Skip to main content
Log in

Robust Fault Detection of Uncertain Lipschitz Nonlinear Systems with Simultaneous Disturbance Attenuation Level and Enhanced Fault Sensitivity and Lipschitz Constant

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the problem of optimal robust fault detection (FD) for uncertain Lipschitz nonlinear systems is considered. A robust active fault detection approach for a class of the Lipschitz nonlinear systems in the presence of disturbances and parametric uncertainties is proposed, wherein the Lipschitz constant is assumed as one of the optimization parameters in the observer design. In addition to disturbance attenuation level, the fault sensitivity criterion based on \(H_-\) index is also defined in the FD system design. Different criteria are defined as a weighted multi-objective linear matrix inequality optimization problem, and the optimal variables of the FD system are derived based on a newly defined cost function. A numerical example is provided to demonstrate the effectiveness of the proposed FD system. The results show the robustness of the proposed method against parametric uncertainty and nonlinear uncertainty as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Abbaszadeh, H.J. Marquez, Nonlinear robust \(H_\infty \) filtering for a class of uncertain systems via convex optimization. J. Control Theory Appl. 10(2), 152–158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Abbaszadeh, H.J. Marquez, Robust \(H_\infty \) observer design for a class of nonlinear uncertain systems via convex optimization, in Proceedings of American Control Conference, pp. 1699–1704 (2007)

  3. S. Ahmadizadeh, J. Zarei, H.R. Karimi, Robust unknown input observer design for linear uncertain time delay systems with application to fault detection. Asian J. Control. 16(4), 1006–1019 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Asgari, A. Yazdizadeh, M.G. Kazemi, Robust model-based fault detection and isolation for V47/660kW wind turbine. AUT J. Model. Simul. 45(1), 55–66 (2015)

    Google Scholar 

  5. J. Chen, R.J. Patton, Robust Model-based Fault Diagnosis for Dynamic Systems (Kluwer Academic Publishers, Dordrecht, 1999)

    Book  MATH  Google Scholar 

  6. M.Z. Chen, Q. Zhao, D.H. Zhou, A robust fault detection approach for nonlinear systems. Int. J. Automa. Comput. 3(1), 23–28 (2006)

    Article  Google Scholar 

  7. W. Chen, A. Khan, M. Abid, S. Ding, Integrated design of observer based fault detection for a class of uncertain nonlinear systems. Int. J. Appl. Math. Comput. Sci. 21(3), 423–430 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. M.R. Davoodi, A. Golabi, H.A. Talebi, H.R. Momeni, Simultaneous fault detection and control design for switched linear systems: a linear matrix inequality approach. J. Dyn. Syst. Meas. Control. 134(6), 061010 (2012)

    Article  Google Scholar 

  9. S. Dhahri, A. Sellami, F.B. Hmida, Robust \(H_\infty \) sliding mode observer design for fault estimation in a class of uncertain nonlinear systems with LMI optimization approach. Int. J. Control Autom. Syst. 10(5), 1032–41 (2012)

    Article  Google Scholar 

  10. S.X. Ding, Model-Based Fault Diagnosis Techniques (Springer, Berlin, 2008)

    Google Scholar 

  11. L. Fortuna, P. Arena, D. Balya, A. Zarandy, Cellular neural networks: a paradigm for nonlinear spatio-temporal processing. IEEE Circuits Syst. Mag. 1(4), 6–21 (2001)

    Article  Google Scholar 

  12. Z. Gao, C. Cecati, S.X. Ding, A survey of fault diagnosis and fault-tolerant techniques Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 62(6), 3757–3767 (2015)

    Article  Google Scholar 

  13. Z. Gao, S.X. Ding, Fault reconstruction for Lipschitz nonlinear descriptor systems via linear matrix inequality approach. Circuits Syst. Signal Process. 27(3), 295–308 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Z. Gao, X. Liu, M.Z. Chen, Unknown input observer-based robust fault estimation for systems corrupted by partially decoupled disturbances. IEEE Trans. Ind. Electron. 63(4), 2537–2547 (2016)

    Google Scholar 

  15. L. Hongyi, Robust control design for vehicle active suspension systems with uncertainty. Ph.D. dissertation, University of Portsmouth (2012)

