Skip to main content
Log in

Light-Induced Processes in Plasmonic Gold/TiO2 Photocatalysts Studied by Electron Paramagnetic Resonance

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

X-band and W-band continuous-wave (CW) electron paramagnetic resonance (EPR) was used to study in situ light-induced (LI) mechanisms in commercial P90 titania (90 % anatase/10 % rutile) compared to plasmon-enhanced Au-P90 photocatalyst. These materials were excited using UV and 532 nm visible light to generate different excitation states and distinguish pure charge separation from plasmon-assisted resonance processes. Up to nine different photoinduced species of trapped electrons and holes were identified. LI CW EPR of P90 is presented for the first time, showing a UV excitation response similar to the well-known mixed-phase P25 titania. It is shown that incorporation of Au nanoparticles in Au-P90 and formation of a Schottky junction affects the charge separation state of the catalyst under UV light. Moreover, Au impregnation activated P90 through plasmon ‘hot’ electron injection under visible light excitation (“plasmonic sensitization effect”). In general, EPR proved to be crucial to determine the different photoexciation paths and reactions that regulate plasmonic photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anpo M, Kamat PV (eds) (2010) Environmentally benign photocatalysts: Applications of titanium oxide-based materials. Springer, New York

    Google Scholar 

  2. Thompson TL, Yates JT (2006) Chem Rev 106:4428–4453

    Article  CAS  Google Scholar 

  3. Pichat P (ed) (2013) Photocatalysis and water purification: from fundamentals to recent applications. Wiley-VCH, Weinheim

    Google Scholar 

  4. Dahl M, Liu Y, Yin Y (2014) Chem Rev 114:9853–9889

    Article  CAS  Google Scholar 

  5. Akpan UG, Hameed BH (2010) Appl Catal A 375:1–11

    Article  CAS  Google Scholar 

  6. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) Appl Catal B 125:331–349

    Article  CAS  Google Scholar 

  7. Vivero-Escoto JL, Chiang Y-D, Wu KC-W, Yamauchi Y (2012) Sci Technol. Adv Mater 13:013003

    Google Scholar 

  8. Ong W-J, Gui MM, Chai S-P, Mohamed AR (2013) RSC Adv 3:4505–4509

    Article  CAS  Google Scholar 

  9. Bumajdad A, Madkour V (2014) Phys Chem Chem Phys 16:7146–7158

    Article  CAS  Google Scholar 

  10. Kumar SG, Devi LG (2011) J Phys Chem A 115:13211–13241

    Article  CAS  Google Scholar 

  11. Verbruggen SW, Keulemans M, Filippousi M, Flahaut D, Van Tendeloo G, Lacombe S, Martens JA, Lenaerts S (2014) Appl Catal B 156–157:116–121

    Article  Google Scholar 

  12. Verbruggen SW, Keulemans M, Martens JA, Lenaerts S (2013) J Phys Chem C 117:19142–19145

    Article  CAS  Google Scholar 

  13. Zhang X, Chen YL, Liu RS, Ping DP (2013) Rep Prog Phys 76:046401

    Article  Google Scholar 

  14. Priebe JB, Karnahl M, Junge H, Beller M, Hollmann D, Brückner A (2013) Angew Chem Int Ed 52:11420–11424

    Article  CAS  Google Scholar 

  15. Möbius K, Savitsky A (2009) High-field EPR spectroscopy on proteins and their model systems. RSC Publishing, Cambridge

    Google Scholar 

  16. Fittipaldi M, Gatteschi D, Fornasiero P (2013) Catal Today 206:2–11

    Article  CAS  Google Scholar 

  17. Fittipaldi M, Gombac V, Montini T, Fornasiero P, Graziani M (2008) Inorg Chim Acta 361:3980–3987

    Article  CAS  Google Scholar 

  18. Vijayan BK, Dimitrijevic NM, Wu J, Gray KA (2010) J Phys Chem C 114:21262–21269

    Article  CAS  Google Scholar 

  19. Naldoni A, D’Arienzo M, Altomare M, Marelli M, Scotti R, Morazzoni F, Selli E, Dal Santo V (2013) Appl Catal B 130–131:239–248

