Skip to main content

Advertisement

Log in

A Constrained Optimization Approach to Integrated Active Fault Detection and Control

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, a novel approach is proposed to formulate and solve the problem of active fault detection and control for multi-model discrete-time systems. The main objectives are to design an optimal fixed-order controller for stabilizing the healthy and faulty models by minimizing a well-defined quadratic performance index, meanwhile synthesizing a test signal for active fault detection in the presence of bounded energy uncertainty. To do this, an optimal solution is proposed to obtain the trade-off between the optimal fixed-order stabilizing controller signal and optimal test signal for active fault detection. These objectives could be achieved by solving a finite-dimensional constrained optimization problem. The dynamic nonlinear optimization problem is solved by two constructive recursive solution algorithms which are finally applied to a numerical example. Simulation results show the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Sylvester matrix equation.

References

  • Ackermann J (1980) Parameter space design of robust control system. IEEE Trans Autom Control 25:1058–1072

    Article  MATH  Google Scholar 

  • Ahmadizadeh S, Zarei J, Karimi HR (2013) Robust fault detection of linear uncertain time-delay systems using unknown input observers. J Appl Math 2013:1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmadizadeh S, Zarei J, Karimi HR (2014a) Robust unknown input observer design for linear uncertain time delay systems with application to fault detection. Asian J Control 16(4):1006–1019

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmadizadeh S, Zarei J, Karimi HR (2014b) A robust fault detection design for uncertain Takagi–Sugeno models with unknown inputs and time-varying delays. Nonlinear Anal 11(1):98–117

    MathSciNet  MATH  Google Scholar 

  • Campbell SL, Nikoukhah R (2004) Auxiliary signal design for failure detection. Princeton University Press, Princeton, NJ

    Book  MATH  Google Scholar 

  • Chen Y, Patton RJ (1999) Robust model-based fault diagnosis for dynamic systems. Kluwer Academic Publishers, Boston, MA

    Book  MATH  Google Scholar 

  • Das SK, Dey J (2011) Simultaneous stabilization/pole placement of pairs of LTI plants using periodic controllers. J Control Theory Appl 9:493–499

    Article  MathSciNet  Google Scholar 

  • Ding SX (2013) Model-based fault diagnosis techniques: design schemes, algorithms and tools. Springer, London. doi:10.1007/978-1-4471-4799-2

    Book  MATH  Google Scholar 

  • Esna-Ashari A, Nikoukhah R, Campbell SL (2012a) Effects of feedback on active fault detection. Automatica 48:866–872

    Article  MathSciNet  MATH  Google Scholar 

  • Esna-Ashari A, Nikoukhah R, Campbell SL (2012b) Active robust fault detection in closed-loop systems: quadratic optimization approach. IEEE Trans Autom Control 54:2532–2544

    Article  MathSciNet  MATH  Google Scholar 

  • Forouzanfar M, Khosrowjerdi MJ (2014) Optimal auxiliary signal design for failure detection of tire/road friction. Modares J Electr Eng 13(4):61–68

    Google Scholar 

  • Ghosh A (2013) Decentralized simultaneous stabilization of a class of two MIMO systems using a continuous-time periodic controller. Automatica 49:1515–1520

    Article  MathSciNet  MATH  Google Scholar 

  • Niemann HH (2003) Dual–Youla parameterization. IEEE Proc Control Theory Appl 150:493–497

    Article  Google Scholar 

  • Niemann HH (2006) A setup for active fault diagnosis. IEEE Trans Autom Control 51:1572–1578

    Article  MathSciNet  MATH  Google Scholar 

  • Niemann HH (2012) A model-based approach for fault-tolerant control. Int J Appl Math Comput Sci 22:67–86

    Article  MathSciNet  MATH  Google Scholar 

  • Niemann HH, Poulsen NK (2015) Active fault diagnosis in sampled-data systems. IFAC Papers OnLine 48:883–888

