515/psr-2018-0046

    Article  Google Scholar 

  31. Zhao H, Qi W, Zhou X et al (2018) Composition-controlled synthesis of platinum and palladium nanoalloys as highly active electrocatalysts for methanol oxidation. Chin J Catal 39:342–349. https://doi.org/10.1016/S1872-2067(18)63020-7

    Article  Google Scholar 

  32. Leteba GM, Lang CI (2013) Synthesis of bimetallic platinum nanoparticles for biosensors. Sensors 13:25

    Article  Google Scholar 

  33. Gu J, Lan G, Jiang Y et al (2015) Shaped Pt-Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction. Nano Res 8:1480–1496. https://doi.org/10.1007/s12274-014-0632-7

    Article  CAS  Google Scholar 

  34. Xia Y, Gilroy KD, Peng H-C, Xia X (2017) Seed-mediated growth of colloidal metal nanocrystals. Angew Chem Int Ed 56:60–95. https://doi.org/10.1002/anie.201604731

    Article  CAS  Google Scholar 

  35. Emam HE (2019) Arabic gum as bio-synthesizer for Ag–Au bimetallic nanocomposite using seed-mediated growth technique and its biological efficacy. J Polym Environ 27:210–223. https://doi.org/10.1007/s10924-018-1331-3

    Article  CAS  Google Scholar 

  36. Dong P, Wu Y, Guo W, Di J (2013) Plasmonic biosensor based on triangular Au/Ag and Au/Ag/Au core/shell nanoprisms onto indium tin oxide glass. Plasmonics 8:1577–1583. https://doi.org/10.1007/s11468-013-9574-2

    Article  CAS  Google Scholar 

  37. Sutter E, Zhang B, Sutter P (2020) DNA-mediated three-dimensional assembly of hollow Au–Ag alloy nanocages as plasmonic crystals. ACS Appl Nano Mater 3:8068–8074. https://doi.org/10.1021/acsanm.0c01528

    Article  CAS  Google Scholar 

  38. Yue X, Hou J, Zhao H et al (2020) Au–Ag alloy nanoparticles with tunable cavity for plasmon-enhanced photocatalytic H2 evolution. J Energy Chem 49:1–7. https://doi.org/10.1016/j.jechem.2020.01.005

    Article  Google Scholar 

  39. Sui N, Yue R, Wang Y et al (2019) Boosting methanol oxidation reaction with Au@AgPt yolk-shell nanoparticles. J Alloys Compd 790:792–798. https://doi.org/10.1016/j.jallcom.2019.03.196

    Article  CAS  Google Scholar 

  40. Kamat GA, Yan C, Osowiecki WT et al (2020) Self-limiting shell formation in Cu@Ag core-shell nanocrystals during galvanic replacement. J Phys Chem Lett 11:5318–5323. https://doi.org/10.1021/acs.jpclett.0c01551

    Article  CAS  PubMed  Google Scholar 

  41. Reboul J, Li ZY, Yuan J et al (2021) Synthesis of small Ni-core–Au-shell catalytic nanoparticles on TiO2 by galvanic replacement reaction. Nanosc Adv 3:823–835. https://doi.org/10.1039/D0NA00617C

    Article  CAS  Google Scholar 

  42. Wang Z, Ai B, Wang Y et al (2019) Hierarchical control of plasmonic nanochemistry in microreactor. ACS Appl Mater Interfaces 11:35429–35437. https://doi.org/10.1021/acsami.9b10917

    Article  CAS  PubMed  Google Scholar 

  43. Sebastian V, Smith CD, Jensen KF (2016) Shape-controlled continuous synthesis of metal nanostructures. Nanoscale 8:7534–7543. https://doi.org/10.1039/C5NR08531D

    Article  CAS  PubMed  Google Scholar 

  44. Chen P-C, Liu G, Zhou Y et al (2015) Tip-directed synthesis of multimetallic nanoparticles. J Am Chem Soc 137:9167–9173. https://doi.org/10.1021/jacs.5b05139

    Article  CAS  PubMed  Google Scholar 

  45. Neumeister A, Jakobi J, Rehbock C et al (2014) Monophasic ligand-free alloy nanoparticle synthesis determinants during pulsed laser ablation of bulk alloy and consolidated microparticles in water. Phys Chem Chem Phys 16:23671–23678. https://doi.org/10.1039/C4CP03316G

    Article  CAS  PubMed  Google Scholar 

  46. Prymak O, Jakobi J, Rehbock C et al (2018) Crystallographic characterization of laser-generated, polymer-stabilized 4 nm silver-gold alloyed nanoparticles. Mater Chem Phys 207:442–450. https://doi.org/10.1016/j.matchemphys.2017.12.080

    Article  CAS  Google Scholar 

  47. Vegard L (1921) Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z Phys 5:17–26. https://doi.org/10.1007/BF01349680

    Article  CAS  Google Scholar 

  48. Petkov V, Shastri S, Shan S et al (2013) Resolving atomic ordering differences in group 11 nanosized metals and binary alloy catalysts by resonant high-energy X-ray diffraction and computer simulations. J Phys Chem C 117:22131–22141. https://doi.org/10.1021/jp408017v

    Article  CAS  Google Scholar 

  49. Bozzolo G, Garcés JE, Derry GN (2007) Atomistic modeling of segregation and bulk ordering in Ag–Au alloys. Surf Sci 601:2038–2046. https://doi.org/10.1016/j.susc.2007.02.035

    Article  CAS  Google Scholar 

  50. Nguyen CM, Frias Batista LM, John MG et al (2021) Mechanism of gold-silver alloy nanoparticle formation by laser coreduction of gold and silver ions in solution. J Phys Chem B 125:907–917. https://doi.org/10.1021/acs.jpcb.0c10096

    Article  CAS  PubMed  Google Scholar 

  51. Zhang D, Gökce B, Barcikowski S (2017) Laser synthesis and processing of colloids: fundamentals and applications. Chem Rev 117:3990–4103. https://doi.org/10.1021/acs.chemrev.6b00468

    Article  CAS  PubMed  Google Scholar 

  52. Liao W, Lan S, Gao L et al (2017) Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering. Thin Solid Films 638:383–388. https://doi.org/10.1016/j.tsf.2017.08.006

    Article  CAS  Google Scholar 

  53. Li B, Huang L, Zhou M et al (2014) Preparation and spectral analysis of gold nanoparticles using magnetron sputtering and thermal annealing. J Wuhan Univ Technol Sci Ed 29:651–655. https://doi.org/10.1007/s11595-014-0973-9

    Article  CAS  Google Scholar 

  54. Atef N, Emara SS, Eissa DS et al (2021) Well-dispersed Au nanoparticles prepared via magnetron sputtering on TiO2 nanotubes with unprecedentedly high activity for water splitting. Electrochem Sci Adv 1:e2000004. https://doi.org/10.1002/elsa.202000004

    Article  Google Scholar 

  55. Sun L, Yuan G, Gao L et al (2021) Chemical vapour deposition. Nat Rev Methods Prim 1:5. https://doi.org/10.1038/s43586-020-00005-y

    Article  CAS  Google Scholar 

  56. Harvey E, Ghantasala M (2006) In: Hannink RHJ, Hill AJBT-NC of M (eds) 12—Nanofabrication. Woodhead Publishing, pp 303–330

  57. Bakrania SD, Rathore GK, Wooldridge MS (2009) An investigation of the thermal decomposition of gold acetate. J Therm Anal Calorim 95:117–122. https://doi.org/10.1007/s10973-008-9173-1

    Article  CAS  Google Scholar 

  58. Hirayama Y, Takagi K (2019) Evaluation of compositional homogeneity of Fe-Co alloy nanoparticles prepared by thermal plasma synthesis. J Alloys Compd 792:594–598. https://doi.org/10.1016/j.jallcom.2019.04.083

    Article  CAS  Google Scholar 

  59. Verbruggen SW, Keulemans M, Goris B et al (2016) Plasmonic ‘rainbow’ photocatalyst with broadband solar light response for environmental applications. Appl Catal B Environ 188:147–153. https://doi.org/10.1016/j.apcatb.2016.02.002

    Article  CAS  Google Scholar 

  60. Samal AK, Polavarapu L, Rodal-Cedeira S et al (2013) Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties. Langmuir 29:15076–15082. https://doi.org/10.1021/la403707j

    Article  CAS  PubMed  Google Scholar 

  61. Boltersdorf J, Leff AC, Forcherio GT, Baker DR (2021) Plasmonic Au–Pd bimetallic nanocatalysts for hot-carrier-enhanced photocatalytic and electrochemical ethanol oxidation. Cryst 11:25

    Google Scholar 

  62. Etchegoin PG, Le Ru EC, Meyer M (2006) An analytic model for the optical properties of gold. J Chem Phys 125:164705. https://doi.org/10.1063/1.2360270

    Article  CAS  PubMed  Google Scholar 

  63. Balamurugan B, Maruyama T (2005) Evidence of an enhanced interband absorption in Au nanoparticles: size-dependent electronic structure and optical properties. Appl Phys Lett 87:143105. https://doi.org/10.1063/1.2077834

    Article  CAS  Google Scholar 

  64. Kolwas K, Derkachova A (2020) Impact of the interband transitions in gold and silver on the dynamics of propagating and localized surface plasmons. Nanomater 10:25

    Article  Google Scholar 

  65. Borah R, Verbruggen SW (2020) Silver-gold bimetallic alloy versus core-shell nanoparticles: implications for plasmonic enhancement and photothermal applications. J Phys Chem C 124:12081–12094. https://doi.org/10.1021/acs.jpcc.0c02630

    Article  CAS  Google Scholar 

  66. Ponzellini P, Giovannini G, Cattarin S et al (2019) Metallic nanoporous aluminum-magnesium alloy for UV-enhanced spectroscopy. J Phys Chem C 123:20287–20296. https://doi.org/10.1021/acs.jpcc.9b04230

    Article  CAS  Google Scholar 

  67. Pujari A, Thomas T (2021) Aluminium nanoparticles alloyed with other earth-abundant plasmonic metals for light trapping in thin-film a-Si solar cells. Sustain Mater Technol 28:e00250. https://doi.org/10.1016/j.susmat.2021.e00250

    Article  CAS  Google Scholar 

  68. Kim D, Resasco J, Yu Y et al (2014) Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat Commun 5:4948. https://doi.org/10.1038/ncomms5948

    Article  CAS  PubMed  Google Scholar 

  69. Liu Y, Walker ARH (2010) Monodisperse gold-copper bimetallic nanocubes: facile one-step synthesis with controllable size and composition. Angew Chemie Int Ed 49:6781–6785. https://doi.org/10.1002/anie.201001931