  16. S. Huang, Z. Xiang, H.R. Karimi, Mixed \(L/L_1\) fault detection filter design for fuzzy positive linear systems with time-varying delays. IET Control Theory Appl. 8(12), 1023–1031 (2014)

    Article  MathSciNet  Google Scholar 

  17. I. Hwang, S. Kim, C.E. Seah, A Survey of fault detection, isolation, and reconfiguration methods. IEEE Trans. Control Syst. Technol. 18(3), 636–653 (2010)

    Article  Google Scholar 

  18. A.Q. Khan, M.R. Abid, W. Chen, S.X. Ding, On optimal fault detection of nonlinear systems, in Decision and Control, CDC/CCC, pp. 1032–1037 (2009)

  19. L. Li, S.X. Ding, Y. Yang, Y. Zhang, Robust fuzzy observer-based fault detection for nonlinear systems with disturbances. Neurocomputing 174, 767–772 (2016)

    Article  Google Scholar 

  20. L. Li, S.X. Ding, J. Qiu, Y. Yang, D. Xu, Fuzzy observer-based fault detection design approach for nonlinear processes. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 1941–1952 (2017)

    Article  Google Scholar 

  21. S. Li, Z. Xiang, H.R. Karimi, Mixed \(l/l_1\) fault detection observer design for positive switched systems with time-varying delay via delta operator approach. Int. J. Control Autom. Syst. 12(4), 709–721 (2014)

    Article  Google Scholar 

  22. A. Marcos, S. Ganguli, G.J. Balas, An application of \(H\infty \) fault detection and isolation to a transport aircraft. Control Eng. Pract. 13(1), 105–119 (2005)

    Article  Google Scholar 

  23. S.K. Nguang, P. Zhang, S.X. Ding, Parity relation based fault estimation for nonlinear systems: an LMI approach. Int. J. Autom. Comput. 4(2), 164–168 (2007)

    Article  Google Scholar 

  24. H.M. Qian, Z.D. Fu, J.B. Li, L.L. Yu, Robust fault diagnosis algorithm for a class of lipschitz system with unknown exogenous disturbances. Measurement 46(8), 2324–2334 (2013)

    Article  Google Scholar 

  25. S. Raghavan, J. Hedrick, Observer design for a class of nonlinear systems. Int. J. Control. 59(2), 515–528 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Rajamani, Observers for Lipschitz nonlinear systems. IEEE Trans. Autom. Control. 43(3), 397–401 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Y.D. Sergeyev, D.E. Kvasov, Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Sun, F. Wang, X. He, Robust fault estimation for Takagi–Sugeno nonlinear systems with time-varying state delay. Circuits Syst. Signal Process. 34(2), 641 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. P.S. Teh, H. Trinh, Design of unknown input functional observers for nonlinear systems with application to fault diagnosis. J. Process Control. 23(8), 1169–1184 (2013)

    Article  Google Scholar 

  30. F. Thau, Observing the state of nonlinear dynamic systems. Int. J. Control. 17(3), 471–479 (1973)

    Article  MATH  Google Scholar 

  31. D. Wang, M. Yu, C.B. Low, S. Arogeti, Model-Based Health Monitoring of Hybrid Systems (Springer, Berlin, 2013)

    Book  Google Scholar 

  32. Y. Wang, L. Xie, C.E. de Souza, Robust control of a class of uncertain nonlinear systems. Syst. Control Lett. 19(2), 139–149 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Witczak, J. Korbicz, R. Jzefowicz, Design of unknown input observers for non-linear stochastic systems and their application to robust fault diagnosis. Control Cybern. 42(1), 227–256 (2013)

    MathSciNet  MATH  Google Scholar 

  34. M. Xiang, Z. Xiang, Robust fault detection for switched positive linear systems with time-varying delays. ISA Trans. 53(1), 10–16 (2014)

    Article  Google Scholar 

  35. Y. Yang, S.X. Ding, L. Li, On observer-based fault detection for nonlinear systems. Syst. Control Lett. 82, 18–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Zarei, E. Shokri, Robust sensor fault detection based on nonlinear unknown input observer. Measurement 48, 355–367 (2014)