    Article  Google Scholar 

  • Nikoukhah R, Campbell SL, Drake K (2010) An active approach for detection of incipient faults. Int J Syst Sci 41:241–257

    Article  MathSciNet  MATH  Google Scholar 

  • Puncochar I, Siroky J, Simandl M (2014) Constrained active fault detection and control. IEEE Trans Autom Control 60:253–258

    Article  MathSciNet  MATH  Google Scholar 

  • Saadatjoo F, Derhami V, Karbassi SM (2013) Simultaneous control of linear systems by Genetic Algorithms in state and output feedback. Iran J Sci Technol 53:869–902

    MATH  Google Scholar 

  • Simandl M, Puncochar I (2009) Active fault detection and control: unified formulation and optimal design. Automatica 45:2052–2059

    Article  MathSciNet  MATH  Google Scholar 

  • Skaf J, Boyd SP (2010) Design of affine controllers via convex optimization. IEEE Trans Autom Control 55:2476–2486

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang W, Han Z, Cai X (2011) Simultaneous stabilization of a collection of single-input nonlinear systems based on CLFs. Asian J Control 13:582–589

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the associate editor and the anonymous reviewers for their valuable comments and constructive suggestions. They were very helpful for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Khosrowjerdi.

Appendices

Appendices

1.1 Appendix 1: Proof 4.3

Let \({\mathcal{L}} = \mathop \sum \limits_{i = 1}^{2} {\text{Tr}}[W_{i} Z_{i} ] + \mathop \sum \limits_{i = 1}^{2} {\text{Tr}}[ \varGamma_{i} (\bar{A}_{i}^{\text{T}} W_{i} \bar{A}_{i} - W_{i} + S)]\), where the positive definite matrix \(_{i}\) is \(i{\text{th}}\) Lagrangian multiplayer. The following sufficient conditions for existence of optimal fixed-order DOF controller are given by:

$${\begin{array}{*{20}c} {1.\quad \frac{{\partial {\mathcal{L}}}}{{\partial W_{i} }} = Z_{i} + (\bar{A}_{i} )\varGamma_{i} (\bar{A}_{i}^{{\text{T}}} ) - _{i} = 0,i = 1,2} \\ {2.\quad \frac{{\partial {\mathcal{L}}}}{{\partial _{i} }} = S + (\bar{A}_{i}^{{\text{T}}} )W_{i} (\bar{A}_{i} ) - W_{i} = 0,i = 1,2} \\ {3.\quad \frac{{\partial {\mathcal{L}}}}{{\partial E}} = \sum\limits_{{i = 1}}^{2} {(\tilde{B}_{{\bar{M}_{i}^{{\text{T}}} }} W_{i} \bar{M}_{i} \gamma _{0} \tilde{C}_{{\bar{M}_{i}^{{\text{T}}} }} + \tilde{B}_{{\bar{A}_{i}^{{\text{T}}} }} W_{i} \bar{A}_{i} \Gamma _{i} \tilde{C}_{{\bar{A}_{i}^{{\text{T}}} }} + \hat{R}E^{{\text{T}}} T \varGamma_{i} T^{{\text{T}}} )} = 0} \\ \end{array} }$$
(24)

Now, by solving the set of coupled nonlinear equations (24) simultaneously, the optimal DOF controller can be obtained. According to Lagrange’s theorem, to achieve the minimum point, the unknown matrices \(W_{i} \quad {\text{and}}\quad \varGamma_{i}\) should be positive definite. To complete the optimal DOF controller synthesis, the following theorem is discussed.