    Article  CAS  Google Scholar 

  70. Henkel A, Jakab A, Brunklaus G, Sönnichsen C (2009) Tuning plasmonic properties by alloying copper into gold nanorods. J Phys Chem C 113:2200–2204. https://doi.org/10.1021/jp810433e

    Article  CAS  Google Scholar 

  71. De Marchi S, Núñez-Sánchez S, Bodelón G et al (2020) Pd nanoparticles as a plasmonic material: synthesis, optical properties and applications. Nanoscale 12:23424–23443. https://doi.org/10.1039/D0NR06270G

    Article  PubMed  Google Scholar 

  72. Sugawa K, Tahara H, Yamashita A et al (2015) Refractive index susceptibility of the plasmonic palladium nanoparticle: potential as the third plasmonic sensing material. ACS Nano 9:1895–1904. https://doi.org/10.1021/nn506800a

    Article  CAS  PubMed  Google Scholar 

  73. Cortie MB, McDonagh AM (2011) Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 111:3713–3735. https://doi.org/10.1021/cr1002529

    Article  CAS  PubMed  Google Scholar 

  74. Peng Z, Yang H (2008) Ag–Pt alloy nanoparticles with the compositions in the miscibility gap. J Solid State Chem 181:1546–1551. https://doi.org/10.1016/j.jssc.2008.03.013

    Article  CAS  Google Scholar 

  75. Zhu X, Guo Q, Sun Y et al (2019) Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity. Nat Commun 10:1428. https://doi.org/10.1038/s41467-019-09421-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Valenti M, Venugopal A, Tordera D et al (2017) Hot carrier generation and extraction of plasmonic alloy nanoparticles. ACS Photonics 4:1146–1152. https://doi.org/10.1021/acsphotonics.6b01048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Kadkhodazadeh S, Nugroho FAA, Langhammer C et al (2019) Optical property-composition correlation in noble metal alloy nanoparticles studied with eeLS. ACS Photon 6:779–786. https://doi.org/10.1021/acsphotonics.8b01791

    Article  CAS  Google Scholar 

  78. Lee C, Park Y, Park JY (2019) Hot electrons generated by intraband and interband transition detected using a plasmonic Cu/TiO2 nanodiode. RSC Adv 9:18371–18376. https://doi.org/10.1039/C9RA02601K

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Keast VJ, Barnett RL, Cortie MB (2014) First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds. J Phys Condens Matter 26:305501. https://doi.org/10.1088/0953-8984/26/30/305501

    Article  CAS  PubMed  Google Scholar 

  80. Rossi TP, Erhart P, Kuisma M (2020) Hot-carrier generation in plasmonic nanoparticles: the importance of atomic structure. ACS Nano 14:9963–9971. https://doi.org/10.1021/acsnano.0c03004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Ma J, Zhang X, Gao S (2021) Tunable electron and hole injection channels at plasmonic Al– TiO2 interfaces. Nanoscale 13:14073–14080. https://doi.org/10.1039/D1NR03697A

    Article  CAS  PubMed  Google Scholar 

  82. Huang H, Zhang L, Lv Z et al (2016) Unraveling surface plasmon decay in core-shell nanostructures toward broadband light-driven catalytic organic synthesis. J Am Chem Soc 138:6822–6828. https://doi.org/10.1021/jacs.6b02532

    Article  CAS  PubMed  Google Scholar 

  83. van der Hoeven JES, Jelic J, Olthof LA et al (2021) Unlocking synergy in bimetallic catalysts by core–shell design. Nat Mater. https://doi.org/10.1038/s41563-021-00996-3

    Article  PubMed  Google Scholar 

  84. Asapu R, Claes N, Ciocarlan R-G et al (2019) Electron transfer and near-field mechanisms in plasmonic gold-nanoparticle-modified TiO2 photocatalytic systems. ACS Appl Nano Mater 2:4067–4074. https://doi.org/10.1021/acsanm.9b00485

    Article  CAS  Google Scholar 

  85. Pougin A, Dodekatos G, Dilla M et al (2018) Au@ TiO2 core-shell composites for the photocatalytic reduction of CO2. Chem A Eur J 24:12416–12425. https://doi.org/10.1002/chem.201801796

    Article  CAS  Google Scholar 

  86. Hong D, Lyu L-M, Koga K et al (2019) Plasmonic Ag@ TiO2 core-shell nanoparticles for enhanced CO2 photoconversion to CH4. ACS Sustain Chem Eng 7:18955–18964. https://doi.org/10.1021/acssuschemeng.9b04345

    Article  CAS  Google Scholar 

  87. Mondal I, Gonuguntla S, Pal U (2019) Photoinduced fabrication of Cu/TiO2 core-shell heterostructures derived from Cu-MOF for solar hydrogen generation: the size of the Cu nanoparticle matters. J Phys Chem C 123:26073–26081. https://doi.org/10.1021/acs.jpcc.9b07171

    Article  CAS  Google Scholar 

  88. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science (80–) 302:419–422. https://doi.org/10.1126/science.1089171

    Article  CAS  Google Scholar 

  89. Kamimura S, Yamashita S, Abe S et al (2017) Effect of core@shell (Au@Ag) nanostructure on surface plasmon-induced photocatalytic activity under visible light irradiation. Appl Catal B Environ 211:11–17. https://doi.org/10.1016/j.apcatb.2017.04.028

    Article  CAS  Google Scholar 

  90. Wang Y, Zhang Q, Wang Y et al (2021) Ultrastable plasmonic Cu-based core-shell nanoparticles. Chem Mater 33:695–705. https://doi.org/10.1021/acs.chemmater.0c04059

    Article  CAS  Google Scholar 

  91. Joplin A, Hosseini Jebeli SA, Sung E et al (2017) Correlated absorption and scattering spectroscopy of individual platinum-decorated gold nanorods reveals strong excitation enhancement in the nonplasmonic metal. ACS Nano 11:12346–12357. https://doi.org/10.1021/acsnano.7b06239

    Article  CAS  PubMed  Google Scholar 

  92. Song HM, Moosa BA, Khashab NM (2012) Water-dispersable hybrid Au–Pd nanoparticles as catalysts in ethanol oxidation, aqueous phase Suzuki-Miyaura and Heck reactions. J Mater Chem 22:15953–15959. https://doi.org/10.1039/C2JM32702C

    Article  CAS  Google Scholar 

  93. Wang F, Li C, Chen H et al (2013) Plasmonic harvesting of light energy for Suzuki coupling reactions. J Am Chem Soc 135:5588–5601. https://doi.org/10.1021/ja310501y

    Article  CAS  PubMed  Google Scholar 

  94. Lai H, Xiao W, Wang Y et al (2021) Plasmon-induced carrier separation boosts high-selective photocatalytic CO2 reduction on dagger-axe-like Cu@Co core–shell bimetal. Chem Eng J 417:129295. https://doi.org/10.1016/j.cej.2021.129295

    Article  CAS  Google Scholar 

  95. Kuo C-S, Lyu L-M, Sia R-F et al (2020) Ultrathin octahedral cupt nanocages obtained by facet transformation from rhombic dodecahedral core-shell nanocrystals. ACS Sustain Chem Eng 8:10544–10553. https://doi.org/10.1021/acssuschemeng.0c03256

    Article  CAS  Google Scholar 

  96. Tsai C-H, Chen S-Y, Song J-M et al (2015) Effect of Ag templates on the formation of Au-Ag hollow/core-shell nanostructures. Nanosc Res Lett 10:438. https://doi.org/10.1186/s11671-015-1141-7

    Article  CAS  Google Scholar 

  97. Yang Y, Liu J, Fu Z-W, Qin D (2014) Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity. J Am Chem Soc 136:8153–8156. https://doi.org/10.1021/ja502472x

    Article  CAS  PubMed  Google Scholar 

  98. Mendoza C, Désert A, Chateau D et al (2020) Au nanobipyramids@mSiO2 core–shell nanoparticles for plasmon-enhanced singlet oxygen photooxygenations in segmented flow microreactors. Nanoscale Adv 2:5280–5287. https://doi.org/10.1039/D0NA00533A

    Article  CAS  Google Scholar 

  99. Mostafa AM, Mwafy EA, Awwad NS, Ibrahium HA (2021) Au@Ag core/shell nanoparticles prepared by laser-assisted method for optical limiting applications. J Mater Sci Mater Electron 32:14728–14739. https://doi.org/10.1007/s10854-021-06028-9

    Article  CAS  Google Scholar 

  100. Cha SK, Mun JH, Chang T et al (2015) Au–Ag core-shell nanoparticle array by block copolymer lithography for synergistic broadband plasmonic properties. ACS Nano 9:5536–5543. https://doi.org/10.1021/acsnano.5b01641

    Article  CAS  PubMed  Google Scholar 

  101. Forcherio GT, Baker DR, Boltersdorf J et al (2018) Targeted deposition of platinum onto gold nanorods by plasmonic hot electrons. J Phys Chem C 122:28901–28909. https://doi.org/10.1021/acs.jpcc.8b07868

    Article  CAS  Google Scholar 

  102. van der Hoeven JES, Deng T-S, Albrecht W et al (2021) Structural control over bimetallic core-shell nanorods for surface-enhanced raman spectroscopy. ACS Omega 6:7034–7046. https://doi.org/10.1021/acsomega.0c06321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Spitaleri L, Nicotra G, Zimbone M et al (2019) Fast and efficient sun light photocatalytic activity of Au_ZnO core-shell nanoparticles prepared by a one-pot synthesis. ACS Omega 4:15061–15066. https://doi.org/10.1021/acsomega.9b01850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Huang J, He Y, Wang L et al (2017) Bifunctional Au@TiO2 core–shell nanoparticle films for clean water generation by photocatalysis and solar evaporation. Energy Convers Manag 132:452–459. https://doi.org/10.1016/j.enconman.2016.11.053

    Article  CAS  Google Scholar 

  105. Hartman T, Weckhuysen BM (2018) Thermally stable TiO2- and SiO2-shell-isolated au nanoparticles for in situ plasmon-enhanced raman spectroscopy of hydrogenation catalysts. Chem A Eur J 24:3733–3741. https://doi.org/10.1002/chem.201704370

    Article  CAS  Google Scholar 

  106. Kamarudheen R, Kumari G, Baldi A (2020) Plasmon-driven synthesis of individual metal@semiconductor core@shell nanoparticles. Nat Commun 11:3957. https://doi.org/10.1038/s41467-020-17789-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Eom H, Jung J-Y, Shin Y et al (2014) Strong localized surface plasmon resonance effects of Ag/TiO2 core–shell nanowire arrays in UV and visible light for photocatalytic activity. Nanoscale 6:226–234. https://doi.org/10.1039/C3NR04388F