    Article  Google Scholar 

  37. C.F. Zhang, M. Yan, J. He, C. Luo, LMI-based sliding mode observers for incipient faults detection in nonlinear system. J. Appl. Math. 2012 (2012). https://doi.org/10.1155/2012/528932

  38. Y. Zhang, J. Jiang, Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 32(2), 229–252 (2008)

    Article  Google Scholar 

  39. M. Zhou, Z. Wang, Y. Shen, M. Shen, \(H_-/H_\infty \) fault detection observer design in finite-frequency domain for Lipschitz non-linear systems. IET Control Theory Appl. 11(14), 2361–2369 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ghasem Kazemi.

Appendix

Appendix

In this section, the proposed method is applied to an active suspension system as a real-world system. The configuration of the system is depicted in Fig. 9.

Fig. 9
figure 9

A quarter car model [15]

State space representation of the system is given by

$$\begin{aligned} \dot{x}(t)=\left( \begin{array}{cccc} 0 &{}\quad 0 &{}\quad 1 &{}\quad -\,1 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ -\frac{k_s}{m_s} &{}\quad 0 &{}\quad -\frac{C_s}{m_s} &{}\quad \frac{C_s}{m_s} \\ \frac{k_s}{m_u} &{}\quad -\frac{k_t}{m_u} &{}\quad \frac{C_s}{m_u} &{}\quad -\frac{C_s+C_t}{m_u} \\ \end{array} \right) x(t)+ \left( \begin{array}{c} 0\\ -\,1\\ 0\\ \frac{C_t}{m_u}\\ \end{array} \right) w(t)+\left( \begin{array}{c} \psi _1 \\ \psi _2 \\ \frac{1}{m_s}u+\psi _3 \\ -\frac{1}{m_u}+\psi _4\\ \end{array} \right) \end{aligned}$$
(61)
$$\begin{aligned} y(t)=\left( \begin{array}{cccc} 1 &{}\quad 0 &{}\quad 0 &{} \quad 0 \\ 0 &{}\quad \frac{k_t}{(m_s+m_u)g} &{}\quad 0 &{}\quad 0\\ \end{array} \right) x(t). \end{aligned}$$

The states of the system are defined as suspension deflection, tire deflection, sprung mass speed and unsprung mass speed, respectively, which are represented as the following equations.

$$\begin{aligned} x_1(t)= & {} z_x(t)-z_u(t), \end{aligned}$$
(62)
$$\begin{aligned} x_2(t)= & {} z_u(t)-z_r(t), \end{aligned}$$
(63)
$$\begin{aligned} x_3(t)= & {} \dot{z}_s(t), \end{aligned}$$
(64)
$$\begin{aligned} x_4(t)= & {} \dot{z}_u(t). \end{aligned}$$
(65)

Disturbance is considered as

$$\begin{aligned} w(t)=\dot{z}_r(t), \end{aligned}$$
(66)

which is simulated as follows.

$$\begin{aligned} w(t)=0.05 \sin t. \end{aligned}$$
(67)

The nonlinear term of the state space equation is defined as the subsequent equation.

$$\begin{aligned} \psi (t)=\left( \begin{array}{c} 0.09 \sin t \\ 0.04 \cos t \\ 0.07 \sin t \\ 0.01 \sin t \\ \end{array} \right) . \end{aligned}$$
(68)

According to [15], the parameters of the system, their definition and considered values of the active suspension system are tabulated in Table 3.

Table 3 Parameters of active suspension system

By using the values in the table, the matrices of the system can be obtained as:

$$\begin{aligned} A=\left( \begin{array}{cccc} 0 &{}\quad 0 &{}\quad 1&{}\quad -\,1 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ -\,43.905 &{}\quad 0 &{} \quad -\,1.125 &{} \quad 1.125 \\ 374.736 &{} \quad -\,886.973 &{} \quad 9.605 &{} \quad -\,9.733 \\ \end{array} \right) . \end{aligned}$$