1.2 Appendix 2: Proof 4.4

By extracting (6.3), we have

$$\left\{ {\begin{array}{*{20}l} {1.\quad \sum\limits_{i = 1}^{2} {\left[ \begin{aligned} B_{i}^{\text{T}} W_{{11_{i} }} M_{i} \gamma_{0} N_{i}^{\text{T}} + B_{i}^{\text{T}} W_{{11_{i} }} A_{i} \varGamma_{{11_{i} }} C_{i}^{\text{T}} + B_{i}^{\text{T}} W_{{11_{i} }} B_{i} G\varGamma_{{21_{i} }} C_{i}^{\text{T}} \hfill \\ + B_{i}^{\text{T}} W_{{12_{i} }} KN_{i} \gamma_{0} N_{i}^{\text{T}} + B_{i}^{\text{T}} W_{{12_{i} }} KC_{i} \varGamma_{{11_{i} }} C_{i}^{\text{T}} + B_{i}^{\text{T}} W_{{12_{i} }} (P + KDG)\varGamma_{{21_{i} }} C_{i}^{\text{T}} \hfill \\ \end{aligned} \right] = 0} } \hfill \\ {2.\quad \sum\limits_{i = 1}^{2} {\left[ \begin{aligned} RG\varGamma_{{22_{i} }} + B_{i}^{\text{T}} W_{{11_{i} }} A_{i} \varGamma_{{12_{i} }} + B_{i}^{\text{T}} W_{{11_{i} }} B_{i} G\varGamma_{{22_{i} }} \hfill \\ + B_{i}^{\text{T}} W_{{12_{i} }} KC_{i} \varGamma_{{12_{i} }} + B_{i}^{\text{T}} W_{{12_{i} }} (P + KDG)\varGamma_{{22_{i} }} \hfill \\ \end{aligned} \right] = 0} } \hfill \\ {3. \quad \mathop \sum \limits_{i = 1}^{2} \left[ {\begin{array}{*{20}c} {W_{{21_{i} }} M_{i} \gamma_{0} N_{i}^{\text{T}} + W_{{21_{i} }} A_{i} \varGamma_{{11_{i} }} C_{i}^{\text{T}} + W_{{21_{i} }} B_{i} G \varGamma_{{21_{i} }} C_{i}^{\text{T}} + W_{{22_{i} }} KN_{i} \gamma_{0} N_{i}^{T} } \\ { + W_{{22_{i} }} KC_{i} \varGamma_{{11_{i} }} C_{i}^{\text{T}} + W_{{22_{i} }} (P + KDG)\varGamma_{{21_{i} }} C_{i}^{\text{T}} } \\ \end{array} } \right] = 0 } \hfill \\ {4. \quad \mathop \sum \limits_{i = 1}^{2} \left[ {\begin{array}{*{20}c} {W_{{21_{i} }} A_{i} \varGamma_{{12_{i} }} +W_{{22_{i} }} (P + KDG)\varGamma_{{21_{i} }} C_{i}^{\text{T}} } \\ \end{array} } \right] = 0 } \hfill \\ \end{array} } \right.$$
(25)

With regard to (25.1)–(25.4) for \(i = 1,2 ,\) the new variables are rewritten as follow:

$$\left\{ {\begin{array}{*{20}l} {1. \check{S}_{1} + \mathop \sum \limits_{i = 1}^{2} \check{a}_{i} G\check{b}_{i} + \check{c}_{i} K\check{d}_{i} + \check{c}_{i} (P + KDG)\check{b}_{i} = 0} \hfill \\ {2. \check{S}_{3} + \mathop \sum \limits_{i = 1}^{2} \check{g}_{i} G\check{m}_{i} + \check{c}_{i} K\check{h}_{i} + \check{c}_{i} (P + KDG)\check{m}_{i} = 0} \hfill \\ {3. \check{S}_{2} + \mathop \sum \limits_{i = 1}^{2} \check{e}_{i} G\check{b}_{i} + \check{f}_{i} K\check{d}_{i} + \check{f}_{i} (P + KDG)\check{b}_{i} = 0 } \hfill \\ {4. \check{S}_{4} + \mathop \sum \limits_{i = 1}^{2} \check{e}_{i} G\check{m}_{i} + \check{f}_{i} K\check{h}_{i} + \check{f}_{i} (P + KDG)\check{m}_{i} = 0} \hfill \\ \end{array} } \right.$$
(26)