    Article  CAS  PubMed  Google Scholar 

  108. Seong S, Park I-S, Jung YC et al (2019) Synthesis of Ag-ZnO core-shell nanoparticles with enhanced photocatalytic activity through atomic layer deposition. Mater Des 177:107831. https://doi.org/10.1016/j.matdes.2019.107831

    Article  CAS  Google Scholar 

  109. Liz-Marzán LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold−silica core−shell particles. Langmuir 12:4329–4335. https://doi.org/10.1021/la9601871

    Article  Google Scholar 

  110. Huang MH, Rej S, Chiu C-Y (2015) Facet-dependent optical properties revealed through investigation of polyhedral Au–Cu2O and bimetallic core-shell nanocrystals. Small 11:2716–2726. https://doi.org/10.1002/smll.201403542

    Article  CAS  PubMed  Google Scholar 

  111. Knight MW, King NS, Liu L et al (2014) Aluminum for plasmonics. ACS Nano 8:834–840. https://doi.org/10.1021/nn405495q

    Article  CAS  PubMed  Google Scholar 

  112. Ma X, Zhao K, Tang H et al (2014) New insight into the role of gold nanoparticles in Au@CdS core-shell nanostructures for hydrogen evolution. Small 10:4664–4670. https://doi.org/10.1002/smll.201401494

    Article  CAS  PubMed  Google Scholar 

  113. Ma L, Chen Y-L, Yang D-J et al (2020) Multi-interfacial plasmon coupling in multigap (Au/AgAu)@CdS core–shell hybrids for efficient photocatalytic hydrogen generation. Nanoscale 12:4383–4392. https://doi.org/10.1039/C9NR09696E

    Article  CAS  PubMed  Google Scholar 

  114. Lee C, Shin K, Lee YJ et al (2018) Effects of shell thickness on Ag-Cu2O core-shell nanoparticles with bumpy structures for enhancing photocatalytic activity and stability. Catal Today 303:313–319. https://doi.org/10.1016/j.cattod.2017.08.016

    Article  CAS  Google Scholar 

  115. Bai X, Zong R, Li C et al (2014) Enhancement of visible photocatalytic activity via Ag@C3N4 core–shell plasmonic composite. Appl Catal B Environ 147:82–91. https://doi.org/10.1016/j.apcatb.2013.08.007

    Article  CAS  Google Scholar 

  116. Ning X, Lu G (2020) Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting. Nanoscale 12:1213–1223. https://doi.org/10.1039/C9NR09183A

    Article  CAS  PubMed  Google Scholar 

  117. Monga A, Bathla A, Pal B (2017) A Cu-Au bimetallic co-catalysis for the improved photocatalytic activity of TiO2 under visible light radiation. Sol Energy 155:1403–1410. https://doi.org/10.1016/j.solener.2017.07.084

    Article  CAS  Google Scholar 

  118. Li A, Zhu W, Li C et al (2019) Rational design of yolk–shell nanostructures for photocatalysis. Chem Soc Rev 48:1874–1907. https://doi.org/10.1039/C8CS00711J

    Article  CAS  PubMed  Google Scholar 

  119. Sun H, He Q, Zeng S et al (2017) Controllable growth of Au@TiO2 yolk–shell nanoparticles and their geometry parameter effects on photocatalytic activity. New J Chem 41:7244–7252. https://doi.org/10.1039/C7NJ01491K

    Article  CAS  Google Scholar 

  120. Wang Y, Yang C, Chen A et al (2019) Influence of yolk-shell Au@TiO2 structure induced photocatalytic activity towards gaseous pollutant degradation under visible light. Appl Catal B Environ 251:57–65. https://doi.org/10.1016/j.apcatb.2019.03.056

    Article  CAS  Google Scholar 

  121. Yang H, Li M, Li S et al (2020) A critical structured TiO2 with enhanced photocatalytic activity during the formation of yolk-shell structured TiO2. J Mater Sci Mater Electron 31:2–9. https://doi.org/10.1007/s10854-018-9986-z

    Article  CAS  Google Scholar 

  122. Zhao B, Guo X, Zhao W et al (2017) Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res 10:331–343. https://doi.org/10.1007/s12274-016-1295-3

    Article  CAS  Google Scholar 

  123. Li A, Zhang P, Chang X et al (2015) Gold nanorod@TiO2 yolk-shell nanostructures for visible-light-driven photocatalytic oxidation of benzyl alcohol. Small 11:1892–1899. https://doi.org/10.1002/smll.201403058

    Article  CAS  PubMed  Google Scholar 

  124. Wang W, Efrima S, Regev O (1998) Directing oleate stabilized nanosized silver colloids into organic phases. Langmuir 14:602–610. https://doi.org/10.1021/la9710177

    Article  CAS  Google Scholar 

  125. Tzhayik O, Sawant P, Efrima S et al (2002) Xanthate capping of silver, copper, and gold colloids. Langmuir 18:3364–3369. https://doi.org/10.1021/la015653n

    Article  CAS  Google Scholar 

  126. Heinz H, Pramanik C, Heinz O et al (2017) Nanoparticle decoration with surfactants: molecular interactions, assembly, and applications. Surf Sci Rep 72:1–58. https://doi.org/10.1016/j.surfrep.2017.02.001

    Article  CAS  Google Scholar 

  127. Turkevich J, Stevenson PC, Hillier J (1951) a Study of the nucleation and growth processes I N the synthesis of. Discuss Faraday Soc. https://doi.org/10.1039/DF9511100055

    Article  Google Scholar 

  128. Verbruggen SW, Keulemans M, Filippousi M et al (2014) Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity. Appl Catal B Environ 156–157:116–121. https://doi.org/10.1016/j.apcatb.2014.03.027

    Article  CAS  Google Scholar 

  129. Cao M, Liu Q, Chen M et al (2017) Dispersing hydrophilic nanoparticles in nonaqueous solvents with superior long-term stability. RSC Adv 7:25535–25541. https://doi.org/10.1039/C7RA03472E

    Article  CAS  Google Scholar 

  130. Xing S, Tan LH, Yang M et al (2009) Highly controlled core/shell structures: tunable conductive polymer shells on gold nanoparticles and nanochains. J Mater Chem 19:3286–3291. https://doi.org/10.1039/B900993K

    Article  CAS  Google Scholar 

  131. Chen J-Y, Wu H-C, Chiu Y-C, Chen W-C (2014) Plasmon-enhanced polymer photovoltaic device performance using different patterned Ag/PVP electrospun nanofibers. Adv Energy Mater 4:1301665. https://doi.org/10.1002/aenm.201301665

    Article  CAS  Google Scholar 

  132. Yu S, Wilson AJ, Heo J, Jain PK (2018) Plasmonic control of multi-electron transfer and C-C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett 18:2189–2194. https://doi.org/10.1021/acs.nanolett.7b05410

    Article  CAS  PubMed  Google Scholar 

  133. Kvítek L, Panáček A, Soukupová J et al (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–5834. https://doi.org/10.1021/jp711616v

    Article  CAS  Google Scholar 

  134. Lisunova M, Mahmoud M, Holland N et al (2012) The unusual fluorescence intensity enhancement of poly(p-phenyleneethynylene) polymer separated from the silver nanocube surface by H-bonded LbL shells. J Mater Chem 22:16745–16753. https://doi.org/10.1039/C2JM32450D

    Article  CAS  Google Scholar 

  135. Schneider G, Decher G (2004) From functional core/shell nanoparticles prepared via layer-by-layer deposition to empty nanospheres. Nano Lett 4:1833–1839. https://doi.org/10.1021/nl0490826

    Article  CAS  Google Scholar 

  136. Schneider G, Decher G (2008) Functional core/shell nanoparticles via layer-by-layer assembly. investigation of the experimental parameters for controlling particle aggregation and for enhancing dispersion stability. Langmuir 24:1778–1789. https://doi.org/10.1021/la7021837

    Article  CAS  PubMed  Google Scholar 

  137. Claes N, Asapu R, Blommaerts N et al (2018) Characterization of silver-polymer core–shell nanoparticles using electron microscopy. Nanoscale 10:9186–9191. https://doi.org/10.1039/C7NR09517A

    Article  CAS  PubMed  Google Scholar 

  138. Yu X, Lei DY, Amin F et al (2013) Distance control in-between plasmonic nanoparticles via biological and polymeric spacers. Nano Today 8:480–493. https://doi.org/10.1016/j.nantod.2013.09.001

    Article  CAS  Google Scholar 

  139. Dingenen F, Blommaerts N, Van Hal M et al (2021) Layer-by-layer-stabilized plasmonic gold-silver nanoparticles on TiO2: towards stable solar active photocatalysts. Nanomater 11:25

    Article  Google Scholar 

  140. Liang L, Lam SH, Ma L et al (2020) (Gold nanorod core)/(poly(3,4-ethylene-dioxythiophene) shell) nanostructures and their monolayer arrays for plasmonic switching. Nanoscale 12:20684–20692. https://doi.org/10.1039/D0NR05502F

    Article  CAS  PubMed  Google Scholar 

  141. Yang K, Li Y, Huang K et al (2014) Promoted effect of PANI on the preferential oxidation of CO in the presence of H2 over Au/ TiO2 under visible light irradiation. Int J Hydrogen Energy 39:18312–18325. https://doi.org/10.1016/j.ijhydene.2014.09.053

    Article  CAS  Google Scholar 

  142. Jeon J-W, Ledin PA, Geldmeier JA et al (2016) Electrically controlled plasmonic behavior of gold nanocube@polyaniline nanostructures: transparent plasmonic aggregates. Chem Mater 28:2868–2881. https://doi.org/10.1021/acs.chemmater.6b00882

    Article  CAS  Google Scholar 

  143. Wang X, Shen Y, Xie A, Chen S (2013) One-step synthesis of Ag@PANI nanocomposites and their application to detection of mercury. Mater Chem Phys 140:487–492. https://doi.org/10.1016/j.matchemphys.2013.03.058

    Article  CAS  Google Scholar 

  144. Jiang N, Zhuo X, Wang J (2018) Active plasmonics: principles, structures, and applications. Chem Rev 118:3054–3099. https://doi.org/10.1021/acs.chemrev.7b00252

    Article  CAS  PubMed  Google Scholar 

  145. Lu W, Jiang N, Wang J (2017) Active electrochemical plasmonic switching on polyaniline-coated gold nanocrystals. Adv Mater 29:1604862. https://doi.org/10.1002/adma.201604862