The disturbance and fault distribution matrices are defined as:

$$\begin{aligned} D_1= & {} \left( \begin{array}{c} 0.3 \\ 0.6 \\ 0.1 \\ 0.4 \\ \end{array} \right) , Q_1=\left( \begin{array}{cc} 0 &{} \quad 0.4 \\ 0.8 &{} \quad 0.8 \\ 0.7 &{} \quad 0 \\ 0.3 &{} \quad 0.6 \\ \end{array} \right) \\ D_2= & {} \left( \begin{array}{c} 0.4 \\ 0.5 \\ \end{array} \right) , Q_2=\left( \begin{array}{cc} 0.7 &{} 0.5 \\ -\,0.6 &{} 0.5 \\ \end{array} \right) . \end{aligned}$$

Two actuator and sensor faults are considered for the system. The disturbance distribution matrices are assumed as \(D_1\) and \(D_2\) that is different from (61), which is considered for more strict conditions wherein disturbance can influence all states of the system instead of \(x_2\) and \(x_4\). It is also worth noting that the selection of disturbance and fault distribution matrices has a direct effect on the disturbance attenuation level, fault sensitivity and achievable Lipschitz constant as well.

The parametric uncertainties in the matrices of the system in (61) are assumed as follows.

$$\begin{aligned} M_1= & {} \left( \begin{array}{cccc} 0.11 &{}\quad -\,0.04 &{} \quad 0.02 &{} \quad 0.11 \\ 0.15 &{} \quad 0.13 &{} \quad 0.12 &{} \quad 0.02\\ 0.0.1 &{} \quad -\,0.11 &{} 0.03 &{} \quad 0.04 \\ 0.03 &{} \quad -\,0.08 &{} \quad 0.11 &{} \quad -\,0.06 \\ \end{array} \right) \\ N_1= & {} \left( \begin{array}{cccc} 0.063 &{} \quad -\,0.055 &{} \quad 0.074 &{} \quad 0.094 \\ 0.015 &{} \quad 0.012 &{} \quad 0.011 &{} \quad 0.064\\ 0.073 &{} \quad -\,0.101 &{} \quad 0.043 &{} \quad 0.045 \\ 0.034 &{} \quad -\,0.028 &{} \quad 0.083 &{} \quad -\,0.061 \\ \end{array} \right) \\ M_2= & {} \left( \begin{array}{c} 0.38 \\ 0.1\\ \end{array} \right) , N_2=\left( \begin{array}{cccc} 0.15 &{} \quad 0.1 &{} \quad 0.13 &{} \quad 0.1 \\ \end{array} \right) . \end{aligned}$$

The parameters for the observer design are considered as:

$$\begin{aligned} \beta = 0.29, H=\left( \begin{array}{cc} -\,0.18 &{}\quad 0.35 \\ -\,0.35 &{} \quad 0.28 \\ -\,0.35 &{} \quad 0.70 \\ 0.35 &{} \quad 0.11 \\ \end{array} \right) . \end{aligned}$$

The obtained results of the theorem for different weighting factors of the optimization problem are given in Figs. 10 and 11.

Fig. 10
figure 10

Different criteria of the optimization problem versus weighting factor

Fig. 11
figure 11

Optimal trade-off curves

The optimal value for the weighing factor is obtained as \(W=0.9\). One can obtain the following optimal values by solving the LMI problem.

$$\begin{aligned} \mu =0.926 , \gamma =0.091 , \beta =0.237. \end{aligned}$$

The observer gain is achieved as:

$$\begin{aligned} L=\left( \begin{array}{cc} -\,0.193 &{} \quad 0.750 \\ 0.243 &{} \quad 1.411 \\ 1.669 &{} \quad 0.119 \\ 2.365 &{} \quad -\,0.582 \\ \end{array} \right) . \end{aligned}$$

The given values are obtained for \(k_1=k_2=k_3=1\). The optimal values of these coefficients and validation of the proposed method for an experimental setup are considered as future works of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, M.G., Montazeri, M. Robust Fault Detection of Uncertain Lipschitz Nonlinear Systems with Simultaneous Disturbance Attenuation Level and Enhanced Fault Sensitivity and Lipschitz Constant. Circuits Syst Signal Process 37, 4256–4278 (2018). https://doi.org/10.1007/s00034-018-0771-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0771-2

Keywords

Navigation