where

$$\begin{aligned} \check{S}_{1} & = - \mathop \sum \limits_{i = 1}^{2} [B_{i}^{\text{T}} W_{{11}_i} M_{i} \gamma_{0} N_{i}^{\text{T}} + B_{i}^{\text{T}} W_{{11}_i} A_{i} \varGamma_{{11}_i} C_{i}^{\text{T}} ], \\ \check{S}_{2} & = - \mathop \sum \limits_{i = 1}^{2} [W_{{21}_i} M_{i} \gamma_{0} N_{i}^{\text{T}} + W_{{21}_i} A_{i} \varGamma_{{11}_i} C_{i}^{\text{T}} ], \\ \check{S}_{3} & = - \mathop \sum \limits_{i = 1}^{2} [B_{i}^{\text{T}} W_{{11}_i} A_{i} \varGamma_{{12}_i} ],\quad \check{S}_{4} = - \mathop \sum \limits_{i = 1}^{2} [W_{{21}_i} A_{i} \varGamma_{{12}_i} ]. \\ [\check{a}_{i} ] & = [B_{i}^{\text{T}} W_{{11}_i} B_{i} ],\quad [\check{b}_{i} ] = [\varGamma_{{21}_i} C_{i}^{\text{T}} ],\quad [\check{c}_{i} ] = [B_{i}^{\text{T}} W_{{12}_i} ],\quad [\check{d}_{i} ] = [N_{i} \gamma_{0} N_{i}^{\text{T}} + C_{i} \varGamma_{{11}_i} C_{i}^{\text{T}} ] \\ [\check{e}_{i} ] & = [W_{{21}_i} B_{i} ], \quad [\check{f}_{i} ] = [W_{{22}_i} ],\quad [\check{g}_{i} ] = [R + B_{i}^{\text{T}} W_{{11}_i} B_{i} ],\quad [\check{m}_{i} ] = [\varGamma_{{22}_i} ], \quad [\check{h}_{i} ] = [C_{i} \varGamma_{{12}_i} ], \\ [\check{I}_{i} ] & = [I_{i} ]. \\ \end{aligned}$$

Here, the compact form of (26) can be assumed as follows:

$$\left\{ \begin{aligned} 1. \quad [\check{a}_{1} \check{a}_{2} ]\left[ {\begin{array}{*{20}c} G & 0 \\ 0 & G \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\check{b}_{1} } \\ {\check{b}_{2} } \\ \end{array} } \right] + [\check{c}_{1} \check{c}_{2} ]\left[ {\begin{array}{*{20}c} {K\check{d}_{1} + (P + KDG)\check{b}_{1} } & 0 \\ 0 & {K\check{d}_{2} + (P + KDG)\check{b}_{2} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\check{I}_{1} } \\ {\check{I}_{2} } \\ \end{array} } \right] = \check{S}_{1} \hfill \\ 2. \quad [\check{g}_{1} \check{g}_{2} ]\left[ {\begin{array}{*{20}c} G & 0 \\ 0 & G \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\check{m}_{1} } \\ {\check{m}_{2} } \\ \end{array} } \right] + [\check{c}_{1} \check{c}_{2} ]\left[ {\begin{array}{*{20}c} {K\check{h}_{1} + (P + KDG)\check{m}_{1} } & 0 \\ 0 & {K\check{h}_{2} + (P + KDG)\check{m}_{2} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\check{I}_{1} } \\ {\check{I}_{2} } \\ \end{array} } \right] = \check{S}_{3} \hfill \\ 3. \quad [\check{e}_{1} \check{e}_{2} ]\left[ {\begin{array}{*{20}c} G & 0 \\ 0 & G \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\check{b}_{1} } \\ {\check{b}_{2} } \\ \end{array} } \right] + [\check{f}_{1} \check{f}_{2} ]\left[ {\begin{array}{*{20}c} {K\check{d}_{1} + (P + KDG)\check{b}_{1} } & 0 \\ 0 & {K\check{d}_{2} + (P + KDG)\check{b}_{2} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\check{I}_{1} } \\ {\check{I}_{2} } \\ \end{array} } \right] = \check{S}_{2} \hfill \\ 4. \quad [\check{e}_{1} \check{e}_{2} ]\left[ {\begin{array}{*{20}c} G & 0 \\ 0 & G \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\check{m}_{1} } \\ {\check{m}_{2} } \\ \end{array} } \right] + [\check{f}_{1} \check{f}_{2} ]\left[ {\begin{array}{*{20}c} {K\check{h}_{1} + (P + KDG)\check{m}_{1} } & 0 \\ 0 & {K\check{h}_{2} + (P + KDG)\check{m}_{2} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\check{I}_{1} } \\ {\check{I}_{2} } \\ \end{array} } \right] = \check{S}_{4} \hfill \\ \end{aligned} \right.$$
(27)