    Article  CAS  Google Scholar 

  146. Magnozzi M, Brasse Y, König TAF et al (2020) Plasmonics of Au/polymer core/shell nanocomposites for thermoresponsive hybrid metasurfaces. ACS Appl Nano Mater 3:1674–1682. https://doi.org/10.1021/acsanm.9b02403

    Article  CAS  Google Scholar 

  147. Pastoriza-Santos I, Kinnear C, Pérez-Juste J et al (2018) Plasmonic polymer nanocomposites. Nat Rev Mater 3:375–391. https://doi.org/10.1038/s41578-018-0050-7

    Article  Google Scholar 

  148. Seh ZW, Liu S, Low M et al (2012) Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv Mater 24:2310–2314. https://doi.org/10.1002/adma.201104241

    Article  CAS  PubMed  Google Scholar 

  149. Tong F, Lou Z, Liang X et al (2020) Plasmon-induced dehydrogenation of formic acid on Pd-dotted Ag@Au hexagonal nanoplates and single-particle study. Appl Catal B Environ 277:119226. https://doi.org/10.1016/j.apcatb.2020.119226

    Article  CAS  Google Scholar 

  150. Liu L, Dao TD, Kodiyath R et al (2014) Plasmonic janus-composite photocatalyst comprising Au and C-TiO2 for enhanced aerobic oxidation over a broad visible-light range. Adv Funct Mater 24:7754–7762. https://doi.org/10.1002/adfm.201402088

    Article  CAS  Google Scholar 

  151. Wen L, Xu R, Cui C et al (2018) Template-guided programmable janus heteronanostructure arrays for efficient plasmonic photocatalysis. Nano Lett 18:4914–4921. https://doi.org/10.1021/acs.nanolett.8b01675

    Article  CAS  PubMed  Google Scholar 

  152. Robatjazi H, Lou M, Clark BD et al (2020) Site-selective nanoreactor deposition on photocatalytic Al nanocubes. Nano Lett 20:4550–4557. https://doi.org/10.1021/acs.nanolett.0c01405

    Article  CAS  PubMed  Google Scholar 

  153. Zhang H, Lam SH, Guo Y et al (2021) Selective deposition of catalytic metals on plasmonic Au nanocups for room-light-active photooxidation of o-phenylenediamine. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.1c03806

    Article  PubMed Central  PubMed  Google Scholar 

  154. Albrecht W, Bladt E, Vanrompay H et al (2019) Thermal stability of gold/palladium octopods studied in situ in 3D: understanding design rules for thermally stable metal nanoparticles. ACS Nano 13:6522–6530. https://doi.org/10.1021/acsnano.9b00108

    Article  CAS  PubMed  Google Scholar 

  155. Ben-Shahar Y, Banin U (2016) Hybrid semiconductor-metal nanorods as photocatalysts. Top Curr Chem 374:54. https://doi.org/10.1007/s41061-016-0052-0

    Article  Google Scholar 

  156. Lee SW, Hong JW, Lee H et al (2018) The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu2O/hexoctahedral Au inverse catalyst. Nanoscale 10:10835–10843. https://doi.org/10.1039/C8NR00555A

    Article  CAS  PubMed  Google Scholar 

  157. Liu L, Yang H, Ren X et al (2015) Au–ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates. Nanoscale 7:5147–5151. https://doi.org/10.1039/C5NR00491H

    Article  CAS  PubMed  Google Scholar 

  158. Daware K, Kasture M, Kalubarme R et al (2019) Detection of toxic metal ions Pb2+ in water using SiO2@Au core-shell nanostructures: a simple technique for water quality monitoring. Chem Phys Lett 732:136635. https://doi.org/10.1016/j.cplett.2019.136635

    Article  CAS  Google Scholar 

  159. Reguera J, Flora T, Winckelmans N et al (2020) Self-assembly of Janus Au:Fe3O4 branched nanoparticles. From organized clusters to stimuli-responsive nanogel suprastructures. Nanosc Adv 2:2525–2530. https://doi.org/10.1039/D0NA00102C

    Article  CAS  Google Scholar 

  160. Yang L, Yan Z, Yang L et al (2020) Photothermal conversion of SiO2@Au nanoparticles mediated by surface morphology of gold cluster layer. RSC Adv 10:33119–33128. https://doi.org/10.1039/D0RA06278B

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Li W, Guo Y, Zhang P (2010) General strategy to prepare TiO2-core gold-shell nanoparticles as SERS-Tags. J Phys Chem C 114:7263–7268. https://doi.org/10.1021/jp908160m

    Article  CAS  Google Scholar 

  162. Elmoula MA, Panaitescu E, Phan M et al (2009) Controlled attachment of gold nanoparticles on ordered titania nanotube arrays. J Mater Chem 19:4483–4487. https://doi.org/10.1039/B903197A

    Article  CAS  Google Scholar 

  163. Gurbatov SO, Modin E, Puzikov V et al (2021) Black Au-decorated TiO2 produced via laser ablation in liquid. ACS Appl Mater Interfaces 13:6522–6531. https://doi.org/10.1021/acsami.0c20463

    Article  CAS  PubMed  Google Scholar 

  164. Tang KY, Chen JX, Legaspi EDR et al (2021) Gold-decorated TiO2 nanofibrous hybrid for improved solar-driven photocatalytic pollutant degradation. Chemosphere 265:129114. https://doi.org/10.1016/j.chemosphere.2020.129114

    Article  CAS  PubMed  Google Scholar 

  165. Liu T, Li Y (2016) Plasmonic solar desalination. Nat Photon 10:361–362. https://doi.org/10.1038/nphoton.2016.97

    Article  CAS  Google Scholar 

  166. Dhiman M, Maity A, Das A et al (2019) Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO2 to fuel conversion. Chem Sci 10:6594–6603. https://doi.org/10.1039/C9SC02369K

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Efremova MV, Nalench YA, Myrovali E et al (2018) Size-selected Fe3O4-Au hybrid nanoparticles for improved magnetism-based theranostics. Beilstein J Nanotechnol 9:2684–2699. https://doi.org/10.3762/bjnano.9.251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Zhou L, Zhang H, Bao H et al (2018) Decoration of Au nanoparticles on MoS2 nanospheres: from janus to core/shell structure. J Phys Chem C 122:8628–8636. https://doi.org/10.1021/acs.jpcc.8b01216

    Article  CAS  Google Scholar 

  169. Chen P, Hu J, Yin M et al (2021) MoS2 nanoflowers decorated with Au nanoparticles for visible-light-enhanced gas sensing. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.1c00847

    Article  PubMed Central  PubMed  Google Scholar 

  170. Ponnuvelu DV, Dhakshinamoorthy J, Prasad AK et al (2020) Geometrically controlled Au-decorated ZnO heterojunction nanostructures for NO2 detection. ACS Appl Nano Mater 3:5898–5909. https://doi.org/10.1021/acsanm.0c01053

    Article  CAS  Google Scholar 

  171. Kim J-H, Mirzaei A, Kim HW, Kim SS (2019) Realization of Au-decorated WS2 nanosheets as low power-consumption and selective gas sensors. Sens Actuators B Chem 296:126659. https://doi.org/10.1016/j.snb.2019.126659

    Article  CAS  Google Scholar 

  172. Dunklin JR, Lafargue P, Higgins TM et al (2018) Monolayer-enriched production of Au-decorated WS2 nanosheets via defect engineering. MRS Adv 3:2435–2440. https://doi.org/10.1557/adv.2018.350

    Article  CAS  Google Scholar 

  173. Ahmad MZ, Sadek AZ, Yaacob MH et al (2013) Optical characterisation of nanostructured Au/WO3 thin films for sensing hydrogen at low concentrations. Sens Actuators B Chem 179:125–130. https://doi.org/10.1016/j.snb.2012.09.102

    Article  CAS  Google Scholar 

  174. KarthickRaj AG, Murugan C, Pandikumar A (2021) Efficient photoelectrochemical reduction of carbon dioxide into alcohols assisted by photoanode driven water oxidation with gold nanoparticles decorated titania nanotubes. J CO2 Util 52:101684. https://doi.org/10.1016/j.jcou.2021.101684

    Article  CAS  Google Scholar 

  175. Gao Z, Ye H, Tang D et al (2017) Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett 17:5572–5579. https://doi.org/10.1021/acs.nanolett.7b02385

    Article  CAS  PubMed  Google Scholar 

  176. Noel K, Wang X (2019) Pt-decorated Au nanoparticles: highly active catalyst for formic acid oxidation. ECS Trans 16:639–645. https://doi.org/10.1149/1.2981899

    Article  Google Scholar 

  177. Zhao Z, Heck KN, Limpornpipat P et al (2019) Hydrogen-generating behavior of Pd-decorated gold nanoparticles via formic acid decomposition. Catal Today 330:24–31. https://doi.org/10.1016/j.cattod.2018.06.044

    Article  CAS  Google Scholar 

  178. Kang Y, Ye X, Chen J et al (2013) Engineering catalytic contacts and thermal stability: gold/iron oxide binary nanocrystal superlattices for CO oxidation. J Am Chem Soc 135:1499–1505. https://doi.org/10.1021/ja310427u

    Article  CAS  PubMed  Google Scholar 

  179. Shibuta M, Yamamoto K, Ohta T et al (2021) Confined hot electron relaxation at the molecular heterointerface of the size-selected plasmonic noble metal nanocluster and layered C60. ACS Nano 15:1199–1209. https://doi.org/10.1021/acsnano.0c08248

    Article  CAS  PubMed  Google Scholar 

  180. Liao TW, Verbruggen SW, Claes N et al (2018) TiO2 films modified with au nanoclusters as self-cleaning surfaces under visible light. Nanomaterials 8:1–9. https://doi.org/10.3390/nano8010030

    Article  CAS  Google Scholar 

  181. Attia Y, Samer M (2017) Metal clusters: new era of hydrogen production. Renew Sustain Energy Rev 79:878–892. https://doi.org/10.1016/j.rser.2017.05.113

    Article  CAS  Google Scholar 

  182. Zheng J, Zhang C, Dickson RM (2004) Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 93:77402. https://doi.org/10.1103/PhysRevLett.93.077402

    Article  CAS  Google Scholar 

  183. Fitzgerald JM, Narang P, Craster RV et al (2016) Quantum plasmonics. Proc IEEE 104:2307–2322

    Article  CAS  Google Scholar 

  184. Bozhevolnyi SI, Khurgin JB (2017) The case for quantum plasmonics. Nat Photon 11:398–400. https://doi.org/10.1038/nphoton.2017.103

    Article  CAS  Google Scholar 

  185. Van Dao D, Cipriano LA, Di Liberto G et al (2021) Plasmonic Au nanoclusters dispersed in nitrogen-doped graphene as a robust photocatalyst for light-to-hydrogen conversion. J Mater Chem A 9:22810–22819. https://doi.org/10.1039/D1TA05445G