    Article  Google Scholar 

  20. Kubacka A, Ferrer M, Martínez-Arias A, Fernández-García M (2008) Appl Catal B 84:87–93

    Article  CAS  Google Scholar 

  21. Zhang N, Liu S, Fu X, Xu Y-J (2011) J Phys Chem C 115:9136–9145

    Article  CAS  Google Scholar 

  22. Cybula A, Priebe JB, Pohl MM, Sobaczak JW, Schneider M, Zielinska-Jurek A, Brückner A, Zaleska A (2014) Appl Catal B 152–153:202–211

    Article  Google Scholar 

  23. Liu SX, Qu ZP, Han XW, Sun CL (2004) Catal Today 93–95:877–884

    Article  Google Scholar 

  24. Stoll S, Schweiger A (2006) J Magn Reson 178:42–55

    Article  CAS  Google Scholar 

  25. Chiesa M, Paganini MC, Livraghi S, Giamello E (2013) Phys Chem Chem Phys 15:9435–9447

    Article  CAS  Google Scholar 

  26. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) J Phys Chem B 107:4545–4549

    Article  CAS  Google Scholar 

  27. Smits M, Ling Y, Lenaerts S, Van Doorslaer S (2012) Chem Phys Chem 13:4251–4257

    CAS  Google Scholar 

  28. Micic OI, Zhang Y, Cromack KR, Trifunac AD, Thurnauer MC (1993) J Phys Chem 97:7277–7283

    Article  CAS  Google Scholar 

  29. Carter E, Carley AF, Murphy DM (2007) J Phys Chem C 111:10630–10638

    Article  CAS  Google Scholar 

  30. Attwood AL, Murphy DM, Edwards JL, Egerton TA, Harrison RW (2003) Res Chem Intermed 29:449–465

    Article  CAS  Google Scholar 

  31. Ribbens S, Caretti I, Beyers E, Zamani S, Vinck E, Van Doorslaer A, Cool P (2011) J Phys Chem C 115:2302–2313

    Article  CAS  Google Scholar 

  32. Carter E, Carley AF, Murphy DM (2007) Chem Phys Chem 8:113–123

    CAS  Google Scholar 

  33. Zhang X, Chen YL, Liu R, Tsai DP (2013) Rep Prog Phys 76:046401

    Article  Google Scholar 

  34. Zhu H, Chen X, Zheng Z, Ke X, Jaatinen E, Zhao J, Guo C, Xie T, Wang D (2009) Chem Commun 48:7524–7526

    Article  Google Scholar 

  35. Claus P, Brückner A, Mohr C, Hofmeister H (2000) J Am Chem Soc 122:11430–11439

    Article  CAS  Google Scholar 

  36. Sadlo J, Matthys P, Vanhaelewyn G, Callens F, Michalika J, Stachowicza W (1998) J Chem Soc Faraday Trans 94:3275–3278

    Article  CAS  Google Scholar 

  37. Liu L, Li Y (2014) Aerosol Air Qual Res 14:453–469

    CAS  Google Scholar 

  38. Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T (2012) J Am Chem Soc 134:6309–6315

    Article  CAS  Google Scholar 

  39. Gomes Silva C, Juárez R, Marino T, Molinari R, García H (2011) J Am Chem Soc 133:595–602

    Article  CAS  Google Scholar 

  40. Amrollahi R, Hamdy MS, Mul G (2014) J Catal 319:194–199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

IC and SVD acknowledge the Research Foundation—Flanders (FWO) for financial support (Grant G.0687.13). SV thanks FWO for financial support through a postdoctoral fellowship and MK acknowledges the agency for Innovation by Science and Technology in Flanders (IWT) for financial support (Ph.D. Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Van Doorslaer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caretti, I., Keulemans, M., Verbruggen, S.W. et al. Light-Induced Processes in Plasmonic Gold/TiO2 Photocatalysts Studied by Electron Paramagnetic Resonance. Top Catal 58, 776–782 (2015). https://doi.org/10.1007/s11244-015-0419-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0419-4

Keywords

Navigation