Now, by introducing some new variables, (27) is rewritten as

$$\left\{ {\begin{array}{*{20}l} {1. \quad \check{A} \check{X} \check{B} + \check{C} \check{Y} \check{I} = \check{S}_{1} } \hfill \\ {2. \quad \check{G} \check{X} \check{M} + \check{C} \check{Z} \check{I} = \check{S}_{3} } \hfill \\ {3. \quad \check{E} \check{X} \check{B} + \check{F} \check{Y} \check{I} = \check{S}_{2} } \hfill \\ {4. \quad \check{E} \check{X} \check{M} + \check{F} \check{Z} I = \check{S}_{4} } \hfill \\ \end{array} } \right.$$
(28)

where \(\begin{aligned} \check{A} = [\check{a}_{1} \check{a}_{2} ], \;\check{B} = [\check{b}_{1}^{\text{T}} \check{b}_{2}^{\text{T}} ]^{\text{T}} ,\; \check{C} = [\check{c}_{1} \check{c}_{2} ] ,\;\check{D} = [\check{d}_{1} \check{d}_{2} ], \;\check{E} = [\check{e}_{1} \check{e}_{2} ],\;\check{F} = [\check{f}_{1} \check{f}_{2} ], \hfill \\ \check{G} = [\check{g}_{1} \check{g}_{2} ],\;\check{M} = [\check{m}_{1}^{\text{T}} \check{m}_{2}^{\text{T}} ]^{\text{T}} ,\;\check{H} = [\check{h}_{1} \check{h}_{2} ],\;\check{I} = [\check{I}_{1}^{\text{T}} \check{I}_{2}^{\text{T}} ]^{\text{T}} , \;\check{X} = {\text{diagonal(}}G ),\; \check{Y} = {\text{diagonal(}}K\check{d}_{i} + (P + KDG)\check{b}_{i} ), \; \check{Z} = {\text{diagonal(}}K\check{h}_{i} + (P + KDG)\check{m}_{i} )\hfill \\ \end{aligned}\) and \(\check{I}_{i}\) is a unitary matrix with the proper dimension for \(i = 1,2\).

Obviously, four equations in (28) can be considered as two sets of coupled SME as

$${\text{SME}} . 1:\left\{ {\begin{array}{*{20}c} {\check{A} \check{X} \check{B} + \check{C} \check{Y} \check{I} = \check{S}_{1} } \\ {\check{E} \check{X} \check{B} + \check{F} \check{Y} \check{I} = \check{S}_{2} } \\ \end{array} } \right.\;{\text{and}}\;{\text{SME}} . 2:\left\{ {\begin{array}{*{20}c} {\check{G} \check{X} \check{M} + \check{C} \check{Z} \check{I} = \check{S}_{3} } \\ {\check{E} \check{X} \check{M} + \check{F} \check{Z} I = \check{S}_{4} } \\ \end{array} } \right.$$