    Article  Google Scholar 

  186. Wieghold S, Nienhaus L, Knoller FL et al (2017) Plasmonic support-mediated activation of 1 nm platinum clusters for catalysis. Phys Chem Chem Phys 19:30570–30577. https://doi.org/10.1039/C7CP04882C

    Article  CAS  PubMed  Google Scholar 

  187. Joo SH, Park JY, Renzas JR et al (2010) Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation. Nano Lett 10:2709–2713. https://doi.org/10.1021/nl101700j

    Article  CAS  PubMed  Google Scholar 

  188. Rong H, Ji S, Zhang J et al (2020) Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat Commun 11:5884. https://doi.org/10.1038/s41467-020-19571-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  189. Palmer RE, Cai R, Vernieres J (2018) Synthesis without solvents: the cluster (nanoparticle) beam route to catalysts and sensors. Acc Chem Res 51:2296–2304. https://doi.org/10.1021/acs.accounts.8b00287

    Article  CAS  PubMed  Google Scholar 

  190. Zhang J, Li Z, Zheng K, Li G (2018) Synthesis and characterization of size-controlled atomically precise gold clusters. Phys Sci Rev. https://doi.org/10.1515/psr-2017-0083

    Article  Google Scholar 

  191. Li J, Ye W, Chen C (2019) Chapter-5 Removal of toxic/radioactive metal ions by metal-organic framework-based materials. In: Chen CBTIS (ed) Emerging natural and tailored nanomaterials for radioactive waste treatment and environmental remediation. Elsevier, New York, pp 217–279

    Google Scholar 

  192. Hamoud HI, Douma F, Lafjah M et al (2022) Size-dependent photocatalytic activity of silver nanoparticles embedded in ZX-Bi zeolite supports. ACS Appl Nano Mater 5:3866–3877. https://doi.org/10.1021/acsanm.1c04484

    Article  CAS  Google Scholar 

  193. Liao Y, Li J, Thomas A (2017) General route to high surface area covalent organic frameworks and their metal oxide composites as magnetically recoverable adsorbents and for energy storage. ACS Macro Lett 6:1444–1450. https://doi.org/10.1021/acsmacrolett.7b00849

    Article  CAS  PubMed  Google Scholar 

  194. Blommaerts N, Hoeven N, Arenas Esteban D et al (2021) Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites. Chem Eng J 410:128234. https://doi.org/10.1016/j.cej.2020.128234

    Article  CAS  Google Scholar 

  195. El-Roz M, Telegeiev I, Mordvinova NE et al (2018) Uniform generation of sub-nanometer silver clusters in zeolite cages exhibiting high photocatalytic activity under visible light. ACS Appl Mater Interfaces 10:28702–28708. https://doi.org/10.1021/acsami.8b09634

    Article  CAS  PubMed  Google Scholar 

  196. Robatjazi H, Weinberg D, Swearer DF et al (2019) Metal-organic frameworks tailor the properties of aluminum nanocrystals. Sci Adv 5:eaav5340. https://doi.org/10.1126/sciadv.aav5340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  197. Shevchenko EV, Talapin DV, Kotov NA et al (2006) Structural diversity in binary nanoparticle superlattices. Nature 439:55–59. https://doi.org/10.1038/nature04414

    Article  CAS  PubMed  Google Scholar 

  198. Ye X, Chen J, Diroll BT, Murray CB (2013) Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy. Nano Lett 13:1291–1297. https://doi.org/10.1021/nl400052w

    Article  CAS  PubMed  Google Scholar 

  199. Swearer DF, Zhao H, Zhou L et al (2016) Heterometallic antenna−reactor complexes for photocatalysis. Proc Natl Acad Sci 113:8916–8920. https://doi.org/10.1073/pnas.1609769113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  200. Ciracì C, Hill RT, Mock JJ et al (2012) Probing the ultimate limits of plasmonic enhancement. Science (80–) 337:1072–1074. https://doi.org/10.1126/science.1224823

    Article  CAS  Google Scholar 

  201. Ma X-C, Dai Y, Yu L, Huang B-B (2016) Energy transfer in plasmonic photocatalytic composites. Light Sci Appl 5:e16017. https://doi.org/10.1038/lsa.2016.17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  202. Linsebigler AL, Lu GQ, Yates JT (1995) Photocatalysis on Tio2 surfaces—principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  203. Mubeen S, Lee J, Singh N et al (2013) An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol 8:247–251. https://doi.org/10.1038/nnano.2013.18

    Article  CAS  PubMed  Google Scholar 

  204. Brown LV, Zhao K, King N et al (2013) Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties. J Am Chem Soc 135:3688–3695. https://doi.org/10.1021/ja312694g

    Article  CAS  PubMed  Google Scholar 

  205. Chen X-J, Cabello G, Wu D-Y, Tian Z-Q (2014) Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures. J Photochem Photobiol C Photochem Rev 21:54–80. https://doi.org/10.1016/j.jphotochemrev.2014.10.003

    Article  CAS  Google Scholar 

  206. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. https://doi.org/10.1021/cr030063a

    Article  CAS  PubMed  Google Scholar 

  207. Hodak JH, Martini I, Hartland GV (1998) Spectroscopy and dynamics of nanometer-sized noble metal particles. J Phys Chem B 102:6958–6967. https://doi.org/10.1021/jp9809787

    Article  CAS  Google Scholar 

  208. Lehmann J, Merschdorf M, Pfeiffer W et al (2000) Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Phys Rev Lett 85:2921–2924. https://doi.org/10.1103/PhysRevLett.85.2921

    Article  CAS  PubMed  Google Scholar 

  209. Kale MJ, Avanesian T, Christopher P (2014) Direct photocatalysis by plasmonic nanostructures. ACS Catal 4:116–128. https://doi.org/10.1021/cs400993w

    Article  CAS  Google Scholar 

  210. Kim C, Suh BL, Yun H et al (2017) Surface plasmon aided ethanol dehydrogenation using Ag–Ni binary nanoparticles. ACS Catal 7:2294–2302. https://doi.org/10.1021/acscatal.7b00411

    Article  CAS  Google Scholar 

  211. Petek H (2012) Photoexcitation of adsorbates on metal surfaces: one-step or three-step. J Chem Phys 137:091704. https://doi.org/10.1063/1.4746801

    Article  CAS  PubMed  Google Scholar 

  212. Mukherjee S, Libisch F, Large N et al (2013) Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett 13:240–247. https://doi.org/10.1021/nl303940z

    Article  CAS  PubMed  Google Scholar 

  213. Boerigter C, Campana R, Morabito M, Linic S (2016) Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat Commun 7:10545. https://doi.org/10.1038/ncomms10545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  214. Zhao H, Zheng X, Feng X, Li Y (2018) CO 2 reduction by plasmonic au nanoparticle-decorated TiO 2 photocatalyst with an ultrathin Al2O3 interlayer. J Phys Chem C 122:18949–18956. https://doi.org/10.1021/acs.jpcc.8b04239

    Article  CAS  Google Scholar 

  215. Gomes Silva C, Juárez R, Marino T et al (2011) Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J Am Chem Soc 133:595–602. https://doi.org/10.1021/ja1086358

    Article  CAS  Google Scholar 

  216. Torimoto T, Horibe H, Kameyama T et al (2011) Plasmon-enhanced photocatalytic activity of cadmium sulfide nanoparticle immobilized on silica-coated gold particles. J Phys Chem Lett 2:2057–2062. https://doi.org/10.1021/jz2009049

    Article  CAS  Google Scholar 

  217. Tu W, Zhou Y, Li H et al (2015) Au@TiO 2 yolk–shell hollow spheres for plasmon-induced photocatalytic reduction of CO 2 to solar fuel via a local electromagnetic field. Nanoscale 7:14232–14236. https://doi.org/10.1039/C5NR02943K

    Article  CAS  PubMed  Google Scholar 

  218. Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. J Am Chem Soc 127:3928–3934. https://doi.org/10.1021/ja042925a

    Article  CAS  PubMed  Google Scholar 

  219. Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photon 8:95–103. https://doi.org/10.1038/nphoton.2013.238

    Article  CAS  Google Scholar 

  220. Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J Am Chem Soc 126:4943–4950

    Article  CAS  PubMed  Google Scholar 

  221. Li J, Cushing SK, Meng F et al (2015) Plasmon-induced resonance energy transfer for solar energy conversion. Nat Photon 9:601–607. https://doi.org/10.1038/nphoton.2015.142

    Article  CAS  Google Scholar 

  222. Ingram DB, Christopher P, Bauer JL, Linic S (2011) Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. Acs Catal 1:1441–1447

    Article  CAS  Google Scholar 

  223. Borah R, Verbruggen SW (2019) Coupled plasmon modes in 2D gold nanoparticle clusters and their effect on local temperature control. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.9b09048

    Article  Google Scholar 

  224. Yu S, Wilson AJ, Kumari G et al (2017) Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysts. ACS Energy Lett 2:2058–2070. https://doi.org/10.1021/acsenergylett.7b00640

    Article  CAS  Google Scholar 

  225. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  226. Baffou G, Quidant R, Girard C (2010) Thermoplasmonics modeling: a Green’s function approach. Phys Rev B 82:165424. https://doi.org/10.1103/PhysRevB.82.165424

    Article  CAS  Google Scholar 

  227. Baffou G, Berto P, Bermúdez Ureña E et al (2013) Photoinduced heating of nanoparticle arrays. ACS Nano 7:6478–6488. https://doi.org/10.1021/nn401924n

    Article  CAS  PubMed  Google Scholar 

  228. Ni G, Miljkovic N, Ghasemi H et al (2015) Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 17:290–301. https://doi.org/10.1016/j.nanoen.2015.08.021

    Article  CAS  Google Scholar 

  229. Priebe JB, Karnahl M, Junge H et al (2013) Water reduction with visible light: synergy between optical transitions and electron transfer in Au-TiO(2) catalysts visualized by in situ EPR spectroscopy. Angew Chem Int Ed Engl 52:11420–11424. https://doi.org/10.1002/anie.201306504

    Article  CAS  PubMed  Google Scholar 

  230. Caretti I, Keulemans M, Verbruggen SW et al (2015) Light-induced processes in plasmonic Gold/TiO2 photocatalysts studied by electron paramagnetic resonance. Top Catal 58:776–782. https://doi.org/10.1007/s11244-015-0419-4