1.3 Appendix 3: Proof 4.5

If matrices \(R,\varGamma _{i} = \left[ {\begin{array}{*{20}c} {\varGamma_{11} } & {\varGamma_{12} } \\ {\varGamma_{21} } & {\varGamma_{22} } \\ \end{array} } \right]_{i} \quad {\text{and}}\quad W_{i} = \left[ {\begin{array}{*{20}c} {W_{11} } & {W_{12} } \\ {W_{21} } & {W_{22} } \\ \end{array} } \right]_{i}\) are symmetric positive definite, then obviously, sub-matrices \(W_{{11}_i}\), \(W_{{22}_i}\), \(\varGamma_{{11}_i}\) and \(\varGamma_{{22}_i}\) will be symmetric positive definite. Hence, regarding (25) the following relations are achieved:

$$\left\{ {\begin{array}{*{20}c} {\check{g}_{i} \succ 0 \to \check{G}^{\rm T} \check{G} \succ 0} \\ {\begin{array}{*{20}c} {\check{f}_{i} \succ 0 \to \check{F}^{\rm T} \check{F} \succ 0} \\ {\check{m}_{i} \succ 0 \to \check{M} \check{M}^{\rm T} \succ 0} \\ \end{array} } \\ {\check{I}_{i} \succ 0 \to \check{I} \check{I}^{\rm T} \succ 0 } \\ \end{array} } \right.$$
(29)

Now, regarding (29) and using pseudo-inverse definition, the unknown matrix \(\check{X}\) in (28.2) is calculated as

$$\begin{aligned} ( {\check{G}^{\rm T} \check{G} } )^{ - 1} \check{G}^{\rm T} \check{G} \check{X} \check{M} \check{M}^{\rm T} ( {\check{M} \check{M}^{\rm T} } )^{ - 1} + ( {\check{G}^{\rm T} \check{G} } )^{ - 1} \check{G}^{\rm T} \check{C} \check{Z} \check{I} \check{M}^{\rm T} ( {\check{M} \check{M}^{\rm T} } )^{ - 1} = ( {\check{G}^{\rm T} \check{G} } )^{ - 1} \check{G}^{\rm T} \check{S}_{3} \check{M}^{\rm T} ( {\check{M} \check{M}^{\rm T} } )^{ - 1} \to \hfill \\ \check{X} = ( {\check{G}^{\rm T} \check{G} } )^{ - 1} \check{G}^{\rm T} (\check{S}_{3} - \check{C} \check{Z} \check{I} )\check{M}^{\rm T} (\check{M} \check{M}^{\rm T} )^{ - 1} \hfill \\ \end{aligned}$$
(30)