    Article  CAS  Google Scholar 

  231. Awazu K, Fujimaki M, Rockstuhl C et al (2008) A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130:1676–1680

    Article  CAS  PubMed  Google Scholar 

  232. Sun S, Rasskazov IL, Carney PS et al (2020) Critical role of shell in enhanced fluorescence of metal-dielectric core–shell nanoparticles. J Phys Chem C 124:13365–13373. https://doi.org/10.1021/acs.jpcc.0c03415

    Article  CAS  Google Scholar 

  233. Asapu R, Ciocarlan R-G, Claes N et al (2017) Plasmonic near-field localization of silver core-shell nanoparticle assemblies via wet chemistry nanogap engineering. ACS Appl Mater Interfaces 9:41577–41585. https://doi.org/10.1021/acsami.7b13965

    Article  CAS  PubMed  Google Scholar 

  234. Dingenen F, Verbruggen SW (2021) Tapping hydrogen fuel from the ocean: a review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater. Renew Sustain Energy Rev 142:110866. https://doi.org/10.1016/j.rser.2021.110866

    Article  CAS  Google Scholar 

  235. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52:7372–7408. https://doi.org/10.1002/anie.201207199

    Article  CAS  Google Scholar 

  236. Yang J-L, He Y-L, Ren H et al (2021) Boosting photocatalytic hydrogen evolution reaction using dual plasmonic antennas. ACS Catal 11:5047–5053. https://doi.org/10.1021/acscatal.1c00795

    Article  CAS  Google Scholar 

  237. Tran PD, Wong LH, Barber J, Loo JSC (2012) Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ Sci 5:5902–5918. https://doi.org/10.1039/C2EE02849B

    Article  CAS  Google Scholar 

  238. Koppenol WH, Stanbury DM, Bounds PL (2010) Electrode potentials of partially reduced oxygen species, from dioxygen to water. Free Radic Biol Med 49:317–322. https://doi.org/10.1016/j.freeradbiomed.2010.04.011

    Article  CAS  PubMed  Google Scholar 

  239. Ha E, Lee LYS, Man H-W et al (2015) Morphology-controlled synthesis of Au/Cu2FeSnS4 core-shell nanostructures for plasmon-enhanced photocatalytic hydrogen generation. ACS Appl Mater Interfaces 7:9072–9077. https://doi.org/10.1021/acsami.5b00715

    Article  CAS  PubMed  Google Scholar 

  240. Bhunia K, Chandra M, Khilari S, Pradhan D (2019) Bimetallic PtAu alloy nanoparticles-integrated g-C3N4 hybrid as an efficient photocatalyst for water-to-hydrogen conversion. ACS Appl Mater Interfaces 11:478–488. https://doi.org/10.1021/acsami.8b12183

    Article  CAS  PubMed  Google Scholar 

  241. Bian H, Nguyen NT, Yoo J et al (2018) Forming a highly active, homogeneously Alloyed AuPt Co-catalyst decoration on TiO2 nanotubes directly during anodic growth. ACS Appl Mater Interfaces 10:18220–18226. https://doi.org/10.1021/acsami.8b03713

    Article  PubMed  Google Scholar 

  242. Rahul TK, Mohan M, Sandhyarani N (2018) Enhanced solar hydrogen evolution over in situ gold-platinum bimetallic nanoparticle-loaded Ti3+ self-doped titania photocatalysts. ACS Sustain Chem Eng 6:3049–3059. https://doi.org/10.1021/acssuschemeng.7b02898

    Article  CAS  Google Scholar 

  243. Gesesse GD, Wang C, Chang BK et al (2020) A soft-chemistry assisted strong metal–support interaction on a designed plasmonic core–shell photocatalyst for enhanced photocatalytic hydrogen production. Nanoscale 12:7011–7023. https://doi.org/10.1039/C9NR09891G

    Article  CAS  PubMed  Google Scholar 

  244. Ngaw CK, Xu Q, Tan TTY et al (2014) A strategy for in-situ synthesis of well-defined core–shell Au@TiO2 hollow spheres for enhanced photocatalytic hydrogen evolution. Chem Eng J 257:112–121. https://doi.org/10.1016/j.cej.2014.07.059

    Article  CAS  Google Scholar 

  245. Lou Z, Fujitsuka M, Majima T (2016) Pt–Au triangular nanoprisms with strong dipole plasmon resonance for hydrogen generation studied by single-particle spectroscopy. ACS Nano 10:6299–6305. https://doi.org/10.1021/acsnano.6b02494

    Article  CAS  PubMed  Google Scholar 

  246. Gao M, Connor PKN, Ho GW (2016) Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy Environ Sci 9:3151–3160. https://doi.org/10.1039/C6EE00971A

    Article  CAS  Google Scholar 

  247. Hung S-F, Yu Y-C, Suen N-T et al (2016) The synergistic effect of a well-defined Au@Pt core–shell nanostructure toward photocatalytic hydrogen generation: interface engineering to improve the Schottky barrier and hydrogen-evolved kinetics. Chem Commun 52:1567–1570. https://doi.org/10.1039/C5CC08547K

    Article  CAS  Google Scholar 

  248. Nasrallah H, Douma F, Hamoud HI, El-Roz M (2021). In: Nguyen V-H, Vo D-VN, Nanda SBT-NP (eds) Chapter 5—metal nanoparticles in photocatalysis: advances and challenges. Elsevier, New York, pp 119–143

    Google Scholar 

  249. Pandit S, Kunwar S, Pandey P, Lee J (2019) Improved LSPR properties of Ag–Pt and Pt nanoparticles: a systematic study on various configurations and compositions of NPs via the solid-state dewetting of Ag–Pt bilayers. Metals 9:25

    Article  Google Scholar 

  250. Sui M, Kunwar S, Pandey P, Lee J (2019) Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles. Sci Rep 9:16582. https://doi.org/10.1038/s41598-019-53292-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  251. Xiao J-D, Han L, Luo J et al (2018) Integration of plasmonic effects and schottky junctions into metal-organic framework composites: steering charge flow for enhanced visible-light photocatalysis. Angew Chem Int Ed 57:1103–1107. https://doi.org/10.1002/anie.201711725

    Article  CAS  Google Scholar 

  252. Liu Y, Sun Z, Hu YH (2021) Bimetallic cocatalysts for photocatalytic hydrogen production from water. Chem Eng J 409:128250. https://doi.org/10.1016/j.cej.2020.128250

    Article  CAS  Google Scholar 

  253. Ding J, Li X, Chen L et al (2018) Photocatalytic hydrogen production over plasmonic AuCu/CaIn2S4 composites with different AuCu atomic arrangements. Appl Catal B Environ 224:322–329. https://doi.org/10.1016/j.apcatb.2017.10.045

    Article  CAS  Google Scholar 

  254. Zhang P, Zeng G, Song T et al (2019) Design of plasmonic CuCo bimetal as a nonsemiconductor photocatalyst for synchronized hydrogen evolution and storage. Appl Catal B Environ 242:389–396. https://doi.org/10.1016/j.apcatb.2018.10.020

    Article  CAS  Google Scholar 

  255. Naya S, Kume T, Akashi R et al (2018) Red-light-driven water splitting by Au(Core)–CdS(Shell) half-cut nanoegg with heteroepitaxial junction. J Am Chem Soc 140:1251–1254. https://doi.org/10.1021/jacs.7b12972

    Article  CAS  PubMed  Google Scholar 

  256. Wu B, Liu D, Mubeen S et al (2016) Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J Am Chem Soc 138:1114–1117. https://doi.org/10.1021/jacs.5b11341

    Article  CAS  PubMed  Google Scholar 

  257. Zheng Z, Tachikawa T, Majima T (2014) Single-particle study of Pt-modified au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J Am Chem Soc 136:6870–6873. https://doi.org/10.1021/ja502704n

    Article  CAS  PubMed  Google Scholar 

  258. Han C, Wu L, Ge L et al (2015) AuPd bimetallic nanoparticles decorated graphitic carbon nitride for highly efficient reduction of water to H2 under visible light irradiation. Carbon N Y 92:31–40. https://doi.org/10.1016/j.carbon.2015.02.070

    Article  CAS  Google Scholar 

  259. Verma R, Belgamwar R, Polshettiwar V (2021) Plasmonic photocatalysis for CO2 conversion to chemicals and fuels. ACS Mater Lett 3:574–598. https://doi.org/10.1021/acsmaterialslett.1c00081

    Article  CAS  Google Scholar 

  260. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638. https://doi.org/10.1038/277637a0

    Article  CAS  Google Scholar 

  261. Yu S, Jain PK (2019) Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid. Nat Commun 10:2022. https://doi.org/10.1038/s41467-019-10084-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  262. Ziarati A, Badiei A, Luque R et al (2020) Visible light CO2 reduction to CH4 using hierarchical Yolk@shell TiO2–xHx modified with plasmonic Au–Pd nanoparticles. ACS Sustain Chem Eng 8:3689–3696. https://doi.org/10.1021/acssuschemeng.9b06751

    Article  CAS  Google Scholar 

  263. Wei Y, Jiao J, Zhao Z et al (2015) Fabrication of inverse opal TiO2-supported Au@CdS core–shell nanoparticles for efficient photocatalytic CO2 conversion. Appl Catal B Environ 179:422–432. https://doi.org/10.1016/j.apcatb.2015.05.041

    Article  CAS  Google Scholar 

  264. Choi KM, Kim D, Rungtaweevoranit B et al (2017) Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J Am Chem Soc 139:356–362. https://doi.org/10.1021/jacs.6b11027

    Article  CAS  PubMed  Google Scholar 

  265. Bera S, Lee JE, Rawal SB, Lee WI (2016) Size-dependent plasmonic effects of Au and Au@SiO2 nanoparticles in photocatalytic CO2 conversion reaction of Pt/TiO2. Appl Catal B Environ 199:55–63. https://doi.org/10.1016/j.apcatb.2016.06.025

    Article  CAS  Google Scholar 

  266. Stanley JNG, García-García I, Perfrement T et al (2019) Plasmonic effects on CO2 reduction over bimetallic Ni-Au catalysts. Chem Eng Sci 194:94–104. https://doi.org/10.1016/j.ces.2018.04.003

    Article  CAS  Google Scholar 

  267. Lang Q, Yang Y, Zhu Y et al (2017) High-index facet engineering of PtCu cocatalysts for superior photocatalytic reduction of CO2 to CH4. J Mater Chem A 5:6686–6694. https://doi.org/10.1039/C7TA00737J

    Article  CAS  Google Scholar 

  268. Neaţu Ş, Maciá-Agulló JA, Concepción P, Garcia H (2014) Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J Am Chem Soc 136:15969–15976. https://doi.org/10.1021/ja506433k

    Article  CAS  PubMed  Google Scholar 

  269. Han Y, Xu H, Su Y et al (2019) Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. J Catal 370:70–78. https://doi.org/10.1016/j.jcat.2018.12.005

    Article  CAS  Google Scholar 

  270. Robatjazi H, Zhao H, Swearer DF et al (2017) Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat Commun 8:27. https://doi.org/10.1038/s41467-017-00055-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  271. Liu H, Meng X, Dao TD et al (2015) Conversion of carbon dioxide by methane reforming under visible-light irradiation: surface-plasmon-mediated nonpolar molecule activation. Angew Chem 127:11707–11711. https://doi.org/10.1002/ange.201504933

    Article  Google Scholar 

  272. Liu H, Li M, Dao TD et al (2016) Design of PdAu alloy plasmonic nanoparticles for improved catalytic performance in CO2 reduction with visible light irradiation. Nano Energy 26:398–404. https://doi.org/10.1016/j.nanoen.2016.05.045

    Article  CAS  Google Scholar 

  273. Zhou L, Martirez JMP, Finzel J et al (2020) Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat Energy 5:61–70. https://doi.org/10.1038/s41560-019-0517-9

    Article  CAS  Google Scholar 

  274. Yan X, Ohno T, Nishijima K et al (2006) Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania. Chem Phys Lett 429:606–610. https://doi.org/10.1016/j.cplett.2006.08.081

    Article  CAS  Google Scholar 

  275. Misra M, Singh N, Gupta RK (2017) Enhanced visible-light-driven photocatalytic activity of Au@Ag core–shell bimetallic nanoparticles immobilized on electrospun TiO2 nanofibers for degradation of organic compounds. Catal Sci Technol 7:570–580. https://doi.org/10.1039/C6CY02085B

    Article  CAS  Google Scholar 

  276. Darabdhara G, Das MR (2019) Dual responsive magnetic Au@Ni nanostructures loaded reduced graphene oxide sheets for colorimetric detection and photocatalytic degradation of toxic phenolic compounds. J Hazard Mater 368:365–377. https://doi.org/10.1016/j.jhazmat.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  277. Su J, Zhang Y, Xu S et al (2014) Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions. Nanoscale 6:5181–5192. https://doi.org/10.1039/C4NR00534A

    Article  CAS  PubMed  Google Scholar 

  278. Tanaka A, Hashimoto K, Kominami H (2011) Gold and copper nanoparticles supported on cerium(IV) oxide—a photocatalyst mineralizing organic acids under red light irradiation. ChemCatChem 3:1619–1623. https://doi.org/10.1002/cctc.201100158

    Article  CAS  Google Scholar 

  279. Tanaka A, Fuku K, Nishi T et al (2013) Functionalization of Au/TiO2 plasmonic photocatalysts with Pd by formation of a core-shell structure for effective dechlorination of chlorobenzene under irradiation of visible light. J Phys Chem C 117:16983–16989. https://doi.org/10.1021/jp403855p

    Article  CAS  Google Scholar 

  280. Cybula A, Priebe JB, Pohl M-M et al (2014) The effect of calcination temperature on structure and photocatalytic properties of Au/Pd nanoparticles supported on TiO2. Appl Catal B Environ 152–153:202–211. https://doi.org/10.1016/j.apcatb.2014.01.042

    Article  CAS  Google Scholar 

  281. Yu H, Wang X, Sun H, Huo M (2010) Photocatalytic degradation of malathion in aqueous solution using an Au–Pd–TiO2 nanotube film. J Hazard Mater 184:753–758. https://doi.org/10.1016/j.jhazmat.2010.08.103

    Article  CAS  PubMed  Google Scholar 

  282. Zielińska-Jurek A, Kowalska E, Sobczak JW et al (2011) Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light. Appl Catal B Environ 101:504–514. https://doi.org/10.1016/j.apcatb.2010.10.022

    Article  CAS  Google Scholar 

  283. Jiang T, Jia C, Zhang L et al (2015) Gold and gold–palladium alloy nanoparticles on heterostructured TiO2 nanobelts as plasmonic photocatalysts for benzyl alcohol oxidation. Nanoscale 7:209–217. https://doi.org/10.1039/C4NR05905K

    Article  CAS  PubMed  Google Scholar 

  284. Zhang Y, Wang L, Kong X et al (2018) Novel Ag-Cu bimetallic alloy decorated near-infrared responsive three-dimensional rod-like architectures for efficient photocatalytic water purification. J Colloid Interface Sci 522:29–39. https://doi.org/10.1016/j.jcis.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  285. Patnaik S, Sahoo DP, Parida KM (2020) Bimetallic co-effect of Au-Pd alloyed nanoparticles on mesoporous silica modified g-C3N4 for single and simultaneous photocatalytic oxidation of phenol and reduction of hexavalent chromium. J Colloid Interface Sci 560:519–535. https://doi.org/10.1016/j.jcis.2019.09.041

    Article  CAS  PubMed  Google Scholar 

  286. Wen H, Long Y, Han W et al (2018) Preparation of a novel bimetallic AuCu-P25-rGO ternary nanocomposite with enhanced photocatalytic degradation performance. Appl Catal A Gen 549:237–244. https://doi.org/10.1016/j.apcata.2017.09.028

    Article  CAS  Google Scholar 

  287. Fu R, Li L, Li X et al (2021) Photogenerated carrier separation and localized surface plasmon resonance in SnS2@AuNPs Janus heterostructures for enhanced visible light catalysis. Mater Chem Phys 267:124702. https://doi.org/10.1016/j.matchemphys.2021.124702

    Article  CAS  Google Scholar 

  288. Naya S, Tada H (2020) Au–Ag alloy nanoparticle-incorporated AgBr plasmonic photocatalyst. Sci Rep 10:19972. https://doi.org/10.1038/s41598-020-77062-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  289. Sugano Y, Shiraishi Y, Tsukamoto D et al (2013) Supported Au–Cu bimetallic alloy nanoparticles: an aerobic oxidation catalyst with regenerable activity by visible-light irradiation. Angew Chem Int Ed 52:5295–5299. https://doi.org/10.1002/anie.201301669

    Article  CAS  Google Scholar 

  290. Huang S, Xu Y, Chen Z et al (2015) A core–shell structured magnetic Ag/AgBr@Fe2O3 composite with enhanced photocatalytic activity for organic pollutant degradation and antibacterium. RSC Adv 5:71035–71045. https://doi.org/10.1039/C5RA13403J

    Article  CAS  Google Scholar 

  291. Zhou N, Polavarapu L, Gao N et al (2013) TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation. Nanoscale 5:4236–4241. https://doi.org/10.1039/C3NR00517H

    Article  CAS  PubMed  Google Scholar 

  292. Li W, Li B, Meng M et al (2019) Bimetallic Au/Ag decorated TiO2 nanocomposite membrane for enhanced photocatalytic degradation of tetracycline and bactericidal efficiency. Appl Surf Sci 487:1008–1017. https://doi.org/10.1016/j.apsusc.2019.05.162

    Article  CAS  Google Scholar 

  293. Kaur M, Shinde SL, Ishii S et al (2020) Marimo-bead-supported core-shell nanocomposites of titanium nitride and chromium-doped titanium dioxide as a highly efficient water-floatable green photocatalyst. ACS Appl Mater Interfaces 12:31327–31339. https://doi.org/10.1021/acsami.0c03781

    Article  CAS  PubMed  Google Scholar 

  294. Bathla A, Younis SA, Pal B, Kim K-H (2021) Recent progress in bimetallic nanostructure impregnated metal-organic framework for photodegradation of organic pollutants. Appl Mater Today 24:101105. https://doi.org/10.1016/j.apmt.2021.101105

    Article  Google Scholar 

  295. Testa JJ, Grela MA, Litter MI (2004) Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: involvement of Cr(V) species. Environ Sci Technol 38:1589–1594. https://doi.org/10.1021/es0346532

    Article  CAS  PubMed  Google Scholar 

  296. Mohammadi P, Sheibani H (2019) Evaluation, of the bimetallic photocatalytic performance of Resin–Au–Pd nanocomposite for degradation of parathion pesticide under visible light. Polyhedron 170:132–137. https://doi.org/10.1016/j.poly.2019.05.030

    Article  CAS  Google Scholar 

  297. Chen Q, Xin Y, Zhu X (2015) Au-Pd nanoparticles-decorated TiO2 nanobelts for photocatalytic degradation of antibiotic levofloxacin in aqueous solution. Electrochim Acta 186:34–42. https://doi.org/10.1016/j.electacta.2015.10.095

    Article  CAS  Google Scholar 

  298. Zhang K, Liu Y, Deng J et al (2018) Co–Pd/BiVO4: high-performance photocatalysts for the degradation of phenol under visible light irradiation. Appl Catal B Environ 224:350–359. https://doi.org/10.1016/j.apcatb.2017.10.044

    Article  CAS  Google Scholar 

  299. Darabdhara G, Boruah PK, Borthakur P et al (2016) Reduced graphene oxide nanosheets decorated with Au–Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water. Nanoscale 8:8276–8287. https://doi.org/10.1039/C6NR00231E

    Article  CAS  PubMed  Google Scholar 

  300. Zeng Q, Xie X, Wang X et al (2018) Enhanced photocatalytic performance of Ag@TiO2 for the gaseous acetaldehyde photodegradation under fluorescent lamp. Chem Eng J 341:83–92. https://doi.org/10.1016/j.cej.2018.02.015

    Article  CAS  Google Scholar 

  301. Wang Z, Yan S, Sun Y et al (2017) Bi metal sphere/graphene oxide nanohybrids with enhanced direct plasmonic photocatalysis. Appl Catal B Environ 214:148–157. https://doi.org/10.1016/j.apcatb.2017.05.040

    Article  CAS  Google Scholar 

  302. Wang W, Zhang D, Sun P et al (2021) High efficiency photocatalytic degradation of indoor formaldehyde by Ag/g-C3N4/TiO2 composite catalyst with ZSM-5 as the carrier. Microporous Mesoporous Mater 322:111134. https://doi.org/10.1016/j.micromeso.2021.111134

    Article  CAS  Google Scholar 

  303. Haldorai Y, Kim B-K, Jo Y-L, Shim J-J (2014) Ag@graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: a facile green synthetic approach. Mater Chem Phys 143:1452–1461. https://doi.org/10.1016/j.matchemphys.2013.11.065

    Article  CAS  Google Scholar 

  304. Wang D, Li Z, Zhou J et al (2017) Simultaneous detection and removal of formaldehyde at room temperature: Janus Au@ZnO@ZIF-8 nanoparticles. Nano-Micro Lett 10:4. https://doi.org/10.1007/s40820-017-0158-0