By replacing (30) in (28.4), the unknown matrix \(\check{X}\) is calculated as

$$\begin{aligned} & (\check{F}^{\text{T}} \check{F} )^{ - 1} \check{F}^{\text{T}} \check{E} (\check{G}^{\text{T}} \check{G} )^{ - 1} \check{G}^{\text{T}} (\check{S}_{3} - \check{C} \check{Z} \check{I} )\check{M}^{\text{T}} (\check{M} \check{M}^{\text{T}} )^{ - 1} \check{M} \check{I}^{\text{T}} (\check{I} \check{I}^{\text{T}} )^{ - 1} + (\check{F}^{\text{T}} \check{F} )^{ - 1} \check{F}^{\text{T}} \check{F} \check{Z} \check{I} \check{I}^{\text{T}} (\check{I} \check{I}^{\text{T}} )^{ - 1} = (\check{F}^{\text{T}} \check{F} )^{ - 1} \check{F}^{\text{T}} \check{S}_{4} \check{I}^{\text{T}} (\check{I} \check{I}^{\text{T}} )^{ - 1} \\ & \quad \to (\check{F}^{\text{T}} \check{F} )^{ - 1} \check{F}^{\text{T}} \check{E} (\check{G}^{\text{T}} \check{G} )^{ - 1} \check{G}^{\text{T}} (\check{S}_{3} - \check{C} \check{Z} \check{I} )\check{I}^{\text{T}} (\check{I} \check{I}^{\text{T}} )^{ - 1} + \check{Z} = (\check{F}^{\text{T}} \check{F} )^{ - 1} \check{F}^{\text{T}} \check{S}_{4} \check{I}^{\text{T}} (\check{I} \check{I}^{\text{T}} )^{ - 1} \\ & \quad \to - \check{Z} + [(\check{F}^{\text{T}} \check{F} )^{ - 1} \check{F}^{\text{T}} \check{E} (\check{G}^{\text{T}} \check{G} )^{ - 1} \check{G}^{\text{T}} \check{C} ]\check{Z} [\check{I} \check{I}^{\text{T}} (\check{I} \check{I}^{\text{T}} )^{ - 1} ] = - (\check{F}^{\text{T}} \check{F} )^{ - 1} \check{F}^{\text{T}} \check{S}_{4} \check{I}^{\text{T}} (\check{I} \check{I}^{\text{T}} )^{ - 1} + (\check{F}^{\text{T}} \check{F} )^{ - 1} \check{F}^{\text{T}} \check{E} (\check{G}^{\text{T}} \check{G} )^{ - 1} \check{G}^{\text{T}} \check{S}_{3} \check{I}^{\text{T}} (\check{I} \check{I}^{\text{T}} )^{ - 1} \\ & \quad \to [(\check{F}^{\text{T}} \check{F} )^{ - 1} \check{F}^{\text{T}} \check{E} (\check{G}^{\text{T}} \check{G} )^{ - 1} \check{G}^{\text{T}} \check{C} ]\check{Z} - \check{Z} = (\check{F}^{\text{T}} \check{F} )^{ - 1} \check{F}^{\text{T}} [\check{E} (\check{G}^{\text{T}} \check{G} )^{ - 1} \check{G}^{\text{T}} \check{S}_{3} - \check{S}_{4} ]\check{I}^{\text{T}} (\check{I} \check{I}^{\text{T}} )^{ - 1} \\ \end{aligned}$$
(31)

Indeed (31) is assumed as a discrete Sylvester equation in the form of \(A\check{Z} B - \check{Z} = W\), where

$$A = [(\check{F}^{\text{T}} \check{F} )^{ - 1} \check{F}^{\text{T}} \check{E} (\check{G}^{\text{T}} \check{G} )^{ - 1} \check{G}^{\text{T}} \check{C} ], \quad B = I, \quad W = (\check{F}^{\text{T}} \check{F} )^{ - 1} \check{F}^{\text{T}} [\check{E} (\check{G}^{\text{T}} \check{G} )^{ - 1} \check{G}^{\text{T}} \check{S}_{3} - \check{S}_{4} ]\check{I}^{\text{T}} (\check{I} \check{I}^{\text{T}} )^{ - 1}$$

The Sylvester equation in (31) can be solved and \(\check{Z}\) can be computed using MATLAB®←command “dlyap(A,B,W)”. Hence, by replacing the computed value of \(\check{Z}\) in (30), \(\check{X}\) can be calculated. In the next step, the calculated parameter \(\check{X}\) is replaced in (28.3). In the same way, \(\check{Y}\) is calculated as follows:

$$\check{Y} = (\check{F}^{\text{T}} \check{F} )^{ - 1} \check{F}^{\text{T}} \check{S}_{2} \check{I}^{\text{T}} (\check{I} \check{I}^{\text{T}} )^{ - 1} - (\check{F}^{\text{T}} \check{F} )^{ - 1} \check{F}^{\text{T}} \check{E} \check{X} \check{B} \check{I}^{\text{T}} (\check{I} \check{I}^{\text{T}} )^{ - 1}$$
(32)

Using the value of \(\check{X}\) and replacing it in (32), \(\check{Y}\) will be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forouzanfar, M., Khosrowjerdi, M.J. A Constrained Optimization Approach to Integrated Active Fault Detection and Control. Iran J Sci Technol Trans Electr Eng 41, 229–240 (2017). https://doi.org/10.1007/s40998-017-0032-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-017-0032-6

Keywords

Navigation