    Article  CAS  Google Scholar 

  305. Tripathy SK, Mishra A, Jha SK et al (2013) Synthesis of thermally stable monodispersed Au@SnO2 core–shell structure nanoparticles by a sonochemical technique for detection and degradation of acetaldehyde. Anal Methods 5:1456–1462. https://doi.org/10.1039/C3AY26549H

    Article  CAS  Google Scholar 

  306. Gao J, Si Z, Xu Y et al (2019) Pd–Ag@CeO2 catalyst of core-shell structure for low temperature oxidation of toluene under visible light irradiation. J Phys Chem C 123:1761–1769. https://doi.org/10.1021/acs.jpcc.8b09060

    Article  CAS  Google Scholar 

  307. Sun S, Wang W, Zhang L et al (2009) Ag@C core/shell nanocomposite as a highly efficient plasmonic photocatalyst. Catal Commun 11:290–293. https://doi.org/10.1016/j.catcom.2009.09.026

    Article  CAS  Google Scholar 

  308. Wysocka I, Markowska-Szczupak A, Szweda P et al (2019) Gas-phase removal of indoor volatile organic compounds and airborne microorganisms over mono- and bimetal-modified (Pt, Cu, Ag) titanium(IV) oxide nanocomposites. Indoor Air 29:979–992. https://doi.org/10.1111/ina.12595

    Article  CAS  PubMed  Google Scholar 

  309. Wu Q, Ye J, Qiao W et al (2021) Inhibit the formation of toxic methylphenolic by-products in photo-decomposition of formaldehyde–toluene/xylene mixtures by Pd cocatalyst on TiO2. Appl Catal B Environ 291:120118. https://doi.org/10.1016/j.apcatb.2021.120118

    Article  CAS  Google Scholar 

  310. Yang K, Huang K, He Z et al (2014) Promoted effect of PANI as electron transfer promoter on CO oxidation over Au/TiO2. Appl Catal B Environ 158–159:250–257. https://doi.org/10.1016/j.apcatb.2014.04.028

    Article  CAS  Google Scholar 

  311. Liu J, Lucci FR, Yang M et al (2016) Tackling CO poisoning with single-atom alloy catalysts. J Am Chem Soc 138:6396–6399. https://doi.org/10.1021/jacs.6b03339

    Article  CAS  PubMed  Google Scholar 

  312. Novello P, Varanasi CV, Liu J (2019) Effects of light on catalytic activities and lifetime of plasmonic Au catalysts in the CO oxidation reaction. ACS Catal 9:578–586. https://doi.org/10.1021/acscatal.8b03166

    Article  CAS  Google Scholar 

  313. Li K, Hogan NJ, Kale MJ et al (2017) Balancing near-field enhancement, absorption, and scattering for effective antenna-reactor plasmonic photocatalysis. Nano Lett 17:3710–3717. https://doi.org/10.1021/acs.nanolett.7b00992

    Article  CAS  PubMed  Google Scholar 

  314. Jupnik H (1941) Photoelectric properties of bismuth. Phys Rev 60:884–889. https://doi.org/10.1103/PhysRev.60.884

    Article  CAS  Google Scholar 

  315. Chen M, Li Y, Wang Z et al (2017) Controllable synthesis of core-shell Bi@amorphous Bi2O3 nanospheres with tunable optical and photocatalytic activity for NO removal. Ind Eng Chem Res 56:10251–10258. https://doi.org/10.1021/acs.iecr.7b02497

    Article  CAS  Google Scholar 

  316. Zhang P, Rao Y, Huang Y et al (2021) Transformation of amorphous Bi2O3 to crystal Bi2O2CO3 on Bi nanospheres surface for photocatalytic NOx oxidation: intensified hot-electron transfer and reactive oxygen species generation. Chem Eng J 420:129814. https://doi.org/10.1016/j.cej.2021.129814

    Article  CAS  Google Scholar 

  317. Li F, Dong B, Feng S (2019) Bi shell-BiOI core microspheres modified TiO2 nanotube arrays photoanode: improved effect of Bi shell on photoelectrochemical hydrogen evolution in seawater. Int J Hydrogen Energy 44:29986–29999. https://doi.org/10.1016/j.ijhydene.2019.09.210

    Article  CAS  Google Scholar 

  318. Zhang W, Dong X, Liang Y et al (2018) Ag/AgCl nanoparticles assembled on BiOCl/Bi12O17Cl2 nanosheets: enhanced plasmonic visible light photocatalysis and in situ DRIFTS investigation. Appl Surf Sci 455:236–243. https://doi.org/10.1016/j.apsusc.2018.05.171

    Article  CAS  Google Scholar 

  319. Gutiérrez Y, Giangregorio MM, Palumbo F et al (2020) Sustainable and tunable Mg/MgO Plasmon-catalytic platform for the grand challenge of SF6 environmental remediation. Nano Lett 20:3352–3360. https://doi.org/10.1021/acs.nanolett.0c00244

    Article  CAS  PubMed  Google Scholar 

  320. Peeters H, Keulemans M, Nuyts G et al (2020) Plasmonic gold-embedded TiO2 thin films as photocatalytic self-cleaning coatings. Appl Catal B Environ 267:118654. https://doi.org/10.1016/j.apcatb.2020.118654

    Article  CAS  Google Scholar 

  321. Wu X-F, Song H-Y, Yoon J-M et al (2009) Synthesis of core−shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir 25:6438–6447. https://doi.org/10.1021/la900035a

    Article  CAS  PubMed  Google Scholar 

  322. Zhu S, Xie X, Chen S-C et al (2017) Cu-Ni nanowire-based TiO2 hybrid for the dynamic photodegradation of acetaldehyde gas pollutant under visible light. Appl Surf Sci 408:117–124. https://doi.org/10.1016/j.apsusc.2017.02.217

    Article  CAS  Google Scholar 

  323. Yang K, Huang K, Lin L et al (2015) Superior preferential oxidation of carbon monoxide in hydrogen-rich stream under visible light irradiation over gold loaded hedgehog-shaped titanium dioxide nanospheres: identification of copper oxide decoration as an efficient promoterSuperior preferenti. J Power Sources 284:194–205. https://doi.org/10.1016/j.jpowsour.2015.03.003

    Article  CAS  Google Scholar 

  324. He W, Sun Y, Jiang G et al (2018) Defective Bi4MoO9/Bi metal core/shell heterostructure: enhanced visible light photocatalysis and reaction mechanism. Appl Catal B Environ 239:619–627. https://doi.org/10.1016/j.apcatb.2018.08.064

    Article  CAS  Google Scholar 

  325. Xiao X, Zhang W, Yu J et al (2016) Mechanistic understanding of ternary Ag/AgCl@La(OH)3 nanorods as novel visible light plasmonic photocatalysts. Catal Sci Technol 6:5003–5010. https://doi.org/10.1039/C6CY00262E

    Article  CAS  Google Scholar 

  326. Ding X, Zhang L, Gao Y (2017) Insights into electrolyte effects on photoactivities of dye-sensitized photoelectrochemical cells for water splitting. J Energy Chem 26:476–480. https://doi.org/10.1016/j.jechem.2016.11.022

    Article  Google Scholar 

  327. Wysocka I, Kowalska E, Ryl J et al (2019) Morphology, photocatalytic and antimicrobial properties of TiO2 modified with mono- and bimetallic copper, platinum and silver nanoparticles. Nanomater 9:25

    Article  Google Scholar 

  328. Endo-Kimura M, Kowalska E (2020) Plasmonic photocatalysts for microbiological applications. Catal 10:25

    Google Scholar 

  329. Markowska-Szczupak A, Ulfig K, Morawski AW (2011) The application of titanium dioxide for deactivation of bioparticulates: an overview. Catal Today 169:249–257. https://doi.org/10.1016/j.cattod.2010.11.055

    Article  CAS  Google Scholar 

  330. Das S, Misra AJ, HabeebRahman AP et al (2019) Ag@SnO2@ZnO core-shell nanocomposites assisted solar-photocatalysis downregulates multidrug resistance in Bacillus sp.: a catalytic approach to impede antibiotic resistance. Appl Catal B Environ 259:118065. https://doi.org/10.1016/j.apcatb.2019.118065

    Article  CAS  Google Scholar 

  331. Das S, Ranjana N, Misra AJ et al (2017) Disinfection of the water borne pathogens Escherichia coli and Staphylococcus aureus by solar photocatalysis using sonochemically synthesized reusable Ag@ZnO core-shell nanoparticles. Int J Environ Res Public Health 14:25

    Article  Google Scholar 

  332. Das S, Sinha S, Suar M et al (2015) Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ZnO core–shell structure nanocomposites. J Photochem Photobiol B Biol 142:68–76. https://doi.org/10.1016/j.jphotobiol.2014.10.021

    Article  CAS  Google Scholar 

  333. Thangudu S, Kulkarni SS, Vankayala R et al (2020) Photosensitized reactive chlorine species-mediated therapeutic destruction of drug-resistant bacteria using plasmonic core–shell Ag@AgCl nanocubes as an external nanomedicine. Nanoscale 12:12970–12984. https://doi.org/10.1039/D0NR01300E

    Article  CAS  PubMed  Google Scholar 

  334. Méndez-Medrano MG, Kowalska E, Endo-Kimura M et al (2019) Inhibition of fungal growth using modified TiO2 with core@Shell structure of Ag@CuO clusters. ACS Appl Bio Mater 2:5626–5633. https://doi.org/10.1021/acsabm.9b00707

    Article  CAS  PubMed  Google Scholar 

  335. An X, Naowarojna N, Liu P, Reinhard BM (2020) Hybrid plasmonic photoreactors as visible light-mediated bactericides. ACS Appl Mater Interfaces 12:106–116. https://doi.org/10.1021/acsami.9b14834

    Article  CAS  PubMed  Google Scholar 

  336. Feng H, Wang W, Wang W et al (2021) Charge transfer channels of silver @ cuprous oxide heterostructure core-shell nanoparticles strengthen high photocatalytic antibacterial activity. J Colloid Interface Sci 601:531–543. https://doi.org/10.1016/j.jcis.2021.05.113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F.D. and H.P. gratefully acknowledge the Research Foundation-Flanders (FWO) for funding through an Aspirant doctoral fellowship (Grant numbers FN700300002 and FN702100002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sammy W. Verbruggen.

Ethics declarations

Conflict of interest

On behalf of all authors, Sammy W. Verbruggen states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Solar-driven catalysis”; edited by Nicolas Keller, Fernando Fresno, Agnieszka Ruppert and Patricia Garcia-Munoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ninakanti, R., Dingenen, F., Borah, R. et al. Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications. Top Curr Chem (Z) 380, 40 (2022). https://doi.org/10.1007/s41061-022-00390-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00390-w

Keywords

Navigation